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The maximum likelihood estimator (MLE) and its performance
for the localization of a stationary emitter using a network of
spatially separated passive stationary sensors is presented. The
conventional approach for localization using multiple sensors is to
first estimate the time differences of arrival (TDOAs) independently
between pairs of sensors and then find the location of the emitter
using the intersection point of the hyperbolas defined by these
TDOAs. It has recently been shown that this two-step approach is
suboptimal and an alternate direct position determination (DPD)
approach has been proposed. In the work presented here we take the
DPD approach to derive the MLE and show that the MLE
outperforms the conventional two-step approach. We analyze the two
commonly occurring cases of signal waveform unknown and signal
waveform known with unknown transmission time. This paper
covers a wide variety of transmitted signals such as narrowband or
wideband, lowpass or bandpass, etc. Sampling of the received signals
has a quantization-like effect on the location estimate and so a
continuous time model is used instead. We derive the Fisher
information matrix (FIM) and show that the proposed MLE attains
the Cramer-Rao lower bound (CRLB) for high signal-to-noise ratios
(SNRs).
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NOMENCLATURE

(xT , yT ) = Unknown location of the emitter
(xi, yi) = Location of sensor i
2N – 1 = Number of non-zero Fourier coefficients

N0

2
= Noise spectral density

τi = Unknown time of arrival of signal at
sensor i

A = M × 1 vector of the unknown attenuation
factors

A′ = M – 1 × 1 vector of the unknown relative
attenuation factors

IN = An N × N identity matrix
Ai = Unknown attenuation factor at sensor i

ai, bi = Fourier coefficients of the signal
c = Propogation speed of signal

dmax = Distance between the farthest pair of
sensors

F0 = Fundamental frequency of the Fourier
series

Fs = Sampling frequency
M = Number of sensors
R = Distance from the emitter to a sensor

ri(t) = Signal received at sensor i

s(t) = Transmitted signal waveform
T = Length of observation interval
t0 = Unknown transmission time
Ts = Non-zero length of the signal waveform

wi(t) = Additive Gaussian random process at
sensor i

εSi = Signal energy at sensor i

Iθ = Fisher information matrix of the unknown
parameter vector θ

η = 3 × 1 vector of the unknown emitter
location coordinates and the transmission time
φ = 2N — 1 × 1 vector of the unknown
Fourier coefficients
τ = M × 1 vector of the unknown TOAs
τ ′ = M – 1 × 1 vector of the unknown TDOAs

h(t) = 2N – 1 × 1 vector as defined in
Appendix III

ASNR = Average signal-to-noise ratio
CRLB = Cramer-Rao lower bound

FIM = Fisher information matrix
MLE = Maximum likelihood estimator
SNR = Signal-to-noise ratio

TDOA = Time difference of arrival
TOA = Signal to noise ratio

I. INTRODUCTION

Passive localization has been used for many years and
has always been an important topic of research [1–4].
Localization can be performed using one or more of the
emitter location dependent properties of the signal such as
angle of arrival (AOA), time difference of arrival (TDOA),
frequency difference of arrival (FDOA), or the energy of
the received signal. Over the years the general approach to
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localization using the TDOAs, commonly referred to as
the TDOA technique, has been to first estimate the
difference in the times of arrival of the signal at a particular
pair of sensors and then use these TDOAs to estimate the
location of the emitter. Knapp and Carter [5, 6] proposed a
generalized correlation method for the estimation of the
TDOAs for stationary and relative motion cases. They
modeled the signal as a stationary Gaussian random
process. Stein [7] on the other hand modeled the signal as
deterministic but unknown and derived the MLE for the
differential delay and Doppler for a two-sensor case.
Under similar assumptions for the signal, Yeredor and
Angel [8] have derived the Cramer-Rao lower bound
(CRLB) for the TDOAs. After the TDOAs are estimated
they are used to estimate the location of the source [9–12].
Quite often, due to network capacity and computational
constraints, not all sensor pair combinations are used.
Fowler [13] addressed the problem of optimal selection of
a subset of the sensor pairs. Torrieri [1] proposed a linear
least squares estimator where the nonlinear relation
between the TDOAs and the emitter location is linearized
by expanding it in a Taylor series about a reference point
and retaining the first two terms. This is an iterative
method which requires some kind of a priori information
in order to obtain an initial guess. Alternatively, Chan and
Ho [2] use an intermediate variable, which is a function of
the emitter location, in order to linearize the nonlinear
equations. They use a two-step weighted least squares
algorithm. Additionally, when the signal waveform is
known, localization may be performed from the times of
arrival (TOAs) instead of the TDOAs [14, 15]. In such
TOA-based techniques the unknown transmission time
occurs as a nuisance parameter which will have to be
estimated. Sathyan et al. [16] have shown the theoretical
equivalence of the TOA and the TDOA, taken against a
common reference sensor, based position fixing
techniques by comparing the Cramer-Rao bounds. This
result is complemented by Kaune’s [17] results which
show the equivalence using Monte Carlo simulations. The
above techniques may be called two-step techniques
because the TOAs/TDOAs are first estimated at the local
sensors and these TOA/TDOA estimates are used in a
second step to compute the location of the emitter.

Weiss and Amar [18–21] have shown that the two-step
approach is suboptimal and proposed a direct position
determination (DPD) approach. Weiss had derived the
maximum likelihood estimator (MLE) for the source
location for the case of a stationary narrowband radio
frequency transmitter using multiple stationary receivers
in [18]. He uses a continuous time model and quickly
considers the sampled version without discussing the
effects of sampling on the emitter location estimate. He
shows that the MLE of the emitter location is obtained by
maximizing a quadratic form of the signal samples whose
coefficients are functions of the emitter location. He
considers the two cases of signal known and signal
unknown but leaves out a more important case - signal
known but transmission time unknown which is most

likely to occur in real-world situations. He does not
discuss the CRLB for this problem. There is an inherent
ambiguity in the commonly used model and Weiss uses a
constraint on the signal samples to resolve the ambiguity.
No discussion is provided on the generality of the
constraint as to why it is an appropriate constraint, how it
resolves the ambiguity and whether it reduces the
performance. In [19] Amar and Weiss extend the approach
to a multiple emitters case. In [20] they address the
problem of localization using only the Doppler frequency
shifts and in [21] they consider the case of a single
stationary emitter and moving receivers. In all these cases
the results are similar, i.e., the MLE for the emitter
location is obtained by maximizing a quadratic form of the
signal whose coefficients are functions of the emitter
location. The derivation of CRLB is attempted in the later
papers but is not sufficiently simplified. The effect of
sampling the signal is not discussed in any of the papers.
Similar constraints are used to resolve the ambiguity in the
papers [18–21], but no discussion is provided on the
effects of the constraint.

In this paper we consider the case of a single stationary
emitter and a network of stationary receive sensors. We
address many of the shortcomings of [18–21]. We use a
continuous time model and provide a straightforward
derivation for the MLE of the emitter location for the two
cases of signal waveform known with unknown
transmission time and signal waveform unknown with
unknown transmission time. Our model is valid for either
narrowband or broadband signals, lowpass or highpass
signals. We discuss the effect of sampling the signal on the
emitter location estimate. Using simulations, we compare
the MLE against a conventional TDOA technique. We
show that the variance of the MLE is two to three orders of
magnitude lower than the conventional TDOA technique.

A more difficult problem is deriving the CRLB. If the
signal waveform is assumed unknown along with the TOA
and the attenuation factor, then the commonly used model
has an ambiguity. This ambiguity comes to light when
deriving the CRLB. Because all the unknowns in the
model cannot be uniquely resolved, the Fisher information
matrix (FIM) becomes singular. We address this ambiguity
in detail and derive the necessary steps to remove it. Then
we derive the nonsingular FIM. The inverse of the FIM is
the CRLB. CRLB gives the theoretical lower bound on the
variance of any unbiased estimator. An important
application of the CRLB is in deriving an optimal sensor
configuration. The performance of a location estimator
depends on the placement of sensors. A particular
configuration of the sensors is called optimal if it
optimizes a norm of the FIM. A quite common result [22,
23] is to place the sensors around the emitter in an
equi-angular configuration. But when the sensors are
geographically constrained the problem becomes much
more difficult. We will investigate the problem of optimal
sensor configuration in a future paper.

In Section II we provide a detailed description of the
problem. In Section III we give the CRLBs and the MLEs.
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Fig. 1. Physical placement of sensors (for M = 4) and emitter position
used for simulation.

Here we analyze the case of signal waveform unknown
and the special case of signal waveform known, both cases
with an unknown transmission time. In Section IV we use
Monte Carlo simulations to compare the performance of
the MLE against the conventionally used TDOA
technique. We show that at higher signal-to-noise ratios
(SNRs) the variance of the MLE approaches the CRLB.
Conclusions are provided in Section V. Most of the
mathematics are provided in the appendices. In Appendix I
we derive a compact expression for the FIM. Appendix II
has the derivation of the MLE. Appendix III presents the
properties of a matrix we use in the model. In Appendix IV
we discuss the transformation of the parameters and the
constraints used in order to remove the ambiguity in the
model.

II. PROBLEM STATEMENT

Suppose that a stationary emitter is located at an
unknown location (xT , yT ) and a network of M sensors are
located at known locations (xi, yi), i = 0, 1, . . . , M − 1
as shown in Fig. 1. For simplicity we are assuming a
two-dimensional case. Extension to the three-dimensional
case is straightforward. The sensors are all synchronized
in time and each of the sensors intercepts the signal within
the time interval (0, T ). The emitter transmits a signal
with unknown waveform s(t) for an unknown duration
Ts < T starting at an unknown time t0 < T . We assume
that the transmitted signal waveform s(t) is real. It can be
narrowband or wideband, lowpass or bandpass. After
interception, the signal received at sensor i in the presence
of noise can be written as

ri(t) = Ais(t−τi) + wi(t), 0<t <T, i =0, 1, . . . , M − 1

(1)

where wi(t) is a zero mean wide sense stationary additive
white Gaussian random process with spectral density

N0
2 , Ais are the unknown attenuations due to propagation

loss, assumed real, and the τis are the unknown TOAs
given by

τi =
√

(xT −xi)2 + (yT −yi)2

c
+ t0, i = 0, 1, . . . , M−1

(2)

where c is the propagation speed of the signal. In (2) the
first term

√
(xT − xi)2 + (yT − yi)2/c is the propagation

delay and the second term t0 is the unknown time of
transmission. We assume that the noise at a sensor is
independent of the noise at any other sensor, i.e., wi(t) and
wj (t) are independent for i �= j and that the noise spectral
density at all the sensors is equal to N0

2 . If the noise does
not satisfy these conditions then the problem becomes
more complex. For example, if the noise spectral density
is different at each sensor but known, then the noise term
does not factor out as in (6) but instead exists in each term.
A more difficult problem is when the noise spectral
density is different at each sensor and unknown, in which
case, the noise spectral densities at each of the sensors
need to be estimated as well. To keep the derivations
simple we assumed the above conditions for the noise.
Notice that here we do not assume as in [7], that τi � T .
Instead we just assume that max

i,j
(τi − τj ) < (T − Ts).

That is, we are only assuming that the observation interval
is large enough so that, within the observation interval, the
signal reaches both the nearest and the farthest sensors
from the emitter. Based on the sensor geometry it is
possible to find a sufficient condition on the length of the
observation interval. If dmax is the distance between the
farthest pair of sensors, then the observation interval must
be greater than dmax

c
.

Sampling the signal in time has a quantization-like
effect on the estimate of the emitter location. This is
because if the signal is sampled, then the TOA estimates
are integer multiples of the sampling interval and hence
quantized. For example, if the signal is sampled at a
frequency of Fs samples/s, then the estimate of τi is
quantized with a maximum quantization error of 1

2Fs
. This

can introduce a maximum quantization error of c
2Fs

in the
range estimate. Therefore, it is possible that the signal 
may have to be sampled at a rate much higher than the 
Nyquist rate in order to achieve a desired precision in the
location estimate. We have used a continuous time model 
to avoid this problem in our analysis and to allow future
studies of errors due to time synchronization effects.

Fig. 2 shows the signals received at the four sensors 
shown in Fig. 1 from an emitter located at (130, 75)km

transmitting a Gaussian chirp. The propagation loss was 
modeled as a  1 attenuation in the amplitude of the

R

received signal, where R is the range. So, the farthest
sensor has the largest TOA and smallest amplitude. We are 
assuming that the signal lies inside the observation interval 
(0, T  ). So, we can assume that the unknown signal
is periodic with period T and write it in terms of its
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Fig. 2. Signals received at four sensors when Gaussian chirp is transmitted by emitter located at (130, 75) km.

Fourier series as

s(t) = a0√
2

+
∞∑

n=1

(an cos 2πnF0t + bn sin 2πnF0t) (3)

where F0 = 1
T

and the Fourier coefficients are given by

a0 =
√

2
T

∫ T

0
s(t) dt, an = 2

T

∫ T

0
s(t) cos 2πnF0t dt,

bn = 2
T

∫ T

0
s(t) sin 2πnF0t dt. (4)

We are using a0√
2

for the DC component instead of the
standard a0 because it simplifies certain terms in the
derivation of the CRLB. For a band-limited signal only a
finite number of the Fourier coefficients are non-zero. If
the signal is a lowpass signal, there exists an integer N

such that the Fourier coefficients are all zero for n ≥ N

and if the signal is a bandpass signal, then there exist
integers N1 and N2, N1 < N2, such that the Fourier
coefficients are zero for n < N1 and for n > N2. So we
can approximate the lowpass signal s(t) as (for a bandpass
signal the summation is from N1 to N2)

s(t) = a0√
2

+
N−1∑
n=1

(an cos 2πnF0t + bn sin 2πnF0t).

This is an important step as it allows us to model any
unknown signal and reduce it to a parameter estimation
problem. Now, if we let φ = [a0 a1 · · · aN−1 b1 b2 · · ·
bN−1]T be the 2N − 1 × 1 vector of Fourier coefficients
and h(t) = [ 1√

2
cos 2πF0t · · · cos 2π(N − 1)F0t

sin 2πF0t · · · sin 2π(N − 1)F0t
]T

then we have
s(t) = hT (t)φ. This reduces the uncountable unknown
parameter set {s(t) : t ∈ (0, T )} to a finite countable
number of unknown parameters φ. Therefore, we can
rewrite the model in (1) as

ri(t) = Ai h
T (t − τi)φ + wi(t), 0 ≤ t ≤ T ,

i = 0, 1, . . . , M − 1. (5)

Let τ = [τ0 τ1 · · · τM−1]T , A = [A0 A1 · · · AM−1]T ,
and φ = [a0 a1 · · · aN−1 b1 b2 · · · bN−1]T . Let
θ = [τ T AT φT ]T be the (2M + 2N − 1) × 1 vector of
unknown parameters. If we let η = [xT yT t0]T and
α = [ηT AT φT ]T then, using (2), we can write the TOA
vector as a function of η as τ = g(η). So, the problem can
be stated as, given the observations ri(t), i = 0, 1, . . . ,

M − 1 estimate the vector η. We are only interested in the
parameters (xT , yT ) and the rest of the unknown
parameters are nuisance parameters.

III. CRLB AND MLE OF THE EMITTER LOCATION

A. Signal Unknown with Unknown Transmission Time

For the continuous time model in (1) the log-likelihood
function [24] for sensor i is given by

l = − 1

N0

∫ T

0
(ri(t) − Ais(t − τi))

2 dt. (6)
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Since the noise at different sensors is independent, by
using (5) we can write the joint log-likelihood function as

l(θ) = − 1

N0

∫ T

0

M−1∑
i=0

(
ri(t) − Ai h

T (t − τi)φ
)2

dt (7)

The (2M + 2N − 1 × 2M + 2N − 1) FIM [25] for this
model is given by (see Appendix I-A)

Iθ = (T/2)

(N0/2)

⎡
⎢⎣

(2πF0)2φT LLT φ(diag(A))2 (2πF0)(φT Lφ)(diag(A)) (2πF0)(A � A)φT L

(2πF0)(φT LT φ)(diag(A))2 (φT φ)IM AφT

(2πF0)LT φ(A � A)T φAT (AT A)IM

⎤
⎥⎦ (8)

where � represents the element by element product (Hadamard product), diag(A) is an M × M diagonal matrix with ith
diagonal element as Ai, IM is the M × M identity matrix, and the (2N − 1) × (2N − 1) matrix L is given by

L =

⎡
⎢⎣ 0(N,N)

[
0(1,N−1)

diag(1, 2, . . . , N − 1)

]

− [0(N−1,1) diag(1, 2, . . . , N − 1)
]

0(N−1,N−1)

⎤
⎥⎦ .

This FIM must be inverted in order to find the CRLB for
the unknown parameter vector θ . By the form of the
matrix in (8) it is easily shown (see Appendix IV) that the
matrix is singular with rank equal to two less than full
rank. Weiss [18] uses an ad hoc method to overcome this.
We, however use the exact transformation of the
parameters [26] that is required to eliminate the singularity
of the information matrix. The singularity arises because
there is an ambiguity in the model. It is not possible to
uniquely determine all the unknown parameters in the
model in (1). This is because of the relationship between
the transmission time, attenuation factor, and the signal
waveform. Suppose that in (1), Āi and s̄(t) are the true
values of the gain and the signal waveform that generate
ri(t). Then the pair of values (Āi/γ, γ s̄(t)) for any
non-zero constant γ also generate the same ri(t). So, from
the observation ri(t) it is impossible to determine the true
values of Ai and s(t). A similar relationship exists
between the unknown transmission time and an unknown
signal waveform. Suppose that the transmitted signal sT (t)
is generated by an unknown signal waveform s̄(t)
transmitted at an unknown transmission time t̄0 so that
sT (t) = s̄(t − t̄0). Now the same transmitted signal sT (t)
can also be generated by the pair of values
((t̄0 − γ ), s̄(t − γ )) for any constant γ . This is more
clearly demonstrated in Fig. 3. Notice that given a
transmitted signal, it is not possible to determine whether
the signal waveform is s1(t) with transmission time t1 or
s2(t) with transmission time t2. This causes the information
matrix to be at least rank two deficient, as shown in
Appendix IV. The overparameterization can be resolved
by applying an appropriate transformation that satisfies
certain constraints [26]. As shown in Appendix IV,

the appropriate transformation for this model is

τ ′ = [ (τ1 − τ0) (τ2 − τ0) · · · (τM−1 − τ0)
]T

A′ = (1/A0)[A1 · · · AM−1]T

φ′ = A0

⎡
⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
IN−1 IN−1

IN−1 −IN−1

]⎤⎥⎦ diag(h(−τ0))φ

(9)

and can be shown to be the least restrictive constraint for
identifiability. Here we are using the (∗)

′
notation to

represent the new parameters resulting from the
transformation. Notice that the transformed parameter
vectors τ ′ and A′ are TDOA and relative gain factor with
respect to sensor 0 and are each reduced by one parameter
from τ and A, respectively, while the φ′ is simply the
Fourier coefficients of r0(t). Using these transformed
parameters the model in (5) can be rewritten as

r0(t)= hT (t)φ′+w0(t) 0≤ t ≤T

ri(t) = A′
i h

T (t−τ ′
i )φ

′+wi(t), 0≤ t ≤T , i = 1, 2,. . . ,M−1

(10)

where A′
i = Ai

A0
and τ ′

i = τi − τ0. So, the effect of the
transformation is that the signal at sensor 0 is made the
reference signal and the signals at all the other sensors are
modeled relative to this reference signal. Although (10)
seems intuitively obvious, by arriving at it from (5) using
the transformation in (9), we have mathematically verified
that (10) is indeed the correct model to use for the problem
of localization under the unknown signal case. Weiss
[18–21] uses (10) directly without this rigorous argument.
This is a subtle but important result which is overlooked
by Weiss. Now, let θ ′ = [τ ′T A′T φ′T ]T be the
(2M + 2N − 3) × 1 vector of the unknown transformed
parameters, η′ = [xT , yT ]T and α′ = [η′T A′Tφ′T ]T .
Notice that the TDOA vector τ ′ is a function of only
(xT , yT ), i.e.τ ′ = g′(η′). The unknown transmission time
t0 does not appear and thus is not a nuisance parameter.
The problem is now, given the observations
ri(t), i = 0, 1, . . . , M − 1 estimate the vector η′. The
log-likelihood function for this model with the
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Fig. 3. Ambiguity when signal waveform and transmission time are both unknown.

transformed parameters is given by

l(θ ′) = − 1
N0

∫ T

0

(
r0(t) − hT (t)φ′)2 dt − 1

N0

∫ T

0∑M−1

i=1

(
ri(t) − A′

i h
T (t − τ ′

i )φ
′)2 dt. (11)

As shown in the Appendix I-A, the CRLB for this
transformed parameter vector is

I−1
θ ′ = HI

†
θ HT (12)

where H is given in (50), or equivalently the FIM is,

Iθ ′ = (T/2)

(N0/2)

⎡
⎢⎣

(2πF0)2φ′T LLT φ′(diag(A′))2 (2πF0)(φ′T Lφ′)(diag(A′)) (2πF0)(A′ � A′)φ′T L

(2πF0)(φ′T LT φ′)(diag(A′))2 (φ′T φ′)I(M−1) A′φ′T

(2πF0)LT φ′(A′ � A′)T φ′A′T (1 + A′T A′)I(2N−1)

⎤
⎥⎦ . (13)

The FIM for the corresponding vector α′ is given by [25]

Iα′ =
(

∂θ ′

∂α′T

)T

Iθ ′

(
∂θ ′

∂α′T

)

=
(

∂θ ′

∂α′T

)T

(HI†
θHT )−1

(
∂θ ′

∂α′T

)
(14)

where the Jacobian
(

∂θ ′
∂α′T

)
is given in (39). In

Appendix II-A we show that the MLE for the emitter

location is obtained by maximizing over (xT , yT ), the
maximum eigenvalue of the M × M cross-correlation
matrix B′ = Y′Y′T =∑M−1

i=0 y′
iy

′T
i where

Y′ = [ y′
0 y′

1 · · · y′
M−1 ] with

y′
0 =

∫ T

0
r0(t)h(t) dt and y′

i =
∫ T

0
ri(t)h(t − τ ′

i ) dt,

i = 1, 2, · · · M − 1. (15)

That is,

η̂′ = arg max lmax(B′)
η′ (16)

or equivalently,

(x̂T , ŷT ) = arg max
(xT ,yT )

lmax(B′) (17)

where lmax represents the maximum eigenvalue. The
matrix B′ is real symmetric and positive definite and so the
maximum eigenvalue is real and positive.
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B. Signal Known with Unknown Transmission Time

Quite often in practical situations it is possible that the
signal waveform is known but the exact transmission time
t0 is unknown. In this case the number of unknowns is
reduced to 2M . Let ζ = [τ T AT ]T be the 2M × 1
unknown parameter vector. Similar to (7) the
log-likelihood function is given by

l(ζ ) = − 1

N0

∫ T

0

M−1∑
i=0

(
ri(t) − Ai h

T (t − τi)φ
)2

dt (18)

where φ is known. The FIM for this model is given by (see
Appendix II-B)

Iζ = (T/2)

(N0/2)[
(2πF0)2φT LLT φ(diag(A))2 (2πF0)(φT Lφ)(diag(A))

(2πF0)(φT LT φ)(diag(A)) (φT φ)IM

]
.

(19)

This matrix is not singular because, for this case, the
unknown parameters in the model can be uniquely
determined. Therefore, there is no need to transform the
parameters as in the case of the unknown signal.
Although, the unknown transmission time t0 is still
retained here as the nuisance parameter. For this model it
is shown in Appendix II-B that the MLE for emitter
location and the unknown transmission time is given by

η̂ = arg max φT Bφ

η
(20)

where B = YYT and Y = [y0 y1 · · · yM−1] with
yi = ∫ T

0 ri(t)h(t − τi) dt, i = 0, 1, · · · M − 1. B is a
function of (xT , yT , t0). Using the fact that
hT (t − τi)φ = s(t − τi) and η = [xT yT t0]T we can
rewrite (20) as

(x̂T , ŷT , t̂0) = arg max
(xT ,yT ,t0)

M−1∑
i=0

(∫ T

0
ri(t)s(t−τi) dt

)2

. (21)

Equation (21) is simply the correlation values between the
known signal waveform and the observed signal at each of
the sensors, summed over all the sensors. The emitter
location that yields the values of the TOAs that maximize
the expression in (21) is the MLE of the emitter location.

IV. SIMULATION RESULTS

In order to evaluate the performance of the MLE we
have run some simulations and compared the performance
against the CRLB and against a typically used TDOA
approach. The TDOA approach was implemented as a
two-step algorithm where, in the first step, the TDOA
estimates �

τ ′
i were obtained by cross-correlating the signal

at each sensor with the signal at sensor 0. Then a 1 km
× 1 km region around the true emitter location was split
into 100 × 100 grid points and for each emitter location
on the grid point the TDOAs were computed using the

formula

τ ′
i =

√
(xT −xi)2+(yT −yi)2

c
−
√

(xT −x0)2+(yT −y0)2

c
,

i = 1, 2, . . . , M − 1.

Next the least squared error (LSE) between the estimated
TDOAs and the computed TDOAs was calculated as

LSE =
M−1∑
i=1

(�
τ ′

i − τ ′
i )

2.

This LSE is a function of the emitter location (xT , yT ). The
emitter location that minimized the LSE is the estimate of
the emitter location. Since we know that the LSE is a
2-dimensional parabolic function of the emitter location,
we improved the accuracy by fitting a parabola through
the 10000 points at which the LSE was computed. Then
by using the analytical formula for the minimum location
of a 2-dimensional parabola, we computed the minimum.
Fig. 4(a) shows a realization of the LSE function. For the
simulation we have used 4 sensors placed at the
coordinates shown in Fig. 1 and the emitter was placed at
the coordinates (130, 75) km, also as shown in Fig. 1. The
integrations in (4) and (15) are approximated using
summations with δt = 0.33 ns which means the sampling
frequency is Fs = 300 MHz. The reason for choosing
such high sampling frequency is that at this frequency, the
position quantization error due to sampling is on the order
of (c/Fs) = 10−3 km. A Gaussian chirp defined by

s(t) = exp

(
−1

2
σ 2

F

(
t − Ts

2

)2
)

sin(2πmt2)

was used as the unknown transmitted signal waveform.
Fig. 5 shows the transmitted signal waveform. Notice that
the signal is assumed to be approximately zero for t < 0
and for t > Ts . We set Ts = 5 μs and σF = 0.2π MHz.
The observation interval at each of the sensors was taken
to be T = 0.2 ms. The unknown transmission time of the
signal was set to t0 = 0.07 ms. With this configuration the
maximum TDOA is 0.0988 ms. The frequency spectrum
of the Gaussian window is given by |S(F )| = (

√
2π/σF )

exp (− 2π2F 2/σ 2
F ) [25], and the bandwidth of the chirp is

BW = 1.5 MHz. The rate of change of frequency for the
linear chirp was chosen to be m = BW

Ts
= 3 × 108. A plot

of the Fourier coefficients of the signal is shown in Fig. 6.
A value of N = 2 × BW × T = 600 was used to have a
total of 2N − 1 = 1199 unknown Fourier coefficients.
Notice that the Fourier coefficients are almost zero for
n > 600. To measure the levels of the zero mean additive
white Gaussian noise, we used a metric called the
average signal-to-noise ratio (ASNR). The ASNR is the
ratio of the average signal power to the noise power at
each sensor averaged over all the sensors, i.e., if
Psi = |Ai |2 1

T

∫ T

0 |s(t)|2 dt is the average power of the
signal at the ith sensor and N0

2 is the noise spectral density
at the ith sensor, then the SNR averaged over M sensors is

given by 10 log
(

1
M

∑M−1
i=0

Psi

(N0/2)(Fs/2)

)
dB. We set the
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Fig. 4. (a) Realization of LSE at ASNR = –10 dB. (b) Realization of likelihood function at ASNR = –10 dB.

ASNR at –20 dB and ran a total of 300 Monte Carlo
simulations to generate the scatter plot and the
corresponding 95% error ellipse which are shown in
Fig. 7. This is also called the 95% confidence ellipse. That
is, if this estimator is used a large number of times for
localization, then around 95% of those times the true
location of the emitter will lie within this ellipse. To
compute the MLE the maximization was performed using
a grid search. We used a grid of size 1 km × 1 km with

the grid points 0.01 km apart to have a total of 100 × 100
= 10000 points. The grid is shown with a dotted line in the
figure. At –20 dB the variances of the MLEs of (xT , yT )
were (0.0021, 0.0006) km2 and the respective CRLBs
were (0.0012,0.0003) km2. The figure does not show 300
points because some points lie on top of the others due to
position quantization induced by the finite number of grid
points in the grid search for maximization. Due to the
complex nature of the likelihood function (see Fig. 4(b)),
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Fig. 5. Transmitted signal waveform.

Fig. 6. Fourier coefficients plot.

it is not possible to use any curve fitting techniques to
reduce this quantization effect as in the case of the
conventional TDOA approach.

Fig. 8 shows the comparison of the variances of the
MLE and the typical TDOA approach against the CRLB
for different SNR values. Notice that for the ASNR values
below –30 dB, the variance of the MLE remains flat. This
is because of the restriction imposed by the finite grid size.
As the ASNR increases above –30 dB, the variance of the
MLE reduces rapidly to approach the CRLB at around
–10 dB. Due to the nature of the conventional TDOA
approach it breaks down for the ASNR values below
–17 dB. So this figure has the variances of the TDOA
approach only for the average SNR values above –17 dB.
On the other hand, for this particular setup, the results for

the MLE are reliable for the ASNR values as low as
–30 dB. It is quite obvious from this figure that
performance of the MLE is very much better than a typical
TDOA approach. In this case the MLE performs as good
as a typical TDOA approach for an ASNR value of about
10 dB less than that for the TDOA approach. Also notice
that at around –10 dB, the variance of the MLE is almost
two orders of magnitude less than that of the TDOA
approach. We have noticed that for certain sensor-emitter
configurations, particularly when the emitter was very
close to the sensors, the variance of the MLE is up to three
orders of magnitude less than that of the TDOA approach.
Therefore, under low probability of intercept (LPI)
scenarios where a conventional TDOA technique cannot
be reliably used, the MLE can be used.
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Fig. 7. Scatter plot and corresponding 95% error ellipse of MLE for ASNR = –20 dB.

Fig. 8. Comparison of variances for emitter location estimate using MLE and typical TDOA approach against CRLB for different ASNR values.

V. CONCLUSIONS

We have derived a direct positioning estimator for
an emitter location. This is the MLE. We have shown
that for an unknown signal case, the model that is
conventionally used has an inherent ambiguity and so all
the unknown parameters cannot be uniquely determined.
We derived an appropriate transformation of the
parameters and reparameterized the model to remove the
ambiguity. We have shown that for the special case of a
known signal with unknown transmission time, there is no
ambiguity in the model. We derived the MLE and the FIM
for the model. The performance of the MLE was
compared against a typical two-step TDOA-based
localizer and against the CRLB. The performance of the
MLE is significantly better than a typical two-step
TDOA-based localizer.

APPENDIX I. CRLB

We derive the CRLB for the emitter location estimate.
First, we show that the FIM for the model used for
unknown signal with unknown transmission time case is
singular. We then use a transformation of the parameters
in the model and derive the CRLB. Let
τ = [τ0 τ1 · · · τM−1]T , A = [A0 A1 · · · AM−1]T , and
φ = [a0 a1 · · · aN−1 b1 b2 · · · bN−1]T , where

a0 =
√

2
T

∫ T

0
s(t) dt, an = 2

T

∫ T

0
s(t) cos 2πnF0t dt,

bn = 2
T

∫ T

0
s(t) sin 2πnF0t dt.

Let θ = [τT AT φT ]T . The TOAs τi are a function of
the emitter location (xT , yT ) and the signal transmission
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time t0.

τi =
√

(xT − xi)2 + (yT − yi)2

c
+ t0

where c is the propagation speed of the signal. If l(θ ) is
the log-likelihood function, then the FIM is given by

Iθ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E

{
∂2l(θ )

∂τ∂τ T

}
−E

{
∂2l(θ)

∂τ∂AT

}
−E

{
∂2l(θ )

∂τ∂φT

}

−E

{
∂2l(θ )

∂A∂τ T

}
−E

{
∂2l(θ)

∂A∂AT

}
−E

{
∂2l(θ )

∂A∂φT

}

−E

{
∂2l(θ )

∂φ∂τ T

}
−E

{
∂2l(θ)

∂φ∂AT

}
−E

{
∂2l(θ )

∂φ∂φT

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

A. Signal Unknown with Unknown Transmission Time

From (7) we have the log-likelihood function as

l(θ )=− 1

N0

∫ T

0

M−1∑
m=0

(xm(t)−AmhT (t−τm)φ)2 dt (23)

where h(t) is as defined in Appendix III. Partial
differentiation with respect to (w.r.t) τi gives

∂l(θ)

∂τi

= − 1

N0

∫ T

0
2
(
ri(t) − Ai h

T (t − τi)φ
)

×
(

−Ai

∂hT (t − τi)

∂τi

φ

)
dt (24)

and w.r.t Ai gives

∂l(θ)

∂Ai

= − 1

N0

∫ T

0
2
(
ri(t) − Ai h

T (t − τi)φ
)

× (−hT (t − τi)φ
)

dt (25)

for i = 0, 1, . . . , M − 1. Partial differentiation w.r.t φ

gives

∂l(θ)

∂φ
= − 1

N0

∫ T

0

M−1∑
m=0

2
(
xm(t) − AmhT (t − τm)φ

)
× (−AmhT (t − τm)

)
dt. (26)

Next we evaluate the second derivatives. Partial
differentiation of (24) w.r.t τi gives

∂2l(θ )

∂τ 2
i

= − 2

N0

[∫ T

0
(ri(t) − Ai h

T (t − τi)φ)

×
(

−Ai

∂2hT (t − τi)

∂τ 2
i

φ

)
dt

+
∫ T

0

(
−Ai

∂hT (t − τi)

∂τi

φ

)2

dt

]
.

Taking the negative of the expected value of both sides
and using (48) gives

−E

{
∂2l(θ)

∂τ 2
i

}
= 2

N0

T∫
0

(
Ai

∂hT (t − τi)

∂τi

φ

)2

dt

= A2
i

(N0/2)
φT

⎡
⎣ T∫

0

∂h(t−τi)

∂τi

∂hT (t−τi)

∂τi

⎤
⎦φ

= (T/2)(2πF0)2

(N0/2)
(φT LLT φ) A2

i

where the 2N − 1 × 2N − 1 matrix L is as defined in
Appendix III. Since ∂2l(θ )

∂τi∂τj
= 0 for i �= j, we have

−E

{
∂2l(θ )

∂τ∂τ T

}
= (T/2)(2πF0)2

(N0/2)
φT LLT φ(diag(A))2 (27)

where diag(A) is an M × M diagonal matrix with ith
diagonal element as Ai . Partial differentiation of (25) w.r.t
τi gives

∂2l(θ)

∂τi∂Ai

= − 2

N0

⎡
⎣ T∫

0

(
ri(t) − Ai h

T (t − τi)φ
)

×
(

−∂hT (t−τi)

∂τi

φ

)
dt

+
T∫

0

(
−Ai

∂hT (t−τi)

∂τi

φ

)
(−hT (t−τi)φ) dt

⎤
⎦ .

Taking the negative of the expected value of both sides
and using (49) gives

−E

{
∂2l(θ)

∂τi∂Ai

}
= Ai

(N0/2)
φT

⎡
⎣ T∫

0

∂h(t − τi)

∂τi

hT (t−τi) dt

⎤
⎦φ

= (T/2)(2πF0)

(N0/2)
(φT Lφ) Ai.

Since ∂2l(θ )
∂τi∂Aj

= 0 for i �= j , we have

−E

{
∂2l(θ )

∂τ∂AT

}
= (T/2)(2πF0)

(N0/2)
(φT Lφ)(diag(A)). (28)

Partial differentiation of (26) w.r.t τi gives

∂2l(θ )

∂τi∂φT
= − 2

N0

⎡
⎣ T∫

0

(
ri(t) − Ai h

T (t − τi)φ
)

×
(

−Ai

∂hT (t − τi)

∂τi

)
dt

+
T∫

0

(
−Ai

∂hT (t−τi)

∂τi

φ

)
(−Ai h

T (t−τi)) dt

⎤
⎦ .
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Taking the negative of the expected value of both sides
and using (49) gives

−E

{
∂2l(θ )

∂τi∂φT

}
= A2

i

(N0/2)
φT

⎡
⎣ T∫

0

∂h(t−τi)

∂τi

hT (t−τi) dt

⎤
⎦

= (T/2)(2πF0)A2
i

(N0/2)
φT L.

So, we have

−E

{
∂2l(θ )

∂τ∂φT

}
= (T/2)(2πF0)

(N0/2)
(A � A)φT L. (29)

Partial differentiation of (25) w.r.t Ai and using (47) gives

∂2l(θ)

∂A2
i

= − 1

(N0/2)

T∫
0

(hT (t − τi)φ)2

= − 1

(N0/2)
φT

⎡
⎣ T∫

0

h(t − τi)h
T (t − τi)

⎤
⎦φ

= − (T/2)

(N0/2)
φT φ.

Taking the negative of the expected value on both sides
gives

−E

{
∂2l(θ )

∂A∂AT

}
= (T/2)φT φ

(N0/2)
IM. (30)

Partial differentiation of (26) w.r.t Ai gives

∂2l(θ)

∂Ai∂φT
=− 2

N0

⎡
⎣ T∫

0

(
ri(t)−Ai h

T (t−τi)φ
)(−hT (t−τi)

)
dt

+
T∫

0

(−hT (t − τi)φ)(−Ai h
T (t − τi)) dt

⎤
⎦ .

Taking the negative of the expected value of both sides
and using (47) gives

−E

{
∂2l(θ)

∂Ai∂φT

}
= 2Ai

N0

T∫
0

hT (t − τi)φhT (t − τi) dt

= 2Ai

N0
φT

T∫
0

h(t − τi)h
T (t − τi) dt

= (T/2)

(N0/2)
Aiφ

T

and so

−E

{
∂2l(θ )

∂A∂φT

}
= (T/2)

(N0/2)
AφT . (31)

Partial differentiation of (26) w.r.t φ and using (47) gives

∂2l(θ )

∂φ∂φT
=− 2

N0

T∫
0

M−1∑
i=0

(−Ai h
T (t−τi)

)(−Ai h
T (t−τi)

)
dt

= −
M−1∑
i=0

A2
i

(N0/2)

T∫
0

h(t − τi)h
T (t − τi) dt

= −
M−1∑
i=0

(T/2)

(N0/2)
I(2N−1) A2

i

and so

−E

{
∂2l(θ )

∂φ∂φT

}
= (T/2)

(N0/2)
I(2N−1)

M−1∑
i=0

A2
i = (T/2)AT A

(N0/2)
I(2N−1).

(32)

Putting (27), (28), (29), (30), (31), (32) back in (22), we
have

Iθ = (T/2)

(N0/2)

⎡
⎢⎣

(2πF0)2φT LLT φ(diag(A))2 (2πF0)(φT Lφ)(diag(A)) (2πF0)(A � A)φT L

(2πF0)(φT LT φ)(diag(A)) (φT φ)IM AφT

(2πF0)LT φ(A � A)T φAT (AT A)I(2N−1)

⎤
⎥⎦ . (33)

The CRLB matrix for the unknown parameter vector θ is
the inverse of the matrix Iθ . But in Appendix IV it is
shown that the null space of Iθ is not empty and so it is not
invertible. This is because the log-likelihood function is
not uniquely defined by the model in (7). To eliminate the
overparameterization we use the following
transformations.

τ ′ = [ (τ1 − τ0) (τ2 − τ0) · · · (τM−1 − τ0) ]T

A′ = (1/A0)[A1 · · · AM−1]T

φ′ = A0

⎡
⎢⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
IN−1 IN−1

IN−1 −IN−1

]
⎤
⎥⎥⎦ diag(h(−τ0))φ.

(34)

Let θ ′ = [τ ′T A′T φ′T ]. This is a function of θ . Let

H =
(

∂θ ′
∂θ

)
be the Jacobian. If H has row vectors that are

linear combinations of those eigenvectors of Iθ that have
nonzero eigenvalues then the CRLB of θ ′ is given by
HI†

θHT [26]. The † is used to represent the generalized
inverse. This condition is verified in Appendix IV.
Therefore,

I−1
θ ′ = HI

†
θ HT . (35)
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Alternately, the log-likelihood function for this model with
the transformed parameters is given by

l(θ ′) = − 1

N0

∫ T

0

(
r0(t) − hT (t)φ′)2 dt

− 1

N0

∫ T

0

M−1∑
i=1

(
ri(t) − A′

i h
T (t − τ ′

i )φ
′)2 dt. (36)

So, computing the derivatives to find the FIM as done
previously yields the FIM for the transformed parameter

vector as

Iθ ′ = T/2

(N0/2)

⎡
⎢⎢⎢⎣

(2πF0)2φ′T LLT φ′(diag(A′))2 (2πF0)(φ′T Lφ′)(diag(A′)) (2πF0)(A′ � A′)φ′T L

(2πF0)(φ′T LT φ′)(diag(A′)) (φ′T φ′)IM−1 A′φ′T

(2πF0)LT φ′(A′ � A′)T φ′A′T (1 + A′T A′)I(2N−1)

⎤
⎥⎥⎥⎦ . (37)

We have verified numerically that (35) is equivalent to (37). The elements of the TDOA vector τ ′ are given by

τ ′
i = (τi − τ0) =

√
(xT − xi)2 + (yT − yi)2

c
−
√

(xT − x0)2 + (yT − y0)2

c

so that the new parameter vector τ ′ is a function of only the emitter location (xT , yT ). So, if we let η′ = [xT yT ]T and
α′ = [η′T A′T φ′T ]T we have

Iα′ =
(

∂θ ′

∂α′T

)T

Iθ ′

(
∂θ ′

∂α′T

)
=
(

∂θ ′

∂α′T

)T

(HI†
θHT )−1

(
∂θ ′

∂α′T

)
. (38)

The Jacobian is given by the (2M + 2N − 3, M + 2N) matrix

(
∂θ ′

∂α′T

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂τ ′

∂η′T

) (
∂τ ′

∂A′T

) (
∂τ ′

∂φ′T

)
(

∂A′

∂η′T

) (
∂A′

∂A′T

) (
∂A′

∂φ′T

)
(

∂φ′

∂η′T

) (
∂φ′

∂A′T

) (
∂φ′

∂φ′T

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(
∂τ ′

∂η′T

)
0(M,M) 0(M,2N−1)

0(M,2) IM−1 0(M,2N−1)

0(2N−1,2) 0(2N−1,M) I(2N−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(39)

where the (M − 1) × 2 matrix

(
∂τ ′

∂η′T

)
= (1/c)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(xT − x1)

d1
− (xT − x0)

d0

(yT − y1)

d1
− (yT − y0)

d0

(xT − x2)

d2
− (xT − x0)

d0

(yT − y2)

d2
− (yT − y0)

d0

...
...

(xT − xM−1)

dM−1
− (xT − x0)

d0

(xT − xM−1)

dM−1
− (yT − y0)

d0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

where di, i = 0, . . . , M − 1 is the distance between the
sensor i and the emitter.

B. Signal Known with Unknown Transmission Time

From (18) we have the log-likelihood function as

l(ζ ) = − 1

N0

∫ T

0

M−1∑
i=0

(
ri(t) − Ai h

T (t − τi)φ
)2

dt. (41)
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Here the 2M × 1 unknown parameter vector is
ζ = [τ T AT ]T . So, the FIM is given by

Iζ =

⎡
⎢⎢⎢⎣

−E

{
∂2l(θ )

∂τ∂τ T

}
−E

{
∂2l(θ )

∂τ∂AT

}

−E

{
∂2l(θ )

∂A∂τ T

}
−E

{
∂2l(θ )

∂A∂AT

}
⎤
⎥⎥⎥⎦ . (42)

Using (27), (28), and (30), we have

Iζ = (T/2)

(N0/2)[
(2πF0)2φT LLT φ(diag(A))2 (2πF0)(φT Lφ)(diag(A))

(2πF0)(φT LT φ)(diag(A)) (φT φ)IM

]
.

(43)

APPENDIX II. MAXIMUM LIKELIHOOD ESTIMATOR

Here we derive the MLE for the two cases of signal
unknown with unknown transmission time and signal
known with unknown transmission time.

A. Signal Unknown with Unknown Transmission Time

The log-likelihood function with the transformed
parameters is given by

l(θ ′) = − 1

N0

∫ T

0

(
r0(t) − hT (t)φ′)2 dt

− 1

N0

∫ T

0

M−1∑
i=1

(
ri(t)−A′

i h
T (t−τ ′

i )φ
′)2 dt. (44)

Partial differentiation w.r.t φ′ gives

∂l(θ ′)
∂φ′ = − 1

N0

∫ T

0
2
(
r0(t) − hT (t)φ′) (−hT (t)

)
dt

− 1

N0

∫ T

0

M−1∑
i=1

2
(
ri(t)

− A′
i h

T (t − τ ′
i )φ

′) (−A′
i h

T (t − τ ′
i )
)

dt.

In order to find the maximum, we equate the above partial
derivative to zero, which gives∫ T

0
r0(t)hT (t) dt − φ′T

(∫ T

0
h(t)hT (t) dt

)

+
M−1∑
i=1

A′
i

(∫ T

0
ri(t)h

T (t − τ ′
i ) dt

)

− A′2
i φ′T

(∫ T

0
h(t − τ ′

i )h
T (t − τ ′

i ) dt

)
= 0.

Using the properties of the vector h(t) as shown in
Appendix III, we have∫ T

0
r0(t)hT (t) dt − (T/2)φ′T

+
M−1∑
i=1

A′
i

(∫ T

0
ri(t)h

T (t−τ ′
i ) dt

)
−(T/2)

M−1∑
i=1

A′2
i φ′T = 0.

If we replace the integrals with

y′
0 =

∫ T

0
r0(t)h(t) dt and y′

i

=
∫ T

0
ri(t)h(t − τ ′

i ) dt for i = 1, 2, . . . M − 1

then we have

y′T
0 − (T/2)φ′T +

M−1∑
i=1

A′
iy

′T
i − (T/2)

M−1∑
i=1

A′2
i φ′T = 0.

So, the MLE of φ′ is

φ̂′ =
(2/T )

(
y′

0 +∑M−1
i=1 A′y′

i

)
(1 + A′T A′)

.

Putting this back in (44), we have

l(θ ′)=− 1

N0

M−1∑
i=0

∫ T

0
x2

i (t) dt

+ 1

N0

(2/T )
(
y′T

0 +∑M−1
i=1 A′

iy
′T
i

)(
y′

0+
∑M−1

i=1 A′
iy

′
i

)
(1+A′T A′)

.

Maximizing l(θ ′) w.r.t A′ and τ ′ is equivalent to
maximizing the second term. So, let

f (A′, τ ′) =
(

y′T
0 +∑M−1

i=1 A′
iy

′T
i

) (
y′

0 +∑M−1
i=1 A′

iy
′
i

)
(1 + A′T A′)

.

If we let Y′ = [y′
0 y′

1 · · · y′
M−1] be the 2N − 1 × M matrix

then the maximum value of f (A′, τ ′) w.r.t A′ is fmax(τ ′)
is equal to the maximum eigenvalue of Y′Y T . Let
B′ = YY′T . The matrix B′ is a function of τ ′ = g′(η′)
which is a function of the emitter location (xT , yT ). So, the
MLE of the emitter location is found by maximizing the
maximum eigenvalue of B′(xT , yT ). i.e,

(x̂T , ŷT ) = arg max
(xT ,yT )

λmax(B′(xT , yT )). (45)

B. Signal Known with Unknown Transmission Time

The log-likelihood function is given by

l(ζ ) = − 1

N0

∫ T

0

M−1∑
i=0

(
ri(t) − Ai h

T (t − τi)φ
)2

dt. (41)

Partial differentiation w.r.t Ak gives

∂l(θ)

∂Ak

= − 1

N0

∫ T

0
2
(
rk(t)−AkhT (t−τk)φ

)(−hT (t−τk)φ
)

dt = 0

for each of k = 0, 1, . . . , M − 1. Equating this to zero to
find the maximum value gives
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φT

(∫ T

0
rk(t)h(t − τk) dt

)

−Akφ
T

(∫ T

0
h(t − τk)hT (t − τk) dt

)
φ = 0.

If we replace the integral with yk = ∫ T

0 rk(t)h(t − τk) dt

and use the properties of the vector h(t) as shown in
Appendix III, we have

φT yk − (T/2)Akφ
T φ = 0.

So, the MLE of Ak is

Âk = φT yk

(T/2)φT φ
, k = 0, 1, . . . , M − 1.

Putting this back in (41), we have

l(ζ ) = − 1

N0

M−1∑
i=0

∫ T

0
r2

1 (t) dt − 2

(
φT yi

(T/2)φT φ

)

×
(∫ T

0
ri(t)h

T (t − τi) dt

)
φ

+
(

φT yi

(T/2)φT φ

)2

φT

(∫ T

0
h(t−τi)h

T (t−τi) dt

)
φ

= − 1

N0

M−1∑
i=0

∫ T

0
r2
i (t) dt + 1

N0

M−1∑
i=0

(
φT yiyT

i φ

(T/2)φT φ

)
.

Maximizing l(ζ ) w.r.t τ is equivalent to maximizing the
second term. So the MLE for η is given by

η̂ = arg max
η

M−1∑
i=0

φT yiyT
i φ = arg max

η

φT Bφ (46)

where B = YYT and Y = [y0 y1 · · · yM−1] with
yi = ∫ T

0 τi(t)h(t − τi) dt, i = 0, 1, . . . M − 1. B is a
function or (xT , yT , t0).

APPENDIX III. PROPERTIES OF h(t)

The time dependent vector h(t) that was used for
modeling the problem in equation (5) has some interesting
properties which simplify the derivation of the CRLB and
the MLE. These properties are derived here. We have

h(t − τi) =
[

1√
2

cos 2πF0(t − τi) · · · cos 2π(N − 1)F0(t − τi) sin 2πF0(t − τi) · · · sin 2π(N − 1)F0(t − τi)

]T

.

Differentiating both sides w.r.t τi , we get

∂h(t − τi)

∂τi

= 2πF0[0 sin 2πF0(t − τi) · · · 2 sin 2π2F0(t − τi) · · · (N − 1) sin 2π(N − 1)F0(t − τi)

− cos 2πF0(t − τi) − 2 cos 2π2F0(t − τi) · · · − (N − 1) cos 2π(N − 1)F0(t − τi)]
T .

Let

L =

⎡
⎢⎢⎣ 0(N,N)

[
0(1,N−1)

diag(1, 2, . . . , N − 1)

]

−
[

0(N−1,1) diag (1, 2, . . . , N − 1)
]

0(N−1,N−1)

⎤
⎥⎥⎦ .

So, we have the partial derivative of h(t − τi) w.r.t to τi as

∂h(t − τi)

∂τi

= (2πF0)Lh(t − τi).

Next we compute the integral
∫ T

0 h(t)hT (t) dt . We have

h(t)hT (t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

cos 2πF0t

...

cos 2π(N − 1)F0t

sin 2πF0t

...

sin 2π(N − 1)F0t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
1√
2

cos 2πF0t · · · cos 2π(N−1)F0t sin 2πF0t · · · sin 2π(N−1)F0t

]
.
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Let us compute each of the integrals in this
2N − 1× 2N − 1 product matrix separately. Integral of
the first element is∫ T

0

1

2
dt = [t]T0 = T

2
.

Integrals of the elements on the diagonal are given by∫ T

0
cos22πkF0t dt = 1

2

∫ T

0
(1 + cos 4πkF0t) dt

= 1

2

[
t + sin 4πkF0t

4πkF0

]T

0

= T

2
and ∫ T

0
sin22πkF0t dt = 1

2

∫ T

0
(1 − cos 4πkF0t) dt

= 1

2

[
t − sin 4πkF0t

4πkF0

]T

0

= T

2
for k = 1, 2, . . . N − 1. Integrals of the rest of the
elements are given by∫ T

0
cos2πkF0t sin 2πnF0t dt

= 1

2

∫ T

0
sin 2π(n + k)F0t dt + sin 2π(n − k)F0t dt

= 1

2

[
−cos 2π(n + k)F0t

4π(n + k)F0
− cos 2π(n − k)F0t

4π(n − k)F0

]T

0

= 0

and∫ T

0
cos2πkF0t cos 2πnF0t dt

= 1

2

∫ T

0
cos 2π(n + k)F0t dt + cos 2π(n − k)F0t dt

= 1

2

[
sin 2π(n + k)F0t

4π(n + k)F0
+ sin 2π(n − k)F0t

4π(n − k)F0

]T

0

= 0

and∫ T

0
sin2πkF0t sin 2πnF0t dt

= 1

2

∫ T

0
cos 2π(k − n)F0t dt − cos 2π(n + k)F0t dt

= 1

2

[
sin 2π(k − n)F0t

4π(k − n)F0
+ sin 2π(n + k)F0t

4π(n + k)F0

]T

0

= 0

for k, n = 1, 2, . . . , N − 1. Therefore, we have the
integral of h(t)hT (t) as a scaled identity matrix given by

∫ T

0
h(t)hT (t) dt = T

2

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ = (T/2)I(2N−1).

Since h(t) is periodic with period T , for any τ ,∫ T

0
h(t − τ )hT (t − τ ) dt =

∫ T

0
h(t)hT (t) dt

= (T/2)I(2N−1). (47)

Now, we compute the integral of the cross-product of the
partial derivatives of h(t − τi) w.r.t to τi∫ T

0

∂h(t − τi)

∂τi

∂hT (t − τi)

∂τi

=
∫ T

0
(2πF0Lh(t − τi)) (2πF0Lh(t − τi))

T dt

= (2πF0)2L
[∫ T

0
h(t − τi)h

T (t − τi) dt

]
LT

= (T/2)(2πF0)2LLT (48)

and the integral of the cross-product of h(t − τi) with its
partial derivative w.r.t to τi is∫ T

0

∂h(t − τi)

∂τi

hT (t − τi)

=
∫ T

0
2πF0Lh(t − τi)h

T (t − τi) dt

= (2πF0)L
[∫ T

0
h(t − τi)h

T (t − τi) dt

]
= (T/2)(2πF0)L. (49)

APPENDIX IV. TRANSFORMATION
OF THE PARAMETERS

In Section III we discussed the relationship between
the unknown attenuation factors and the unknown signal,
and between the unknown TOAs and the unknown signal.
Here we show that the FIM given in (8) is rank two
deficient. Then we show that the transformation given in
(9) satisfies the conditions given in [26]. From (8), we have

Iθ = (T/2)

(N0/2)

⎡
⎢⎣

(2πF0)2φT LLT φ(diag(A))2 (2πF0)(φT Lφ)(diag(A)) (2πF0)(A � A)φT L

(2πF0)(φT LT φ)(diag(A)) (φT φ)IM AφT

(2πF0)LT φ(A � A)T φAT (AT A)I(2N−1)

⎤
⎥⎦ .
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If ν1 = [1T
M AT − (φ + (2πF0)LT φ) ]T and

ν2 = [1T
M − AT (φ − (2πF0)LT φ) ]T then it can be

verified that Iθν1 = 0 and Iθν2 = 0. Therefore ν1 and ν2

are in the null space of Iθ . Also, Iθ+(1/2)ν1ν
T
1

+(1/2)ν2 νT
2 is nonsingular. This means that ν1 and ν2 are

the basis vectors for the null space of Iθ and so the matrix
Iθ is rank two deficient. The Jacobian of the
transformation is given by

H =
(

∂θ ′

∂θ

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂τ ′

∂τ

∂τ ′

∂A
∂τ ′

∂φ

∂A′

∂τ

∂A′

∂A
∂A′

∂φ

∂φ′

∂τ

∂φ′

∂A
∂φ′

∂φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

Now, we compute each of the derivatives in the
Jacobian matrix. The elements of the first subcolumn are
given by

∂τ ′

∂τ
= ∂

∂τ
([−1M−1 IM−1]τ )

= [−1M−1 IM−1]
∂τ ′

∂A
= 0(M−1,M)

∂τ ′

∂φ
= 0(M−1,2N−1).

The elements of the second subcolumn are given by

∂A′

∂τ
= 0(M−1,M)

∂A′

∂A
= ∂

∂A

((
[0(M−1,1) IM−1]A

) (
eT

1 A
)−1
)

= (1/A0)[−A′ IM−1]

∂A′

∂φ
= 0(M−1,2N−1)

where e1 is the first column of an M × M identity matrix.
The elements of the third subcolumn are given by

∂φ′

∂τ
= ∂

∂τ
A0

⎡
⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
IN−1 IN−1

IN−1 −IN−1

]⎤⎥⎦ diag (h(−τ0))φ

=

⎡
⎢⎣A0

⎡
⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
IN−1 IN−1

IN−1 −IN−1

]⎤⎥⎦ diag

(
∂h(−τ0)

∂τ0

)
φ 0(2N−1,1) · · · 0(2N−1,1)

⎤
⎥⎦

=

⎡
⎢⎣A0

⎡
⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
IN−1 IN−1

IN−1 −IN−1

]⎤⎥⎦ (2πF0)L diag (h(−τ0))φ 0(2N−1,1) · · · 0(2N−1,1)

⎤
⎥⎦

∂φ′

∂A
= ∂

∂A

⎛
⎜⎝(eT

1 A
)⎡⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
IN−1 IN−1

IN−1 −IN−1

]⎤⎥⎦ diag (h(−τ0))φ

⎞
⎟⎠

=

⎡
⎢⎣
⎡
⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
IN−1 IN−1

IN−1 −IN−1

]⎤⎥⎦ diag (h(−τ0))φ 0(2N−1,1) · · · 0(2N−1,1)

⎤
⎥⎦

∂φ′

∂φ
= ∂

∂φ

⎛
⎜⎝(eT

1 A
)⎡⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
IN−1 IN−1

IN−1 −IN−1

]⎤⎥⎦ diag (h(−τ0))φ

⎞
⎟⎠

=

⎡
⎢⎣A0

⎡
⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
IN−1 IN−1

IN−1 −IN−1

]⎤⎥⎦ diag (h(−τ0)) 0(2N−1,1) · · · 0(2N−1,1)

⎤
⎥⎦ .
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For the transformed parameters to have finite variance, the
row vectors of H must be equal to the linear combinations
of those eigenvectors of Iθ that have nonzero eigenvalues
[26]. In order to show that the row vectors of H are linear
combinations of those eigenvectors of Iθ that have
nonzero eigenvalues, it is enough to show that the row
vectors of H are orthogonal to the null space of Iθ . That is,
it is enough to show that Hν1 = 0 and Hν2 = 0 Now,

Hν1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂τ ′

∂τ
1M + ∂τ ′

∂A
A − ∂τ ′

∂φ
(φ + (2πF0)LT φ)

∂A′

∂τ
1M + ∂A′

∂A
A − ∂A′

∂φ
(φ + (2πF0)LT φ)

∂φ′

∂τ
1M + ∂φ′

∂A
A − ∂φ′

∂φ
(φ + (2πF0)LT φ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Substituting the partial derivatives that we computed
previously and further simplifying gives

Hν1

=

⎡
⎢⎢⎢⎢⎣

[−1M−1I(M−1)]1M+0(M−1,1)−0(M−1,1)

0(M−1,1)+(1/A0)[−A′ I(M−1)]A−0(M−1,1)

A0P(2πF0)Ldiag(h(−τ0))φ+A0Pdiag(h(−τ0))φ

−(A0Pdiag(h(−τ0))φ+A0Pdiag(h(−τ0))(2πF0)LT φ)

⎤
⎥⎥⎥⎥⎦

where

P =

⎡
⎢⎣

1 0(1,2N−2)

0(2N−2,1)

[
I(N−1) I(N−1)

I(N−1) −I(N−1)

]⎤⎥⎦ .

Using the fact that Ldiag (h(−τ0)) = diag (h(−τ0))LT ,

we have Hν1 = 0. Similarly it can be shown that Hν2 = 0.
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