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a b s t r a c t

The effects of recent subprime financial crisis on the US stock market are analyzed. To
investigate this problem, a Bayesian panel data analysis to identify common factors that
explain the movement of stock returns when the dimension is high is developed. For high-
dimensional panel data, it is known that previously proposed approaches cannot estimate
accurately the variance–covariance matrix. An advantage of the proposedmethod is that it
considers parameter uncertainty in variance–covariance estimation and factor selection.
Two new criteria for determining the number of factors in the data are developed and
the consistency of the selection criteria as both the number of observations and the cross-
section dimension tend to infinity is established. An empirical analysis indicates that theUS
stock market was subject to 8 common factors before the outbreak of the subprime crisis,
but the number of factors reduced substantially after the outbreak. In particular, a small
number of common factors govern the fluctuations of the stockmarket after the collapse of
Lehman Brothers. In other words, empirical evidence that the structure of US stock market
has changed drastically after the subprime crisis is obtained. It is also shown that the factor
models selected by the proposed criteria work well in out-of-sample forecasting of asset
returns.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Common factors that explain the co-movement of asset returns have attractedmuch interest inmutual fundmanagement
and financial econometrics. See, for instance, Fama and French (1993). The turbulence of US financial market occurred in the
summer of 2007 has seriously affected the entire US and global banking systems and led to a global economic recession. The
goal of this paper is to investigate the effects of the subprime financial crisis on the US stock market. In particular, we seek
to detect changes, if any, in the common factors that explain the co-movement of US stock returns. Knowing the common
factors is important in investment decision, asset allocation, and risk management. For instance, a quantitative financial
model (e.g., an arbitrary pricing model) with too few factors cannot capture the variation of the asset returns whereas a
model with too many factors leads to overfitting.

To identify the number of common factors in economic and financial applications, one often employs a large panel
data set. This is particularly so in recent years because advances in information technology make it possible to collect
and process huge panel data sets. On the other hand, traditional statistical methods such as the vector autoregressive
model of multivariate time series analysis often fare poorly in data analysis when the dimension is high, and dimension
reduction becomes a necessity. Factor models are perhaps the most commonly used statistical tool to simplify the analysis
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of huge panel data sets. Indeed, many efforts have been devoted lately in the econometric and statistical literature to
factor models for analyzing high-dimensional data. See, for example, Stock and Watson (1998, 2002a, 2004), Forni et al.
(2000), Forni and Lippi (2001), Bai and Ng (2002), Bai (2003), and Hallin and Liska (2007) in the econometric literature. In
the statistical literature, McLachlan et al. (2003), Lopes and West (2004), Lopes et al. (2008), Carvalho et al. (2008), Ando
(2009), Bhattacharya and Dunson (2009), and Frühwirth-Schnatter and Lopes (2010) all consider Bayesian factor analysis.
In particular, Lopes and West (2004) treated model uncertainty in Bayesian factor analysis using reversible jump Markov
chain Monte Carlo. West (2003) considered Bayesian factor regression models in the ‘‘large p, small n’’ setting.

The usefulness of factor models in economic applications has also been reported in the literature. Stock and Watson
(2002b) reported that forecasting errors of many macroeconomic variables are reduced by extracting a small number
of common factors from a large panel of economic and financial variables. Bernanke and Boivin (2003) found that the
unobserved factors are empirically related to the monetary policy of the US Federal Reserve Banks. Furthermore, factor
models are useful tools in forecasting financial variables (Stock andWatson, 2003) and in constructing a core inflation index
(Forni and Reichlin, 1998).

For a given panel data set, an important topic in factor modeling is the determination of the optimal (i.e., true) number
of factors because the number of factors plays a fundamental role in modeling, interpreting, and forecasting of the data.
To select the number of factors, Forni et al. (2000) advocated a heuristic rule based on the number of diverging dynamic
eigenvalues of the covariance matrix. Using an information theoretic approach, Bai and Ng (2002) proposed several criteria
for the identification of the number of factors. These authors showed that their selection criteria are consistent in the sense
that, under certain assumptions, the identified number of factors shrink towards the true number of factors as both the
number of observations and the cross-section dimension tend to infinity. Onatski (2005) developed another criterion based
on the theory of randommatrices.

Our limited experience indicates that the aforementioned methods for selecting the number of factors may fare poorly
in finite samples; see also the cases of small N and T in Tables I–VIII of Bai and Ng (2002). The aim of this paper is, therefore,
to develop new criteria for factor selection that perform well in finite samples. Our approach is Bayesian and the proposed
criteria are referred to as the Panel Data Cp (PDCp) and Panel Data Information Criterion (PDIC), respectively. A special feature
of these new criteria is that they consider parameter uncertainty in factor selection. In recent years, many studies reported
advantages of treating parameter uncertainty in statistical analysis; See, e.g., Campbell et al. (2003). Since we estimate the
factor model by a Bayesian procedure, no criteria are currently available to select the number of factors when both the
dimension and sample size go to infinity. The second goal of this paper is to develop criteria that can select a proper factor
model when a Bayesian approach is adopted in the analysis.

We establish the consistency of the proposed criteria under certain conditions as both the number of observations and
the cross-section dimension tend to infinity. One of themain advantages of our criteria relative to the others available in the
literature is that they work well even in the situation when the number of observations and the cross-section dimension
are small. Another advantage of the proposed PDCp criterion is that it is less sensitive than other criteria to the violation of
model assumptions. Our simulation study shows that the proposed PDCp criterion continues to work well, even when there
are heteroscedasticity, serial correlation, and fat-tailed features in the data. Similar to that of Amengual andWatson (2007),
the proposed criteria can be modified to select the number of dynamic factor models in panel data.

In application, we employ the daily returns of 49 industrial portfolios from the Fama and French database to investigate
the impact of subprime crisis on the US stock market. We divided the data span into the following three periods: (1) June
30, 2006 to June 29, 2007 denoting period before the outbreak of the subprime crisis, (2) August 1, 2007 to August 29,
2008 denoting the period after the outbreak of the subprime crisis, but before the Lehman’s failure, (3) October 1, 2008 to
September 30, 2009 denoting the period after Lehman’s failure. We omit onemonth of returns between the periods because
the exact dates of impact that the extreme events have on the market are not certain.

Based on the proposed criteria, we found that the number of common factors reduced substantially after the outbreak of
the subprime crisis. We then investigated the correlation structure between the unobserved factors and some well-known
factors in the literature, including Fama and French (1993)’s three factors, Momentum factor, Short-Term Reversal factor,
and Long-Term Reversal factor. The first latent factor in each period is strongly correlated with the market excess return of
the period. More interestingly, we found that some unobserved factors are not correlated with these observable 6 factors.
The result indicates that there is room for developing new factors to help explain the US stock returns.

We also evaluate the out-of-sample forecasting performance of the proposed method and show that the proposed
method improves the forecasting performance over the model that uses the six commonly used factors mentioned before.
Finally, we construct certain portfolios based on the selected factors and demonstrate that the proposed portfolio performs
well.

The paper is organized as follows. Section 2 describes the factor model and the associated assumptions used in the paper.
It also briefly reviews the asymptotic principal component analysis of Connor and Korajczyk (1986, 1988); see also Forni
et al. (2000) and Stock and Watson (1998). Section 3 introduces a Bayesian estimation procedure of principal components
under the additional assumption of elliptical distributions. It also presents a Markov chain Monte Carlo (MCMC) algorithm
for estimating the posterior distribution in a panel data. We demonstrate details of the MCMC procedure using multivariate
normal, including the use of singular multivariate normal distribution. In Section 4 we propose the new model selection
criteria, Panel Data Cp and Panel Data Information Criterion, and establish their consistency property. Section 5 conducts
Monte Carlo simulations. In the simulation, we compare the performance of the proposed criteria with others available
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in the literature for several data generating processes. We find that the proposed Panel Data Cp criterion outperforms the
criteria of Bai and Ng (2002) when the time series and cross-sectional dimensions are small or when the common factors
have serial dependence.When the sample size or the cross-sectional dimension is large, all of the criteria considered perform
well for most data generating processes. Section 6 contains the empirical application to US stock market. Finally, Section 7
concludes.

2. A factor model

Factor models are a useful econometric tool for describing the variations in a large number of time series by a small
number of common factors. Suppose a set of T observations Y = {y1, . . . , yT } are generated from the following r-factor
model:

yt = Λ0f 0t + εt , t = 1, . . . , T , (1)

where yt = (y1t , . . . , yNt)′ is a N-dimensional random vector, f 0t = (f 01t , . . . , f
0
rt )

′ is the r-dimensional random vector
of factors, εt = (ε1t , . . . , εNt)

′ is the N-dimensional random noise vector with mean 0 and variance that satisfies the
Assumption C below, and Λ0 = (λ0

1, . . . ,λ
0
N)′ is the N × r matrix of factor loadings. We exclude the singular situation

that Λ0 = O and f 0t = 0 for t = 1, . . . , T .
Let ∥A∥ = [tr(A′A)]1/2 be the usual norm of the matrix A, where tr denotes the trace of a square matrix. In this paper,

we adopt the same assumptions as those of Bai and Ng (2002) for the factor model.

Assumption A. The factors satisfy E(f 0t ) = 0, E∥f 0t ∥
4 < ∞, and T−1T

t=1 f
0
t f

0
t

′
→ ΣF0 as T → ∞, where ΣF0 is a r × r

positive definite matrix.

Assumption B. The factor loading matrix Λ0 satisfies ∥λ0
i ∥ < ∞ and

∥N−1Λ0
′Λ0 − ΣΛ0∥ → 0, as N → ∞,

where ΣΛ0 is a r × r positive definite matrix.

Assumption C. The noise term εt in Eq. (1) follows a class of elliptical distributions with zero mean and may have cross-
section dependence.

Assumption D. We allow certain weak dependence between factors and idiosyncratic errors such that

E

 1
N

N
i=1

 1
√
T

T
t=1

f 0t εit


2
 < C

with constant C < ∞.
The factor model in Eq. (1) can be expressed in the matrix form:

Y = F0Λ0
′
+ E, (2)

where Y = (y1, . . . , yT )′, F0 = (f 01 , . . . , f 0T )′, E = (ε1, . . . , εT )
′ with the error term εt being a multivariate random vector

with mean 0 and positive definite covariance matrix that satisfies the Assumption C.
To estimate the unknown parameters of the factor model in Eq. (2), one can adopt the method of asymptotic principal

components studied before by Connor and Korajczyk (1986, 1988), Forni et al. (2000) and Stock andWatson (1998). Consider
the objective function

ℓ(Fr , Λr) =
1
NT

tr{(Y − FrΛ′

r)
′(Y − FrΛ′

r)}, (3)

where the T × r matrix Fr and the N × r matrix Λr are subject to the normalization condition F′
rFr/T = Ir or Λ′

rΛr/N = Ir ,
where Ir is the r × r identity matrix. The estimatesFr and Λr of F0 and Λ0 can be obtained by minimizing the objective
function ℓ(Fr , Λr). Specifically, the asymptotic principal component estimates areΛr =

√
NAr , Fr =XrLr/√N, (4)

where the T × r and N × r matrices Xr and Ar are the first r columns of the matrices X and A in the singular value
decomposition of Y such that Y = XLA′, where L is a diagonal matrix consisting of the ordered singular values of Y, and
columns of X and A satisfy the orthogonality restrictions A′

rAr = Ir and X′
rXr = Ir . In (4),Lr = diag{l1, l2, . . . , lr} consists of

the first r singular values in L satisfying l1 > · · · > lr > 0.
Note that properties of the asymptotic principal components estimates Λr andFr in (4) are obtained in the literature

under the uncorrelated Gaussian noise assumption; see, for instance, Smidl and Quinn (2007). However, the objective
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function in (3) does not depend on the normality assumption. Indeed, as shown in Bai and Ng (2002), the estimates can
still be used to estimate consistently the true number of factors without the Gaussian assumption.

In practice, the true number of factors r is unavailable. But the aforementioned estimation method can be carried out for
a hypothesized number of factors k. In otherwords, assuming that there are k factors, one can apply the asymptotic principal
component analysis to obtain the estimates F0 and Λ0 as

Λk =
√
NAk, Fk =XkLk/√N, (5)

whereXk,Ak andLk are defined in the same way as their counterparts in (4) with r replaced by k.
The asymptotic principal component approach to estimating factor models is widely used, but it has some weaknesses.

In particular, the approach does not address the uncertainty in parameter estimation. Parameter uncertainty has long been
recognized as an important issue in statistical inference and may have some adverse effects if overlooked. See, for example,
the portfolio selection problem in Bawa et al. (1979). Bayesian approach, which explicitly includes parameter uncertainty
in the analysis, provides an alternative to statistical inference. Factor analysis is no exception. The goal of this paper is,
therefore, to explore the advantages of Bayesian approach to factor analysis. We estimate the unknown parameters under
a Bayesian framework and consider the parameter uncertainty in selecting the number of factors. Our Bayesian estimation
procedure is given in the next section.

3. Bayesian estimation

Estimation of factor models has been investigated by many authors in the literature when the sample size T is much
larger than the cross-section dimension N; see, for example, Aguilar and West (2000), Lopes and West (2004), Press and
Shigemasu (1989), Bishop (1999), and Smidl and Quinn (2007). In this paper, we focus on the situation when N is close
to, or even larger than, the sample size T . This is a challenging estimation problem. We employ a Bayesian approach with
Markov chainMonte Carlo (MCMC)methods in this paper to overcome the difficulty in estimation and to consider parameter
uncertainty in factor selection.

Under the Bayesian framework, we need to specify the likelihood function of the data. For the factor model in (1),
this means specifying of the distribution function of εt . Based on the objective function in (3), a natural choice is to
entertain a class of elliptical distributions for εt that includes the Normal, Student-t , Laplace, Bessel, Kotz, and Pearson-
type distributions; see Gupta and Varga (1993). Thus, to carry out the proposed Bayesian inference, we also employ the
following assumption.

For simplicity in explanation, we shall use Gaussian likelihood to obtain the associated posterior distributions for
estimation. However, other elliptical distributions can also be used, and our proof of consistency of the proposed factor
selection criteria continues to apply for a class of elliptical distributions. Furthermore, simulation results of Section 5 show
that the proposed criteria evaluated under the Gaussian likelihood continue to work well when the true distribution has
fat-tails. In what follows, we introduce our Bayesian estimation method.

For the factor model considered, the estimate of the covariance matrix,

Σ =
1
T

(Y −FkΛ′

k)
′(Y −FkΛ′

k),

is singular when T ≤ N . To handle this singularity problem, we entertain a singular multivariate normal distribution:

π(εt |Σ
−) =

|Σ−
|
1/2
+

(2π)−(N−d)/2
exp


−

1
2
ε′

tΣ
−εt


, (6)

where d is a non-negative integer denoting the number of zero eigenvalues of Σ, Σ− is a generalized inverse matrix and
|Σ−

|+ is the product of the (N − d) non-zero eigenvalues of Σ−. The natural estimate of Σ− is thenΣ−
=XΣL−1Σ A′Σ ,

where the N × (N − d) matricesXΣ andAΣ are given by the singular value decomposition of Σ, namely the first N − d
columns of the matrices X and A of the singular value decompositionΣ = XLA′, and the (N − d) × (N − d) diagonal matrix
LΣ consists of the first (N − d) non-zero singular values of Σ. Note that other singular elliptical distributions can also be
used.

Suppose that the number of factors is k. When the noises εt are independent, we use the following likelihood to facilitate
the posterior sampling:

L(Y|Ak, Lk,Xk, Σ−) =
|Σ−

|
T/2
+

(2π)−kT/2
exp


−

1
2
tr{K(Y,Xk, Lk,Ak)Σ

−
}


(7)

with K(Y,Xk, Lk,Ak) = (Y − XkLkA′

k)
′(Y − XkLkA′

k).
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3.1. Prior specification

Using the likelihood, the posterior distribution of Ak, Lk, and Xk can be obtained via the Bayes rule as

π(Ak, Lk,Xk, Σ−
|Y) ∝ L(Ak, Lk,Xk, Σ−

|Y)π(Ak, Lk,Xk, Σ−).

For ease in computation, we assume that the priors of the parameters are mutually independent, i.e.,

π(Ak, Lk,Xk, Σ−) = π(Ak)π(Lk)π(Xk)π(Σ−).

From A′

kAk = Ik, Ak belongs to the unit hyperball inN dimensions and its support is restricted to be the Cartesian product
of the N-dimensional unit hyperballs. Furthermore, because of the orthogonality requirement, its support is then reduced
to the Stiefel manifold SN,k (Khatri and Mardia, 1977; Smidl and Quinn, 2007). Simply speaking, the Stiefel manifold SN,k is
the set of ordered k-tuples of orthonormal vectors in RN . Therefore, each of the column vectors of Ak spans a N-dimensional
plane in the k-dimensional coordinate system. Similar argument applies to Xk, which belongs to the Stiefel manifold SN,k
and thus each column vector of Xk spans a N-dimensional plane in the k-dimensional coordinate system. See also Strachan
(2004) that gives a clear treatment of this issue with respect to cointegration models.

In our implementation, the priors of Xk and Ak are flat priors over the Stiefel manifold corresponding to orthogonal
transformations and, hence, are invariant with respect to the orthogonal group. The prior for the diagonal matrix Lk is also
flat over certain spaces. Specifically, the priors of Ak and Xk are

π(Ak) =
1

C(N, k)
· 1(Ak ∈ SN,k), π(Xk) =

1
C(T , k)

· 1(Xk ∈ ST ,k),

where 1(·) is the indicator function and

C(T , k) =
2kπ kT/2

π k(k−1)/4
k

j=1
Γ {(T − j + 1)/2}

is the normalizing constant with Γ (.) being the Gamma function.
Because of the constraint on its elements, the support of Lk is Tk = {Lk|l1 > l2 > · · · > lk > 0}. Therefore, the prior of Lk

is

π(Lk) =
1

C(k)
· 1(Lk ∈ Tk),

where C(k) is the normalizing constant. Note that these prior settings are consistent with the model assumptions of
Section 2.

It is noticed that the model in Eq. (1) is subject to the normalization condition either F′
rFr/T = Ir or Λ′

rΛr/N = Ir . Also,
from the results of the asymptotic principal component analysis in (5), there exist the following relationships Λk =

√
NAk

and Fk = XkLk/
√
N . Therefore, the above prior corresponds to the restriction Λ′

kΛk/N = A′

kAk = Ik on Λk. Thus,
π(Λk) = C(T , k)−1

· 1(Λk ∈ ST ,k) in the original space. Noting that F′

kFk = LkXkXkLk/N = L2k/N , the prior density of
Fk, π(Fk) in the original space assumes that a set of k orthogonal column vectors of Fk spans a T -dimensional plane.

Following Box and Tiao (1972), a noninformative prior is used for Σ−:

π(Σ−) = |Σ−
|
−

k+1
2

+ .

Consequently, the joint posterior distribution of the parameters is

π(Ak, Lk,Xk, Σ−
|Y) ∝ |Σ−

|

T+k+1
2

+ exp

−

1
2
tr

K(Y,Xk, Lk,Ak)Σ

−


1(Ak ∈ SN,k) · 1(Xk ∈ ST ,k) · 1(Lk ∈ Tk).

One can consider other forms of prior specification. We employ the prior specification above in this paper, because we are
considering a situation that information available is limited.

The factor model discussed belongs to the class of reduced rank models and we adopt the singular value decomposition
approach in this paper. This method has been applied in the econometric literature in Bayesian estimation of cointegration
and instrumental variablemodels. See, for example, Kleibergen and van Dijk (1994, 1998), Kleibergen and Paap (2002, 2006)
and Hoogerheide et al. (2007).

Remark. Since Ak belongs to the Stiefel manifold, that is, Ak ∈ SN,k, each of its column vectors spans an N-dimensional
plane in the k-dimensional coordinate system. For a non-zero N × k matrix P ∉ SN,k, one can use the transformationP = P(P′P)−1/2 to obtain a matrix in SN,k. Obviously, each column vector of P cannot be a zero vector and should not be
dependent, either. This Stiefel manifold was employed in several studies before. For example, Strachan and Inder (2004) use
themethod in estimating the posterior probability density of the cointegrating rank of amultivariate error correctionmodel,
Strachan (2007) employs it in Bayesian inference of cointegrated I(2) systems, Koop et al. (2006) apply it in Bayesian analysis
of cointegrated models with priors on the cointegration space, and Smidl and Quinn (2007) use it in Bayesian principal
component analysis.
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3.2. Posterior sampling

Parameter estimation using the proposed posterior distribution can be achieved by the Markov chain Monte Carlo
(MCMC) algorithm, which is commonly used in the statistical literature. We summarize the MCMC algorithm used in this
paper as follows.
Sampling algorithm:

Step 1. Initialize the parameters Ak, Lk, and Xk.
Step 2. Sample Ak from Ak|Lk,Xk, Σ−, Y.
Step 3. Sample Lk from Lk|Ak,Xk, Σ−, Y.
Step 4. Sample Xk from Xk|Ak, Lk, Σ−, Y.
Step 5. Sample Σ− from Xk|Ak, Lk,Xk, Y.
Step 6. Repeat Step 2–Step 5 for a sufficiently large number of iterations.

In the above algorithm, Z|W denotes the conditional posterior distribution of Z given W. Since the conditional posterior
distributions of Ak, Lk, and Xk do not have a closed form, we use the Metropolis–Hasting (MH) algorithm to conduct the
random draws. Specifically, using random draws from proposal distributions, we apply the MH algorithm to implement
Steps 2–4. For instance, in Step 2, the conditional posterior density function of Ak is

π(Ak|Lk,Xk, Σ−, Y ) ∝ L(Y|Ak, Lk,Xk, Σ−)π(Ak).

After the jth iteration, we make a candidate draw of A(j+1)
k,∗ using the proposal density function p(Ak|Ak) centered at the

posterior modeAk. We then accept the candidate draw with the probability

α = min


1,

π(A(j+1)
k,∗ |Lk,Xk, Σ−, Y)/p(A(j+1)

k,∗ |Ak)

π(A(j)
k |Lk,Xk, Σ−, Y)/p(A(j)

k |Ak)


.

That is, for the (j + 1)th iteration, A(j+1)
k is determined by

A(j+1)
k =


A(j+1)
k,∗ with probability α,

A(j)
k with probability 1 − α.

Many proposal densities are available to draw Ak. Here we use the matrix-variate normal distribution

p(Ak|Ak) ∝ exp

−

1
2
Σ−1

Ak
(Ak −Ak)

′(Ak −Ak)


with constraint A′

kAk = Ik, where the covariancematrixΣAk should be set by user so thatMH algorithm constructs aMarkov
chain that has the desired distribution as its equilibrium distribution. In other words, an desirable covariance matrix ΣAk
depend on the problem and therefore are set by user’s hand. For more details onMCMCmethod, we refer to Carlin and Louis
(1996), Gilks et al. (1996) and Tierney (1994). In our Monte Carlo study, ΣAk is a diagonal matrix defined as ΣAk = bI for
some positive real number b. The normalization constants of the probability densities are not needed in calculating α.

The sameMH algorithm is used in Steps 3 and 4. The proposal densities used for Xk and Lk are also matrix-variate normal
distributions given by

p(Xk|Xk) ∝ exp

−

1
2
Σ−1

Xk
(Xk −Xk)

′(Xk −Xk)


,

p(Lk|Lk) ∝ exp

−

1
2
Σ−1

Lk
(Lk −Lk)′(Lk −Lk)

with constraints X′

kXk = Ik and {Lk|l1 > l2 > · · · > lk > 0}, where the covariance matrices are given by ΣXk = ΣLk = bI
with b being a positive number. Once random draws of Ak, Lk and Xk are available, the posterior samples of Fk and Λk can
be obtained by using the expression of the asymptotic principal components estimates (4).

In Step 5, the conditional posterior density function of Σ− is available analytically. From the functional form of the
joint posterior distribution of the parameters π(Ak, Lk,Xk, Σ−

|Y), we can easily see that the conditional posterior density
function ofΣ− is a generalized invertedWishart distributionwith parameter K(Y,Xk, Lk,Ak), T +k+1 andN (See, e.g. Diaz-
Garcia and Gutierrez-Jaimez, 2006). Therefore, we employed the Gibbs sampling algorithm in Step 5.

The outcomes of theMCMC–MH algorithm can be regarded as a random sample from the joint posterior density function
after a burn-in period. In our implementation, we set all initial parameter values to the posterior modes of the data,Xk,Ak
andLk, given in the asymptotic principal component estimators (5). We then run the MCMC algorithm for 2000 iterations
with the first 1000 iterations as the burn-in period. In other words, our inference is based on the random draws of the last
1000 iterations of the MCMC algorithm.

Note that, in principal, we can also treat k as a random variable in Bayesian analysis and obtain its posterior draws via
MCMC methods. However, for computational simplicity, we take an empirical Bayes approach in this paper and determine
the number of factors k using model selection criteria.
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The remaining problem is to evaluate the goodness-of-fit of an estimated model with k common factors. To this end, we
assess the closeness of the estimated model to the true data generating model from a predictive point of view in the next
section.

Remark. Toobtain a drawon the Stiefelmanifoldwe canmakeuse of the property discussed in theprior remark. Specifically,
tomake a draw Ak from the proposal density p(Ak|Ak)with constraint A′

kAk = Ik, we perform the following: First, generate a
drawAk =Ak +Zwith Z following thematrix-variate normal density withmean Omatrix and variancematrixΣAk . Second,
perform a simple transformation Ak =Ak(A′

k
Ak)

−1/2. Consider, for example, T = 2 and k = 1. The matrix Ak reduces to the
2 × 1 vector a = (a1, a2)′. We make a draw ã = â + z with z ∼ N(0, Σak). Then we obtain a draw a by using a simple

transformation a = (ã1/

ã21 + ã22, ã2/


ã21 + ã22)

′. In a similar manner, we can make a draw Xk from the proposal density

p(Xk|Xk) with constraint X′

kXk = Ik.

4. Model selection

In this section we consider the important issue of selecting the number of factors to adequately describe the information
contained in a panel data set. In the literature, several methods have been proposed to select the number of factors, e.g., Bai
and Ng (2002). However, these methods are basically constructed by using point estimates of the model parameters. The
Bayesian estimation discussed in Section 3 enables us to consider parameter uncertainty in the model selection process. An
example of Bayesian model selection criterion is Ando (2007), which considers the maximization of the posterior mean of
the expected log-likelihood. In this paper, we combine the ideas of Bai and Ng (2002) and Ando (2007) to derive criteria
for selecting the number of factors. Thus, our approach combines recent developments in the econometric and statistical
literature.

Theorem 1. Suppose that the model Assumptions A–D hold and that the k factor model is estimated by the Bayesian principal
component procedure. Let k̂ be the minimizer of the following Cp-type criterion for panel data

PDCp(k) = S(k, Fk) + k × g(T ,N),

where S(k, Fk) =

S(k, Fk)π(Fk, Λk, Σ−

|Y)dFkdΛkdΣ− is the posterior mean of

S(k, Fk) =
1
NT

tr{(Y − FkΛ′

k)
′(Y − FkΛ′

k)},

with given value of Y. Then limT ,N→∞ P[k̂ = r] = 1, if (a): g(T ,N) → 0 and (b): DTN × g(T ,N) → ∞ as T ,N → ∞, with
DTN = min{T 1/2,N}.

The derivation of the theorem is given in Appendix provided the Supplemental file.
An example of the function g(T ,N) that satisfies the conditions (a) and (b) of the theorem is

g1(T ,N) =

√
T + N
√
TN


log

 √
TN

√
T + N


.

Putting g1(T ,N) into the information criterion function, we have the following model selection criterion:

PDCp(k) = S(k, Fk) + k ×

√
T + N
√
TN


log

 √
TN

√
T + N


. (8)

We can choose the number of factors by minimizing the PDCp(k) over a specified range of k. We refer to the criterion in
Eq. (8) as the Panel Data Cp (PDCp) criterion. In our implementation, the posterior mean S(k, Fk) of S(k, Fk) is estimated by
the sample mean of the realizations S(k, Fk) over the last 1000 MCMC iterations.

Recently, Hallin and Liska (2007) use a frequentist approach to factor selection and pointed out that a problem of
information criteria such as those in our paper and Bai and Ng (2002) is that the penalty can be multiplied by an arbitrary
constant without hurting the consistency. This criticism is well taken. In this paper, we also consider parameter uncertainty
and the finite-sample performance of the criteria via simulation. In Theorem 1, the condition (b) differs slightly from that of
Bai and Ng (2002). This is due to a technical issue in our proof.

Next, by using similar arguments of Bai and Ng (2002), we obtain the following theorem.

Theorem 2. Under the Assumptions of Theorem 1, the panel data information criterion defined by

PDIC(k) = log

S(k, Fk)


+ k × g(T ,N),

also provides a consistent estimate of the true number of factors r.
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Again, the derivation of the theorem is given in the Appendix. Using Theorem 2, we can immediately obtain the following
criterion

PDIC(k) = log{S(k, Fk)} + k ×


T + N
TN


log


TN

T + N


, (9)

and choose the number of factors by minimizing the PDIC(k) score over a specified range of k. This criterion is referred to as
the Panel Data Information Criterion (PDIC). Because the goodness-of-fit functions of the proposed criteria PDCp and PDIC
are different, it is sensible to use the different penalty terms. Note that the penalty term

g2(T ,N) =


T + N
TN


log


TN

T + N


also satisfies the conditions (a) and (b) of the theorem.

The PDIC of Eq. (9) is very close to the IC1
BN criterion of Bai and Ng (2002); see the definition in the next section. However,

the most important difference between PDIC and the criteria of Bai and Ng (2002) is that when we evaluate the goodness-
of-fit measure, S(k, Fk), PDIC uses a set of posterior samples whereas Bai and Ng (2002) just employs S(k,Fk), which is
evaluated atFk. Our criteria, therefore, explicitly include the parameter uncertainty in the analysis, i.e., the uncertainty of
S(k, Fk), whereas the criteria of Bai and Ng (2002) do not. We expect that our criteria to be more stable and have better
performance. See the performance of the criterion PC1

BN(k) of Section 5.

Remark. In the Bayesian model selection context, several other criteria are available, including the deviance information
criterion (DIC) of Spiegelhalter et al. (2002), the pseudoBayes factorwith resampling approach of Gelfand (1996) andGelfand
and Dey (1994), and a minimum posterior predictive loss approach of Gelfand and Ghosh (1998). However, as shown in the
derivation of DIC (Spiegelhalter et al., 2002, p. 604) a normal approximation to the likelihood is assumed. It should be noticed
that the number of model parameters in the factor model of Eq. (1) might greatly exceed the sample size T . This situation is
considered in the simulation study, e.g., (T ,N) = (60, 1000). In such a case, the above assumption of normal approximation
to the likelihood cannot hold, resulting in the unavailability of DIC. This argument also applies to the BPIC of Ando (2007)
and the predictive likelihood approach of Ando and Tsay (2010).

Also, one might employ the pseudo Bayes factor with the resampling approach. However, the computation becomes
very intensive when the sample size T is large. Again, this situation is considered in the simulation study, e.g., (T ,N) =

(1000, 60). Although this approach is robust to assumption violations, it might not be practically feasible since we run
MCMC many times due to the use of cross-validation.

5. Numerical results

To evaluate the performance of the proposed factor selection criteria in Eqs. (8) and (9), we conduct some simulation
studies. The true data generating process used in the simulation starts with a simple Gaussian factor model, but is extended
to include cases with non-homoscedastic noises, serially correlated noises, dynamic factor models with andwithout serially
correlated noises, and heavy-tailed noises.

5.1. Other selection criteria

For comparison purpose, we also employ the following ten criteria of Bai and Ng (2002) and Onatski (2005) in the study:
(1) Bai and Ng (2002)

PC1
BN(k) = S(k,Fk) + k · S(kmax,Fkmax)


T + N
TN


log


TN

T + N


.

(2) Bai and Ng (2002)

PC2
BN(k) = S(k,Fk) + k · S(kmax,Fkmax)


T + N
TN


log C2

TN .

(3) Bai and Ng (2002)

PC3
BN(k) = S(k,Fk) + k · S(kmax,Fkmax)C

−2
TN log C2

TN .

(4) Bai and Ng (2002)

IC1
BN(k) = log S(k,Fk) + k ·


T + N
TN


log


TN

T + N


.

(5) Bai and Ng (2002)

IC2
BN(k) = log S(k,Fk) + k ·


T + N
TN


log C2

TN .
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(6) Bai and Ng (2002)

IC3
BN(k) = log S(k,Fk) + k · C−2

TN log C2
TN .

(7) Akaike (1974)

AIC(k) = S(k,Fk) + k · S(kmax,Fkmax)


2
T


.

(8) Schwarz (1978)

BIC(k) = S(k,Fk) + k · S(kmax,Fkmax)


log(T )

T


.

(9) Bai and Ng (2002)

BIC3(k) = S(k,Fk) + k · S(kmax,Fkmax)


(N + T − k) log(NT )

NT


.

(10) Onatski (2005)

r̃(δ, kmax, ξN) = #{i ≤ N; λi > (1 + δ)û},

where kmax is a prespecified maximum number of factors and CTN = min(
√
T ,

√
N). For Onatski’s method, #{·} means the

number of elements that satisfy the stated condition, andλi is the ith largest eigenvalues of T−1Y′Y. Following the suggestion
of Onatski (2005), we set kmax = ξN = [8 · (T/100)1/4], where [·] is the integer part of the number. Onatski (2005) reported
that these choices workwell for all sample sizes. For the values of û and δ, we refer to Onatski (2005). Bai and Ng (2002) used
the above AIC and BIC criteria, for their penalty terms are the standard ones in the time series analysis. Our study indicates
that both AIC(k) and BIC(k) fare poorly compared with other criteria in selecting the number of factors.

It is clear from the definitions that the criteria of Bai and Ng (2002) do not take into account the parameter uncertainty.
To demonstrate the importance of considering parameter uncertainty in factor selection, we therefore employ the following
modified version of Bai and Ng (2002)’s PC criteria:
(11)

PC1
BN(k) = S(k,Fk) + k

√
T + N
√
TN


log

 √
TN

√
T + N


,

where the penalty term of PC1
BN(k) is replaced by the penalty term of the proposed PDCp. By comparing the performance

between PDCp and PC1
BN(k) in the simulation, we can observe the effect of parameter uncertainty.

5.2. Data generating processes

In our Monte Carlo study, to assess the general properties of the criteria considered, we use various configurations of T ,
N , and the true number of factors r . For simplicity, we shall report the results for r = 3 only, because other values of r have
similar results. The first data generating model considered is

yt = Λft + εt , t = 1, . . . , T , (10)
where the r-dimensional factor ft is a vector of N(0, 1) variables, each element of the factor loading matrix Λ also follows
N(0, 1), and the N-dimensional noise vector εt is distributed as multivariate normal with mean 0 and variance rIN . This is
the ideal case for the criteria to work well.

The second data generating model considered is

yt = Λft + ε1
t + δtε

2
t , t = 1, . . . , T , (11)

where δt = 1 if t is odd and it is zero if t is even, and the noises ε1
t and ε2

t follow N(0, rIN) and are independent. The factor
vector ft and the loading matrix Λ were generated by the same method as before. The key feature of model (11) is that the
noises are not homoscedastic.

As the third example, we investigated the performance of the proposed criteria when the idiosyncratic errors have some
serial correlations. The model is yt = Λft + εt + ρεt−1, with t = 1, . . . , T , where ρ = 0.5, and other variables are defined
as before.

Next, consider the following data generating process:

yt = Λft + εt , ft = Φft−1 + ηt , εt = 0.5εt−1 + ξt , (12)
where the factors follow an AR(1)model,Φ is a diagonalmatrix with diagonal elementsφii = 0.5, and ηt and ξt aremutually
independent and serially uncorrelated noises each element of which follows a Student-t distribution with 5 degrees of
freedom. The elements of the factor loading matrix Λ follow the standard normal distribution. This is a non-Gaussian case
with heavy tails and serial correlations in the noises.
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Amengual andWatson (2007) showed that the estimators of Bai and Ng (2002) can be modified to consistently estimate
the number of dynamic factors in a restricted dynamic factor model. The modification is essentially to remove the serial
dependence in the fitted factors. Suppose that the number of factors is k. LetFk be the asymptotic principal component
estimator of Fk and f̂t is the tth row ofFk. Consider the vector AR(1) model f̂t = φf̂t−1 + et . Let Φ be the ordinary least
squares estimator of φ. The criteria of Bai and Ng (2002) are then calculated using the residuals ŷt = yt − ΛkΦf̂t−1 as
the observed data. These modified criteria are used to select the number of factors. In a similar manner, the proposed
criteria can also be applied to the residuals ŷt to select the number of dynamic factors in a restricted dynamic factor
model.

Finally, we consider the following data generating processes:

yt = Λft + εt , ft = Φft−1 + ηt , (13)

where εt = 0.5εt−1 + 0.05vt +
8

j=−8,j≠0 0.01vt+j, Φ is a diagonal matrix with diagonal elements φii = 0.5, and each
element of the noise vector ηt and the innovation vectors vt of the noise also follows a Student-t distribution with 5 degrees
of freedom. Elements of the factor loading matrix Λ follow a normal distribution with mean 0 and variance

√
r . Thus, the

true model has dynamic dependence in both the factors and the noises, and the innovations to the factors and noises all
have heavy tails.

Except for Onatski’s method, the minimum and maximum numbers of factors are set as kmin = 0 and kmax = 8,
respectively, for all cases. The value of kmax = 8 was used in Bai and Ng (2002). For Onatski’s method, we follow Onatski
(2005) to set the parameters. For instance, kmax = [8(T/100)1/4].

5.3. Results

Table 1 reports the percentages of under-, correct, and over-identification for all criteria considered under the first data
generating model. The percentages are based on 1000 replications for each combination of (T ,N). From the table, we make
the following observations. First, the proposed PDCp criterion is capable of selecting the data generating model even when

T and N are small. The method of Onatski (2005), the proposed PDIC, IC1
BN of Bai and Ng (2002), BIC3, and P̃C

1
BN also work

well. On the other hand, all other criteria fail to select the true model in some situations. Second, as expected, the proposed
PDIC criterion and the IC1

BN of Bai and Ng (2002) behave similarly, except for the case (T ,N) = (200, 25). These two criteria
perform well in most cases. Third, both AIC and BIC fare poorly in the simulation. Fourth, the performance of PCBN and ICBN
criteria of Bai and Ng (2002) also becomes much improved when T and N increase. Finally, for this simple model, PDCp

clearly outperforms PC1
BN , showing the importance of treating parameter uncertainty in factor selection. Overall, the table

shows that the proposed criteria perform well for the data generating model of Eq. (10). They also show that the method of
Onatski (2005) works well in most cases, but is not as powerful as the proposed method when T and N increase.

Table 2 summarizes the percentages of under-, correct, and over-identification of various criteria for the second data
generating model over 1000 replications. From the table, the proposed PDCp criterion, the IC1

BN of Bai and Ng (2002), and the
r̃ of Onatski (2005) work well whereas PDIC, PC1

BN of Bai and Ng (2002), and BIC3 fare well when both T and N are large. On
the other hand, PDIC, IC1

BN and BIC3 encounter some underspecification when T or N is small, and the IC3
BN and PC1

BN have
severe underspecification. Again, the inferior performance of PC1

BN to PDCp shows the advantages of considering parameter
uncertainty in factor selection.

The results of the third data generating model are given in Table 3. Again, there are based on 1000 replications. From the
table, the proposed PDIC seems to be the best with IC2

BN and BIC3 as close second. The proposed PDCp works nicely when
both T and N are greater than 50. The r̃ of Onatski (2005) continues to show selection power when both T and N are large,
but it also encounters some over-specification. Finally, the PC1

BN criterion only works well when both N and T are greater
than 100 in this particular case.

The results of the fourth data generatingmodel, over 1000 replications, are summarized in Table 4. Here both the common
factors and noises are serially correlated. Thus, except for the method of Onatski (2005), all criteria are applied to the
transformed data ŷt . From the table, the PDCp outperforms other criteria with PDIC, BIC3 and the method of Onatski (2005)
as second. In this particular, PC1

BN works well when N and T are large whereas the method of Onatski (2005) suffers some
power loss for all configurations of N and T . Other criteria considered encounter some severe over-specification.

Finally, Table 5 summarizes the results for the fifth data generating model over 1000 replications. In this particular case,
both the common factors and noises have serial dependence and the innovations to the noises are serially correlated and
have heavy tails. Again, because of the dynamic dependence, all other criteria, except the method of Onatski (2005), are
applied to the transformed data ŷt . From the table, only the proposed criteria are capable of identifying the true number of
factors. All other criteria over-specify the number of factors in the data.

In summary, our simulation results show that the proposed criteria, especially PDCp, outperformother criteria in selecting
the number of factors in a panel data set. ThemethodofOnatski (2005) alsoworks formost data generatingmodels employed
but it suffers some power loss compared with PDCp when N and T are of moderate size. Except for the most difficult model,
the BIC3 criterion of Bai and Ng (2002) works well when N and T are large.
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j≠

0
0.
01

v t
+
j.

Φ
is

a
di
ag

on
al

m
at
ri
x
w
ith

di
ag

on
al

el
em

en
ts

φ
ii

=
0.
5.

Ea
ch

el
em

en
to

ft
he

no
is
e
ve

ct
or

η
t
an

d
th
e
in
no

va
tio

n
ve

ct
or
s
v t

fo
llo

w
s
a
St
ud

en
t-
t
w
ith

5
de

gr
ee

s
of

fr
ee

do
m
.E

ac
h
el
em

en
to

ft
he

fa
ct
or

lo
ad

in
g
m
at
ri
x

Λ
fo
llo

w
s
a
no

rm
al

di
st
ri
bu

tio
n
w
ith

m
ea

n
0
an

d
va

ri
an

ce
√
r.

Be
ca
us

e
th
e
re
su

lts
of

PC
2 BN

an
d
IC

2 BN
ar
e
si
m
ila

r
to

th
os

e
of

PC
3 BN

an
d
IC

3 BN
,t
he

y
ar
e
om

itt
ed

fr
om

th
e
ta
bl
e.

T/
N

PD
C p

PD
IC

PC
1 BN

PC
3 BN

IC
1 BN

IC
3 BN

AI
C

BI
C

BI
C3

r̃
 PC1 BN

25
/2
5

0
96

4
0

97
3

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

25
/5
0

0
99

1
0

98
2

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

25
/1
00

0
10

0
0

0
10

0
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

25
/2
00

0
10

0
0

0
10

0
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

50
/2
5

0
99

1
0

98
2

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

50
/5
0

0
99

1
0

10
0

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
50

/1
00

0
10

0
0

0
10

0
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

50
/2
00

0
10

0
0

0
10

0
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

10
0/
25

0
10

0
0

0
10

0
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

10
0/
50

0
10

0
0

0
10

0
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

10
0/
10

0
0

10
0

0
0

10
0

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
10

0/
20

0
0

10
0

0
0

10
0

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
20

0/
25

0
10

0
0

0
10

0
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

20
0/
50

0
10

0
0

0
10

0
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

0
0

10
0

20
0/
10

0
0

10
0

0
0

10
0

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
20

0/
20

0
0

10
0

0
0

10
0

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
60

/1
00

0
0

10
0

0
0

10
0

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
10

00
/6
0

0
10

0
0

14
86

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

0
10

0
0

82
18

0
0

10
0

0
0

10
0



3360 R.S. Tsay, T. Ando / Computational Statistics and Data Analysis 56 (2012) 3345–3365

6. Application

We obtained daily returns of 49 industrial portfolios from the Fama and French database. The dataset assigns each NYSE,
AMEX, and NASDAQ stock to an industrial portfolio at the end of June of year t based on its four-digit SIC code at that time.
More details can be found at Fama and French database website. The dimension of our panel analysis is N = 49.

As stated before, we analyze the daily returns in the following three periods: (1) June 30, 2006 to June 29, 2007 denoting
the period before the outbreak of the subprime crisis, (2) August 1, 2007 to August 29, 2008 denoting the uncertain period
after the outbreak of the subprime crisis, but before the collapse of Lehman Brothers, (3) October 1, 2008 to September 30,
2009 denoting the period after Lehman’s failure. Thus, the sample sizes T are 251, 274, and 252, respectively, for the three
periods. We omit one month between the periods to reduce the effect of subperiod division.

Although the size of panel in this application might not be large, our goal is to explore the impact of recent financial
crisis on the U.S stock market. It is clear that the proposed approach can be generalized to analyze the aggregated data with
(T ,N) = (777, 49). But analyzing the aggregated data would require the number of common factors to be time-varying and
more intensive computation. In a spatial dynamic factor model, Lopes et al. (2008) use a reversible jump MCMC scheme to
traverse the space of the number of factors with (T ,N) = (312, 22).

Table 6 provides descriptive statistics for each of the 49 industry portfolio returns. We see that the magnitudes of
volatilities have increased after the outbreak of the financial crisis. Fig. 1 shows the boxplot of the returns of selected industry
portfolios in the three periods. From the plot, we again observe that the returns are less-volatile in Period 1. Similar plots
are also obtained for other industries.

Since the common factors might have certain dynamic dependence, we modified the panel data so that the number of
factors in a restricted dynamic factor model can be consistently estimated via various criteria; see the procedure used in the
simulation study.

Given the number of factors k, letFk be the asymptotic principal component estimator of Fk and f̂t the tth row ofFk. We
consider the vector AR(1) model f̂t = φf̂t−1 + et and letΦ be the ordinary least squares estimator of Φ. The criteria are then
calculated using the residuals ŷt = yt − ΛkΦf̂t−1 as the observed data. Except for the criterion r̃ , the other criteria used in
the simulation study can also be applied to the residuals ŷt to select the number of dynamic factors in a restricted dynamic
factor model.

Table 7 reports the estimated number of factors by various criteria. The candidate number of factors ranges from 0 to 20.
Since Bai and Ng (2002)’s criteria PC1

BN , PC2
BN and PC3

BN tend to select the maximum number of factors entertained, we do
not report their selection results. Also, based on their inferior performance in the simulation study, we delete AIC and BIC
scores in the study. From the table, we see that the number of common factors reduced substantially after the outbreak of
the subprime crisis. The proposed criterion, PDCp, indicates that the number of common factors reduced to 5 from 7 after
the outbreak. The number of common factors reduced to 4 if we use PDIC . The IC1

BN criterion also reduces the number of
factors in Periods 2 and 3.

To investigate further, we calculated the correlations between the posterior modes of the first 8 factors and some well-
known factors in the literature, including Fama and French (1993)’s three factors, Momentum factor, Short-Term Reversal
factor, and Long-Term Reversal factor. Fama and French (1993) suggested that an asset return model on a stock index can
be constructed using three different weighted averages of the portfolio values: one based on size (SMB), another based on
the book-to-market ratio (HML), and the third based on excess return (ER) on the market. The excess return on the market
is computed as the value-weighted return on all NYSE, AMEX, and NASDAQ stocks minus the one-month Treasury bill rate.
We downloaded these factors from French’s Data Library, although the data originally came from the CRSP database.

Table 8 provides the correlations for each of the three periods. From the table, wemake the following observations. First,
the 6 observable factors are mainly related to the first two latent factors of our analysis. In particular, Factor 1 is highly
related to the market excess returns (ER) of Fama and French. However, the correlations vary from one period to another.
For example, the correlation between Factor 1 and HML changes from 0.35 to−0.21 to−0.58 from Period 1 to Periods 2 and
3. Second, Factor 2 has high correlations with momentum factor and long-term reversal (LTR) factor in Period 2 whereas its
correlation with the momentum factor is small in Periods 1 and 3. This is interesting and understandable because Period 2,
which is from August 1, 2007 to August 29, 2008, denotes a down market as the Dow Jones Industrial Index declined from
13,362.37 to 11,543.35. It seems reasonable that the momentum and long-term reversal factors play a more dominating
role in a steady declining market. Third, the magnitude of correlation between the SMB factor of Fama and French and
Factor 1 decreases from 0.68 to 0.13 from Period 1 to Period 3, indicating that the recent financial crisis has substantially
altered the relationship between market cap and market return. This is also reasonable as large-cap blue-chip stocks tend
to be less sensitive to financial crisis compared with small-cap stocks. Fourth, after the failure of Lehman Brothers, Factor
3 is correlated with the SMB and LTR factors. Fifth, the low correlations between Factors 3 and 8 and the 6 well-known
observable factors show that there exist other factors important to the market yet to be discovered. In other words, the 6
commonly used factors cannot explain fully the behavior of the US financial market. Finally, treating them as dependent
variables, one can use Table 8 to study the explanatory power of the 8 latent factors on the 6 commonly used factors. For
instance, in all three periods, ER is mainly explained by Factor 1.

Next, we evaluate the forecasting performance of the models selected by various criteria and show that they improve
the forecasting ability over a benchmark model. The benchmark model employs the six commonly used factors, namely the
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Table 6
Descriptive statistics for each of the 49 industry portfolio. The sample periods are from (1) June 30, 2006 to June 29, 2007; (2) August 1, 2007 to August 29,
2008; (3) October 1, 2008 to September 30, 2009.

Period 1 Period 2 Period 3
Mean Sd. Mean Sd. Mean Sd.

Agric 9.93 87.86 3.10 174.02 23.03 300.91
Food 9.10 58.76 −1.08 98.27 13.42 207.21
Soda 7.64 115.24 −9.45 147.32 12.79 241.34
Beer 11.50 67.23 −4.53 134.79 13.85 223.42
Smoke 8.43 148.68 13.55 164.58 1.44 244.05
Toys 7.18 89.68 −17.56 143.56 17.98 281.59
Fun 6.72 85.23 −13.91 148.90 15.91 324.21
Books 5.12 78.32 −21.63 168.11 25.15 391.32
Hshld 10.12 86.04 −5.77 130.03 17.27 291.71
Clths 10.72 81.63 −8.06 153.47 14.52 313.81
Hlth 8.40 65.12 0.35 94.75 12.98 233.08
MedEq 6.96 65.21 −1.62 94.24 19.01 222.55
Drugs 6.79 84.22 −2.19 110.87 34.50 241.43
Chems 10.88 96.83 −1.39 157.71 16.37 331.03
Rubbr 8.82 84.82 −9.20 160.42 8.78 313.54
Txtls 9.37 106.33 −5.45 149.91 8.02 349.08
BldMt 4.38 84.00 −7.40 137.43 10.97 308.10
Cnstr 2.42 122.98 −11.07 235.78 37.17 500.37
Steel 15.66 133.50 0.93 184.76 11.62 461.36
FabPr 17.83 150.90 12.96 199.31 10.25 436.68
Mach 9.39 96.43 1.09 142.40 7.87 357.82
ElcEq 9.00 89.13 −0.51 131.65 18.57 290.36
Autos 9.50 99.22 −14.48 180.28 23.95 426.29
Aero 16.59 107.34 −3.04 156.35 9.09 293.34
Ships 0.99 112.46 −5.21 178.89 5.93 381.15
Guns 7.77 116.32 −8.94 183.89 26.35 279.69
Gold −0.07 195.93 −6.75 246.05 32.09 508.06
Mines 11.82 146.56 0.80 215.83 26.26 379.52
Coal −3.27 202.48 40.15 318.02 16.94 679.34
Oil 5.23 131.74 7.40 180.08 8.67 465.34
Util 8.68 63.48 2.71 101.80 3.22 237.14
Telcm 10.56 73.46 −12.17 142.68 26.70 314.96
PerSv 9.44 67.87 1.68 155.73 23.29 299.13
BusSv 10.23 72.33 −5.13 118.31 21.13 252.40
Hardw 8.84 80.75 −8.94 134.19 22.64 273.24
Softw 10.51 78.11 −3.77 117.07 23.25 246.91
Chips 6.63 93.16 −8.06 125.43 23.08 265.90
LabEq 10.13 78.64 −0.27 109.31 16.21 254.12
Paper 8.96 80.69 −7.77 173.53 18.65 386.48
Boxes 23.45 108.79 2.91 175.63 6.90 310.94
Trans 5.80 96.96 −5.56 183.25 13.74 302.57
Whlsl 9.02 74.55 −4.27 118.34 19.04 267.24
Rtail 5.75 82.14 −8.32 173.33 21.21 315.70
Meals 8.50 75.58 −10.42 149.87 18.03 292.20
Banks 0.35 50.69 −7.70 132.02 4.59 237.99
Insur 8.04 61.08 −3.01 146.54 18.37 349.59
RlEst 7.46 84.59 −14.36 163.80 16.05 439.38
Fin 11.03 89.23 −1.58 178.74 18.96 320.26
Other 7.23 70.89 −4.41 72.98 10.39 156.34

three factors of Fama and French (1993), Momentum factor, Short-Term Reversal factor and Long-Term Reversal factor. The
criteria used to select the common factors are the PDCp, PDIC , BIC3, r̃ , and IC1

BN . Including the benchmark, we have a total
of six models. Because the future value ft+1 of common factors are unknown at time t , we employ the vector AR(1) model
ft = Φft−1 + et and use its 1-step ahead predictionΦft for ft+1 in the study, whereΦ is the ordinary least squares estimate
of Φ.

For each of the three periods, we conduct an out-of-sample forecasting exercise. Specifically, we start the estimation
with To = 75 and N = 49 to select the number of common factors via various criteria. For a selected common factor series
ft , we fit a multiple linear regression to each of the 49 industrial portfolios and apply the VAR(1) model to obtain factor
prediction. From the predicted factor and the fitted regression models, we obtain 1-step ahead forecast for each index of
the 49 industrial portfolios. Factor regression model is often used in the papers (Aguilera et al., 2006; Ando and Tsay, 2009,
forthcoming; Heij et al., 2007; Koch and Naito, 2010; Serneels and Verdonck, 2009; Stock and Watson, 2002a).

The observed returns at To + 1 are then used to calculate forecasting errors. The estimation window in then advanced by
1 and the estimation-forecasting procedure iterated. The forecasting exercise is repeated until the end of each period. For
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Fig. 1. Boxplot of the returns of industry portfolios for the three periods.

Table 7
Selected number of factors via various criteria. The sample periods are from (1) June 30, 2006 to June 29, 2007; (2) August 1, 2007 to August 29, 2008;
(3) October 1, 2008 to September 30, 2009.

Period 1 Period 2 Period 3

PDCp 7 5 5
PDIC 8 4 4
BIC3 8 7 8
r̃ 8 6 7IC1

BN 8 4 5

each of the 49 portfolios, we compute the out-of-sample mean squares of forecast errors (MSFE)

MSFE =
1

T − 75

T
t=76

(yt − ŷt)2,

where T denotes the sample size of each period, to assess the forecasting performance. Since the proposed methods of this
paper are Bayesian, we use the posterior mean as the forecast ŷt .



R.S. Tsay, T. Ando / Computational Statistics and Data Analysis 56 (2012) 3345–3365 3363

Table 8
The correlations between the posterior modes of the first 8 factors and the Fama and French (1993)’s Factors (SMB, HML, ER), Momentum Factor (MM),
Short-Term Reversal Factor (STR), Long-Term Reversal Factor (LTR).

ER SMB HML MM STR LTR

Period 1: June 30, 2006 to June 29, 2007
Factor 1 −0.93 −0.68 0.35 −0.39 −0.12 0.45
Factor 2 −0.14 −0.20 0.24 0.18 0.14 −0.60
Factor 3 0.01 −0.04 0.01 0.04 0.04 0.10
Factor 4 −0.03 −0.03 0.01 0.04 −0.02 −0.20
Factor 5 0.03 0.09 −0.04 −0.13 −0.02 −0.02
Factor 6 0.00 0.07 −0.03 0.01 0.05 −0.12
Factor 7 0.05 0.03 0.05 −0.02 −0.04 −0.08
Factor 8 −0.00 −0.10 0.04 −0.01 0.07 −0.02

Period 2: August 1, 2007 to August 29, 2008
Factor 1 −0.95 −0.30 −0.21 0.43 −0.34 0.15
Factor 2 −0.01 0.22 0.43 −0.68 0.07 0.84
Factor 3 0.00 0.03 0.03 −0.02 −0.05 −0.11
Factor 4 −0.02 0.12 0.12 −0.24 −0.01 0.08
Factor 5 −0.01 0.01 −0.08 0.16 −0.12 −0.05
Factor 6 −0.01 −0.02 0.33 −0.23 0.16 0.13
Factor 7 −0.01 −0.04 −0.04 0.12 −0.04 −0.04
Factor 8 0.06 −0.07 −0.03 0.05 −0.04 −0.01

Period 3: October 1, 2008 to September 20, 2009
Factor 1 −0.95 −0.13 −0.58 0.81 −0.36 0.27
Factor 2 −0.00 0.26 0.24 −0.06 −0.13 0.47
Factor 3 0.05 −0.22 −0.16 −0.06 0.04 −0.44
Factor 4 0.08 −0.14 −0.10 0.10 0.06 −0.15
Factor 5 −0.09 0.20 0.17 −0.21 −0.28 0.18
Factor 6 0.10 −0.32 −0.01 0.10 0.09 −0.10
Factor 7 −0.04 0.05 −0.03 −0.00 0.12 0.00
Factor 8 0.00 −0.10 −0.03 −0.06 −0.06 −0.01

Table 9
Rankings of forecasting performance of various criteria based on the 49 industrial portfolios of Fama and French databasewith Rank 1 being the best, where
Bench denotes the benchmark that uses 6 observable common factors.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

Period 1: June 30, 2006 to June 29, 2007
PDCp 37 2 0 0 7 3
PDIC 8 37 4 0 0 0
BIC3 8 37 4 0 0 0
r̃ 8 37 4 0 0 0IC1

BN 8 37 4 0 0 0
Bench 4 2 0 0 1 42

Period 2: August 1, 2007 to August 29, 2008
PDCp 5 0 35 7 2 0
PDIC 41 5 3 0 0 0
BIC3 2 1 1 1 42 2
r̃ 0 2 4 38 5 0IC1

BN 41 5 3 0 0 0
Bench 3 1 0 1 0 47

Period 3: October 1, 2008 to September 30, 2009
PDCp 42 7 0 0 0 0
PDIC 7 0 41 0 0 0
BIC3 0 0 0 4 45 0
r̃ 0 0 1 44 4 0IC1

BN 42 7 0 1 0 0
Bench 0 0 0 0 0 49

For each period, each portfolio has 6 MSFEs. To summarize the performance of the 6 methods, we rank them based on
their MSFE with Rank 1 being the best and Rank 6 the worst. We then tabulate the rankings over the 49 industrial portfolios
for the 6 methods. Table 9 gives the measure of forecasting performance with Rank 1 denoting the smallest MSFE. The
numbers in the table denote the counts of each rank over the 49 portfolios. For example, the proposed criterion PDCp was
ranked first 40 times out of the 49 portfolios in Period 1 and ranked twice as the worst in the same period. From the table,
no single method dominates the others, but the proposed criteria PDCp and PDIC work well. The method IC1

BN also works
reasonably well whereas the benchmark appears to perform poorly.
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Table 10
Sharpe ratio (SR) and terminal wealth (TW) value for models selected via various criteria. Sharpe ratio of themarket index (MI) based on the excess returns
is also reported. The sample periods are from (1) June 30, 2006 to June 29, 2007; (2) August 1, 2007 to August 29, 2008; (3) October 1, 2008 to September
30, 2009. Bench denotes the benchmark that uses 6 observable common factors.

Period 1 Period 2 Period 3
SR TW SR TW SR TW

PDCp 0.158 1.167 −0.038 0.934 0.163 1.514
PDIC 0.156 1.165 −0.030 0.945 0.159 1.494
BIC3 0.156 1.165 −0.058 0.927 0.126 1.422
r̃ 0.156 1.165 −0.075 0.907 0.114 1.364IC1

BN 0.156 1.165 −0.030 0.945 0.163 1.514
Bench 0.145 1.113 −0.025 0.950 0.160 1.511
MI 0.065 1.063 −0.043 0.879 0.141 1.454

Based on the results of Table 9, it is clear that dynamic factor models outperform the benchmark model in forecasting,
where the latter uses observable factors. The table also shows that the two proposed criteria work well with IC1

BN being a
close second. Among the dynamic factormodels, the proposed criteria workwell in selecting the number of common factors
for forecasting. The criterion IC1

BN also works reasonably well in our empirical study.
The prior comparisons focus on point forecasts. In what follows, we go 1-step further to consider portfolio construction.

We adopt the standardmean–variance portfolio selection ofMarkowitz (1952) using the 49 industrial portfolios as available
assets. Under the mean–variance selection method, an investor adopts a one-period investment horizon and allocates a
wealth over m assets with allocation weight w = (w1, . . . , wm)′. An optimal portfolio w is determined by solving the
problem

maximizew ′µ −
γ

2
w ′Σw, s.t. w ′1 = 1,

where µ and Σ are the mean vector and the covariance matrix of asset returns, γ is the investor’s risk-aversion parameter,
and 1 is a column unit vector.

For a given criterion in a given period, we use the predicted return described above for µ. The covariance matrix Σ is
estimated by the sample covariance matrix at the forecast origin. The portfolio weights are then determined and used to
calculate the returns in the next trading day. The procedure is repeated until the end of the period. Table 10 reports the
Sharpe ratio and terminal wealth for portfolios constructed via various criteria. The results of the benchmark and market
index based on excess returns are also included. In this particular instance, the proposed criteria PDCp and PDIC and the IC1

BN
work well. However, they do not outperform the benchmark. It seems that the uncertainty in covariance matrix estimation
affects the performance of the dynamic factor models.

7. Concluding remarks

This paper analyzed the effect of recent subprime financial crisis on the US stockmarket. To this end, we developed a new
Bayesian panel data analysis method for identifying the common factors for stock returns when the dimension involved is
high. Using Bayesian analysis, we proposed two criteria for selecting the number of factors in a panel data set. Under certain
conditions, we established the consistency of the criteria when both the sample size T and the cross-section dimension N
approach infinity. For finite samples, our simulation results showed that the proposed criteria outperform those proposed by
Bai and Ng (2002), especially when the number of observations and the cross-section dimension are small. In addition, the
PDCp criterion also outperforms themethod of Onatski (2005) inmost cases considered in our simulation study, even though
the latterworks reasonablywell inmost cases. The PDCp criterion seems to bemore robustwhen there are heteroscedasticity,
serial correlation, and fat-tailed features in the data.

Our empirical analysis indicates that the US stock market was subject to 8 common factors before the outbreak of the
subprime crisis, whereas the number of common factors reduced substantially after the outbreak. After Lehman’s failure, a
small number of common factors has been governing the fluctuations of stock market. We found empirical evidence that
the structure of US stockmarket has changed drastically after the subprime crisis. Finally, we also showed that the proposed
method performs well in out-of-sample forecasting.
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