دانلود فایل با شمار فاکتور
لطفا شماره فاکتور خود را درج نمایید
جدیدترین لغات واژهنامه
کشورهای شمال اروپا
آتش سوزی های جنگلی
دوسویه
نادیده گرفتن، دست انداخ
اجتناب ناپذیر، بی شفقت،
آمار بازدیدکنندگان
بازدید امروز :203
بازدید روز گذشته :60
بازدید این هفته :263
بازدید این ماه :263
مجموع آمار بازدید ها :827906
بازدید روز گذشته :60
بازدید این هفته :263
بازدید این ماه :263
مجموع آمار بازدید ها :827906
عنوان محصول: بهینه سازی مدل خوشه بندی مورچه مبتنی بر الگوریتم میانگین K
|
توضیحات مختصر:
خوشه بندی مورچه یکی از موثرترین متد های خوشه بندی است. در مقایسه با سایر متدهای خوشه بندی، الگوریتم خوشه بندی مورچه، دارای برتری ها و نقاط ضعفی است. برتری این روش این است که تعداد خوشه ها به صورت خودکار تولید می شود، و نقطعه ضعف این روش این است که نتایج خوشه به صورت تصادفی است و نتایج آن تحت تاثیر ...
|
|
| بهینه سازی مدل خوشه بندی مورچه مبتنی بر الگوریتم میانگین K |
673 بازدید
کد مقاله: TTC-
3113
نوع فایل : docx
لینک دانلود فایل خریداری شده بلافاصله بعد از خرید موفق فعال خواهد شد.
Abstract
Ant clustering is one of effective clustering methods. Compares to other clustering methods, ant clustering algorithm has one outstanding advantage and one disadvantage. The advantage is that the total numbers of cluster is generated automatically, and the disadvantage is that its cluster result is random and its result is influenced by the input data and the parameters, which leads low quality of its cluster result. In this paper, we propose an improved ant clustering algorithm based on K-Means, which optimizes the rules of ant clustering algorithm.In our system, we also decide the proper values of parameters Pdel and Iter by training the training datasets before we cluster. Experimental results demonstrate that the proposed method has a good performance.
چکیده
خوشه بندی مورچه یکی از موثرترین متد های خوشه بندی است. در مقایسه با سایر متدهای خوشه بندی، الگوریتم خوشه بندی مورچه، دارای برتری ها و نقاط ضعفی است. برتری این روش این است که تعداد خوشه ها به صورت خودکار تولید می شود، و نقطعه ضعف این روش این است که نتایج خوشه به صورت تصادفی است و نتایج آن تحت تاثیر داده ها و پارامترهای ورودی است که آگهی کمی از کیفیت نتایج خوشه دارد. در این مقاله ما یک الگوریتم خوشه بندی مورچه بهبود یافته را مبتنی بر میانگین K ارائه می کنیم که که قوانین الگوریتم خوشه بندی مورچه را بهبود می دهد. در سیستم ما ، مقادیر مناسب پارامترهای Pdel و Iter با آموزش مجموعه داده ها قبل از خوشه بندی انجام میشود. نتایج آزمایشات نشان می دهد، که روش پیشنهادی دارای کارایی مناسب است.
تمامی ترجمههای انجام شده توسط موسسه تخصصی تلاش ترجمه، به صورت دستی (غیرماشینی) بوده و توسط مترجمین با سابقه انجام میشوند. ترجمههای انجام شده توسط موسسه تلاش ترجمه در قالب فایل Word و به صورت کاملا روان و بازخوانی شده و با ضمانت بازگشت وجه 72 ساعته (در صورت عدم رضایت از ترجمه) خدمت مشتریان محترم ارائه میشود.


