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Abstract—One application for Time-Difference-of-Arrival (T-
DOA) estimation is in emitter localization. A signal from an
emitter reaching a group of sensors, each in a separate location,
will have different arrival times. Finding the TDOAs between
the output of pairs of sensors will provide the necessary mea-
surements for the hyperbolic localization of the emitter. When
the sensors acquire the signal by Compressed Sensing (CS), their
outputs are reduced dimension linear transformation of the time
samples of the signal. This shuffling of the time samples breaks
up their time relation. Thus a cross-correlation of the CS output
of two sensors cannot determine the TDOA. To apply cross-
correlation, it is necessary to reconstruct the time samples. This
paper proposes an alternative that uses only the coefficients of the
discrete Fourier Transform (DFT) of the CS samples. It begins
with the derivation of the maximum likelihood (ML) equation
and the ML estimator. This estimator requires known values
of signal and noise powers. Substituting these values by their
estimates lead to the approximate ML estimator. The phase of the
product of two DFT coefficients from each sensor is proportional
to the unknown TDOA. Hence these coefficients can provide an
estimation of the TDOA. Simulation results show that although
ML is the best, as expected, all these estimators have very close
performance.

Index Terms—Time-Difference-of-Arrival, Maximum Likeli-
hood, discrete Fourier Transform, Compressed Sensing.

I. INTRODUCTION

T IME-Difference-of-Arrival (TDOA) estimation refers to
determining the difference in arrival times of a signal re-

ceived at two spatially separated sensors. It has applications in
direction finding and source localization [1]–[5]. For example,
in the latter, multiplying the TDOA by the signal propagation
speed gives the range difference between the source and two
receivers. Each range difference defines a hyperbola on which
the target must lie in the two-dimensional space, and thus the
source position can be obtained from the intersection of at
least two hyperbolas.

A standard TDOA estimator cross-correlates the output of
the two sensors [1], [2]. The shift from the origin at which
the cross-correlation function peaks is the TDOA estimate.

With the introduction of Compressed Sensing (CS) [6], [7],
a problem to consider is the estimation of TDOA from CS
measurements.
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Direct cross-correlation of the CS output of two sensors
cannot give a TDOA estimation. To see this, let the N × 1
vector of Nyquist rate samples of the signal s(t) from the
sensors be1, for i = 1,2

si = [si(0) si(1) ⋯ si(N − 1)]T. (1)

Suppose s2(n) = s1(n+4), then the cross-correlation function
of s1 and s2 will peak at a shift of 4 samples, which is the
TDOA. Now the CS measurements are

yi =Asi, (2)

where A is a known M × N (N > M) sensing matrix [7]
(see footnote 2 next page for a discussion on A). The linear
transformation by A on s1 and s2 has broken up their time
shift relation, i.e., the elements of y1 and y2 are not sequential
samples of a time sequence. And y1 is not a time-shifted
version of y2. Hence a cross-correlation of y1 and y2 cannot
find the TDOA.

If the signal s(t) is sparse [7], a reconstruction of s1
and s2, say by ℓ1 minimization [7], will yield reconstructed
samples for a cross-correlation estimation. This is the basis of
the estimator in [8]–[13]. The reconstruction algorithms are
nonlinear and can have large errors if noise is present.

An alternative [14]–[16] that avoids reconstruction desig-
nates a reference sensor to take samples at the Nyquist rate,
resulting in s1 in (1). Working offline, shifting the elements
in s1 by k samples (−K ≤ k ≤ K), where K is the largest
expected TDOA, produces several sk and yk = Ask. Finding
the yk⋆ closest to y2 =As2 from the other sensor gives k⋆ as
the TDOA estimate. The drawback here is that the reference
sensor must sample at the Nyquist rate.

As a trade-off against the need for a sampler at the Nyquist
rate, [17] takes several CS measurements at both sensors,
giving rise to several yk = Ask. As in above, the elements
of sk are time-shifted version of a reference. Estimation of
TDOA is performed by matching the yk of one sensor against
the other.

It is well known that a time shift in the time domain
leads to a phase shift in the frequency domain. Given a
time shift D between the elements of s1 and s2, there is a
corresponding phase shift, proportional to D, between their

1A boldface alphabet (upper- or lower-case, with a subscript of i = 1,2)
denotes a vector. An element in that vector has the same alphabet but is in
lightface, followed by its position number in bracket. A boldface upper-case
alphabet denotes a matrix. An element in that matrix is the same alphabet but
in lower-case and lightface. Subscript in the element denotes its position.



1070-9908 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LSP.2017.2684185, IEEE Signal
Processing Letters

2 IEEE SIGNAL PROCESSING LETTERS, VOL. , NO. , 2017

discrete Fourier Transforms (DFT). Furthermore, the DFT of
y1 and y2 preserve this phase shift, making them applicable
for a direct estimation of D.

Building on this shift-to-phase principle, this paper provides
two new results for direct TDOA estimation from y1 and y2:

1. The derivation of the maximum likelihood (ML) equation
and the ML estimator.

2. Under the assumption that the signal is a white noise
process, the formulation of a set of frequency estimation
equations whose solution is the TDOA parameter. An
approximate ML estimation then follows by substituting
the true values in the ML equation by their estimates.

In the rest of the paper, Section II contains the theoretical
development. The simulation results are in Section III, and
the conclusions in Section IV.

II. TDOA ESTIMATION FROM CS SAMPLES

A. Signal Acquisition

Let a pair of sensors receive, for i = 1,2

si(t) +ϕi(t), (3)

where
s2(t) = s1(t +D) (4)

with D denoting the TDOA between the emitter signals s1(t)
and s2(t). Present at the sensors are ambient noise ϕi(t).

Using, for example, a Random Modulator Pre-Integrator
(RMPI) system [18], the sensors have CS measurements2

yi =A(si +ϕi) +wi, (5)

for i = 1,2. Note that (5) contains two noise terms, ϕi and wi.
This is a more realistic model since in practice, the signal si
normally comes with additive noise ϕi. In contrast, wi is the
measurement noise, representing analog-to-digital conversion
and other instrumentation errors. Most CS literature assumes
ϕi = 0, but [19] draws attention to the need for including ϕi

in CS.
The N × 1 vectors (with T denoting transpose)

si = [si(0) ⋯ si(n) ⋯ si(N − 1)]T, (6)

contain the Nyquist rate samples of s1(t) and s2(t), respec-
tively, and

ϕi = [ϕi(0) ⋯ ϕi(n) ⋯ ϕi(N − 1)]T, (7)

are vectors of samples of ϕ1(t) and ϕ2(t). The measurement
noise vectors

wi = [wi(0) ⋯ wi(m) ⋯ wi(M − 1)]T. (8)

The CS output vectors are

yi =[yi(0) ⋯ yi(m) ⋯ yi(M − 1)]T. (9)

2The sensing matrix A in (5) below must meet a set of conditions to ensure
recovery of the Nyquist rate samples from the CS samples [7]. The RMPI
produces such a matrix. It multiplies an analog signal with a pseudo-random
binary sequence, of values +1 or -1, at the Nyquist rate, and integrates the
products. The elements of A are +1 or -1.

The signal and noise are stationary, zero mean Gaussian
random processes. The noise samples are random variables
independent of each other and of the signal samples. The
M ×N (N >M) sensing matrix A is known, while the signal
and noise variances are unknown.

The problem is to estimate D, given only y1 and y2.

B. The ML Equation

Let e−j
2πkn

N be an element of the DFT matrix F ∈ CN×N ,
and its inverse F−1 has an element 1

N
ej

2πkn
N . Similarly, G is

an M ×M DFT matrix. Taking the DFT of yi gives

Yi =Gyi = [Yi(0) ⋯ Yi(p) ⋯ Yi(M − 1)]T, (10)

and the DFT of the other vectors in (5) are

Si = Fsi =[Si(0) ⋯ Si(k) ⋯ Si(N − 1)]T (11)

Ψi = Fϕi =[Ψi(0) ⋯ Ψi(k) ⋯ Ψi(N − 1)]T

Wi =Gwi =[Wi(0) ⋯ Wi(p) ⋯ Wi(M − 1)]T .

It follows from (5) that

Yi =Gyi =GAsi +GAϕi +Gwi (12)

or
Yi =GAF−1Si +GAF−1Ψi +Wi. (13)

Let
GAF−1 =H ∈ CM×N , (14)

and has an element hpk. Then

Y1(p) = ∑
k

hpk(S1(k) +Ψ1(k)) +W1(p), (15)

Y2(p) = ∑
k

hpk(S2(k) +Ψ2(k)) +W2(p), (16)

with ∑k indicating the summation from k = 0 to N − 1, and
in the equations below, ∑p is from p = 1 to M − 1.

In most estimation cases, there is the requirement that the
data length is larger than the correlation time of a random
process, i.e., the time-bandwidth product is large. Then the
DFT coefficients of the samples of the random process are
independent random variables [20]–[22]. This is the basis for
obtaining the probability density function (PDF) of (17).

The derivation of the likelihood function of (27) below
begins with the introduction of the TDOA parameter, τ , such
that s2(n) = s1(n + τ). This parameter τ is different from D
in (4) in that D is a specific constant, while τ is a variable that
denotes any TDOA. Given τ , the joint conditional Gaussian
PDF of Y1 and Y2 is [20]

f {(Y1;Y2)∣ τ} =
⎡⎢⎢⎢⎣
π2M

M−1
∏
p=1
∣V(p)∣

⎤⎥⎥⎥⎦

−1

exp
⎡⎢⎢⎢⎣
−∑

p

R(p)
⎤⎥⎥⎥⎦
(17)

where (with ∗ denoting complex conjugate)

R(p) = [Y ∗1 (p) Y ∗2 (p)]V−1(p) [
Y1(p)
Y2(p)

] (18)

and

V(p) = E{[ Y1(p)
Y2(p)

] [Y ∗1 (p) Y ∗2 (p)]} , (19)
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Eq. (17) excludes the elements at p = 0 because they do not
contain any phase information.

Now the DFT coefficients are independent, so that

E{S1(k)S∗1 (l)} = E{S2(k)S∗2 (l)} = {
σ2(k), k = l
0, k ≠ l

(20)

where σ2(k) is the power spectral density of the signal at the
kth bin. Also, for simplicity, assume that the ambient noise
powers are the same at both sensors, so that

E{Ψ1(k)Ψ∗1(l)} = E{Ψ2(k)Ψ∗2(l)} = {
σ2
ϕ, k = l

0, k ≠ l
(21)

and similarly for the noise samples of (8),

E{W1(p)W ∗
1 (q)} = E{W2(p)W ∗

2 (q)} = {
σ2
w, p = q

0, p ≠ q
.

(22)
Since s2(n) = s1(n + τ), it follows that

S2(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S1(k)ej
2πkτ
N , 0 ≤ k ≤ N

2
− 1

S1(k)ej
2πkτ
N e−j2πτ ,

N

2
≤ k ≤ N − 1

. (23)

In (23), the factor e−j2πτ is needed to maintain the DFT
relationship of S2(k) = S∗2 (N − k), when τ is not an integer.
Putting this two-part representation of S2(k) into (16) then
gives rise to the two separate sums in (26) and (32).

Taking the expectation in (19) and then its inverse yields

V−1(p) = 1

∣V(p)∣
[ a(p) b∗(p)

b(p) a(p) ] (24)

where, from using (15),

a(p) = ∑
k

∣hpk ∣2(σ2(k) + σ2
ϕ) + σ2

w = E{Y1(p)Y ∗1 (p)} (25)

and from (16) and (23),

−b(p) =
N
2 −1

∑
k=0
∣hpk ∣2σ2(k)ej

2πkτ
N +

N−1
∑
k=N

2

∣hpk ∣2σ2(k)ej
2πkτ
N e−j2πτ

(26)
= E{Y ∗1 (p)Y2(p)}.

Note that ∣V(p)∣, the determinant of the covariance matrix
V(p), is a function of τ . This makes it rather cumbersome to
derive the Cramer-Rao-Lower-Bound (CRLB) [23] from (17).

Taking the natural logarithm of (17) and neglecting the
terms independent of τ gives the likelihood function

L(τ) = −
⎧⎪⎪⎨⎪⎪⎩
∑
p

ln ∣V(p)∣ +∑
p

R(p)
⎫⎪⎪⎬⎪⎪⎭
. (27)

The ML estimation of D is the τ that maximizes L(τ).
Now L(τ) contains the terms σ2(k), σ2

ϕ, and σ2
w. If they

are not known, it will be necessary to replace them by their
estimates, resulting in an approximate ML (AML) estimation.

C. Product of DFT Coefficients (PDC)

Consider next the estimation of D from products of the DFT
coefficients Y1(p) and Y2(p). Let

P (p) = Y1(p)Y ∗2 (p), (28)

so that from (15), (16), and (26)

E{P (p)} = −b∗(p). (29)

Imposing the condition that the signal is a white noise
process, then σ2(k) = σ2, independent of k. Minimizing the
differences between P (p) and their means in (29) leads to a
heuristic estimation of D as

D̂ = argmin
σ2

⎛
⎝
min
τ
∑
p

∥P (p) − σ2g(p, τ)∥2
⎞
⎠
. (30)

In (30), let
P (p) = PR(p) + jPI(p) (31)

and

g(p, τ) =
N
2 −1

∑
k=1
∣hpk ∣2e−j

2πkτ
N +

N−1
∑

k=N
2 +1
∣hpk ∣2e−j

2πkτ
N ej2πτ

(32)
= gR(p, τ) + jgI(p, τ)

where the subscripts R and I denote respectively the real and
imaginary parts of a complex number.

The cost function in (30) is multi-modal. In its inner
minimization, setting the derivative of the sum with respect
to σ2 to zero gives

σ2 =
∑p [PR(p)gR(p, τ) + PI(p)gI(p, τ)]

∑p ∣g(p, τ)∣2
. (33)

Putting (33) into (30) reduces it to a function of τ only. The
minimization procedure is a grid search of τ in the range
τ ≤ ∣DM ∣, where ∣DM ∣ is the largest expected TDOA. Letting
τ = D̂ in (33) gives an estimate of σ2, which the AML uses
to replace the true σ2.

Surprisingly, as the simulation results in Section III show,
the PDC and ML estimates are very close.

D. The AML

The ML estimator of (27) requires known signal and noise
powers σ2(k), σ2(k) + σ2

ϕ = σ2
T , and σ2

w. Normally σ2
w is

available from an instrumentation calibration, and since σ2
w ≪

σ2
T , the following derivation assumes σ2

w = 0 for convenience.
To estimate σ2

T , let σ2(k) = σ2 as in Section II-C, and
consider an approximation of (25) as

Y1(p)Y ∗1 (p) ≈ a(p) (34)

or
∑
p

∣Y1(p)∣2 ≈ ∑
p

∣a(p)∣ = ∑
p

∣Y2(p)∣2. (35)

Then the estimate of σ2
T is

σ̂2
T =
∑p ∣Y1(p)∣2 +∑p ∣Y2(p)∣2

2∑p∑k ∣hpk ∣2
. (36)
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Using σ2 from (33) and σ̂2
T from (36) as the true values

in (27) gives the AML. This approach is similar to the
approximation taken for the ML estimator in [21], where
estimates of the signal and noise spectra substitute for the
true values.

Similar to the PDC in Section II-C, the AML also conducts
a grid search for maximization of (27) in the range τ ≤ ∣DM ∣.

III. SIMULATION RESULTS

This section contains the simulation results of TDOA esti-
mation, for the estimators PDC, AML, and ML.

The CS matrix A is the M × N upper part of a 512 ×
512 Hadamard matrix, whose elements represent the pseudo-
random binary bits of the RMPI [18].

The signal samples s1(n) and s2(n) are independent zero
mean Gaussian random variables, as are the noise samples
ϕ1(n) and ϕ2(n). The signal variance is unity, so that the
signal-to-noise ratio (SNR) equals the inverse of the noise
variance. The original data length N is 512, and the CS sample
length M is N

2
, or N

4
. Each estimator first performs a coarse

grid search of −3 ≤ τ ≤ 3 at steps of 0.2 unit. After finding the
best τ = τ⋆, a fine grid search follows with τ⋆−1 ≤ τ ≤ τ⋆+1,
at steps of 0.005 unit to obtain the final answer.

Figure 1 plots the mean square error (MSE) in dB from
100 independent trials, against SNR, for the three estimators.
As expected, ML has the lowest MSE, followed by PDC and
AML. A probable reason for AML being inferior to PDC
is that AML uses estimates of the signal and noise powers.
Their inaccuracy could cause more errors for AML. Both
AML and PDC exhibit the threshold phenomenon in nonlinear
estimation [1] at SNR = 1.

The MSE of Figure 1, as well as those in Table I, are for
D = 0. For D = 0.6 and D = 1, the results are similar and not
shown due to space limitations.

When estimating directly from the original samples, the
CRLB is [1]

CRLB = 3(1 + 2(SNR))
Nπ2(SNR)2

. (37)

There are two ways to quantify the performance degradation
due to CS.

One is the SNR loss. From Table I, at SNR = 5 and M =
256, the MSE for ML is 2.3010 × 10−3. Putting this value
for CRLB in (37), with N = 256, and solving for SNR gives
SNR = 2.8. The SNR loss is 5/2.8.

The other is data length loss. Putting CRLB= 2.3010×10−3
and SNR = 5 in (37) and solving for N gives N = 38. The data
length loss is 512/58. This loss is greater than N/M because
Aϕi causes noise folding [19].

Table I shows the MSE for different SNR and M . Table II
lists the loss due to CS.

In Table I, the MSE increases by a factor of 2 from M = N
2

to M = N
4

. This indicates that MSE∝ 1
M

.
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Fig. 1: MSE versus SNR with M = N/2, D = 0.

TABLE I: MSE, D = 0

SNR Estimator M = N/2 M = N/4

1
0.2

PDC 2.6535e-03 5.3613e-03

AML 4.7083e-03 1.0518e-02

ML 2.3010e-03 4.4738e-03

1
0.3

PDC 4.2483e-03 8.6745e-03

AML 6.4383e-03 1.3826e-02

ML 3.6233e-03 7.0523e-03

TABLE II: CS loss

M/N Length loss SNR loss

1/2 512/58 5/2.8=1.78

1/4 512/30 5/2.84=1.76

IV. CONCLUSIONS

It is possible to estimate TDOA directly from the CS
output of two sensors, avoiding the need to reconstruct the
signal samples. Thus this method is applicable even to non-
sparse signals. This paper derived the ML function via the
frequency domain and provided two estimators that have close
performance to the optimal ML estimator.
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