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Abstract 

The pelformance of RSA hardware is primarily deter- 
mined by an ejficient implementation of the long integer 
modular arithmetic and the ability to utilize the Chinese 
Remainder Theorem (CRT) for the private key operations. 
This paper presents the multiplier architecture of the RSA? 
crypto chip, a high-speed hardware accelerator for long in- 
teger modular arithmetic. The RSA? multiplier datapath is 
reconfgurable to execute either one 1024 bit modular expo- 
nentiation or two 512 bit modular exponentiations in paral- 
lel. Another signijicant characteristic of the multiplier core 
is its high degree ofparallelism. The actual RSAy prototype 
contains a 1056*16 bit word-serial multiplier which is op- 
timized for modular multiplications according to Barret’s 
modular reduction method. The multiplier core is dimen- 
sioned for a clock frequency of 200 MHz and requires 227 
clock cycles for a single 1024 bit modular multiplication. 
Pipelining in the highly parallel long integer unit allows to 
achieve a decryption rate of 560 Mius for a 1024 bit ex- 
ponent. In CRT-mode, the multiplier executes two 512 bit 
modular exponentiations in parallel, which increases the 
decryption rate by a factor of 3.5 to almost 2 MbiiYs. 

1. Introduction 

Many popular crypto-systems like the RSA encryption 
scheme [RSA78], the Diffie-Hellman (DH) key agreement 
scheme [DH76], or the Digital Signature Algorithm (DSA) 
mat941 are based on long integer modular exponentiation. 
A major difference between the RSA scheme and crypto- 
systems based on the discrete logarithm problem is the fact 
that the modulus used in the RSA encryption scheme is the 
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product of two prime numbers. This allows to utilize the 
Chinese Remainder Theorem (CRT) in order to speed up the 
private key operations. From a mathematical point of view, 
the usage of the CRT for RSA decryption is well known. 
But for a hardware implementation, a special multiplier ar- 
chitecture is necessary to meet the requirements for efficient 
CRT-based decryption. 

This paper presents the basic algorithmic and architec- 
tural concepts of the RSA? crypto chip, and describes how 
they were combined to provide optimum performance. A 
special focus is directed towards the implementation of 
the CRT-based decryption. The major design goal with 
the RSAy was the maximization of performance on se- 
veral levels, including the implemented hardware algo- 
rithms, the multiplier architecture, and the VLSI circuit 
technique. The RSA? crypto chip applies the FastMM al- 
gorithm [MPPS95] for modular multiplication. FastMM 
algorithm is based on Barret’s modular reduction method 
[Bar871 and performs a modular multiplication by three 
simple multiplications and one addition. The division- 
free property of Barret’s modular reduction method makes 
FastMM algorithm very attractive for hardware implemen- 
tation. 

The core of the RSAy crypto chip is its 1056*16 bit 
word-serial multiplier, which schedules the multiplicand 
fully parallel and the multiplier in 16 bit words. As a conse- 
quence of this direct processing of long integers, the com- 
putation time for an n bit modular exponentiation is dra- 
matically reduced. Furthermore, Booth recoding [Mac611 is 
implemented to halve the number of partial-products. Thus 
the multiplication speed is almost doubled with low addi- 
tional hardware effort. In addition, pipelining significantly 
increases the throughput in RSA en- and decryption. Due 
to the high degree of parallelism in the multiplier core, the 
RSAy crypto chip executes a 1024 bit modular multiplica- 
tion in 227 clock cycles. The multiplier core is dimensioned 
for a clock frequency of 200 MHz and designed in a full- 
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custom methodology, which results in a very small silicon 
area. 

By taking advantage of the Chinese Remainder Theorem 
(CRT), the computational effort of the RSA decryption can 
be reduced significantly. If the two prime numbers P and 
Q of the modulus N are known, it is possible to calculate 
the modular exponentiation M = CD mod N separately 
modP  and modQ with shorter exponents, as described in 
[QC82] and [SV93]. Since the length of the exponent is 
about n/2 ,  approximately 3n/4 modular multiplications are 
necessary for a single modular exponentiation. The RSAy 
crypto chip is able to compute two exponentiations in par- 
allel, as the 1024 bit multiplier core can be split into two 
512 bit multipliers. Running the two 512 bit multipliers 
in parallel allows both CRT related exponentiations to be 
computed simultaneously. Compared to the non-CRT based 
RSA decryption performed on an n bit hardware, utilizing 
the CRT results in a speed-up factor of approximately 3.5. 

The rest of the paper is structured as follows: In the next 
section, the implemented algorithms for exponentiation and 
modular multiplication are presented. Section 3 focusses on 
the Chinese Remainder Theorem and explains how it can be 
used to speed up the RSA decryption. Section 4 presents the 
architecture of the RSA7 multiplier core and describes the 
execution of a simple multiplication. In section 5 ,  imple- 
mentation problems like floorplanning and clock distribu- 
tion are discussed. This topic is carried on in section 6, and 
it is detailed how the multiplier architecture was adapted to 
comply with the requirements for efficient CRT-based RSA 
decryption. The paper finishes with a summary of results 
and conclusions in section 7. 

2 Implemented algorithms 

In order to develop high-speed RSA hardware, we not 
only need good and efficient algorithms for modular arith- 
metic, but also a multiplier architecture which has to be op- 
timized for those algorithms. This section presents hard- 
ware algorithms for exponentiation, modular reduction and 
modular multiplication. 

3n/2 modular multiplications for an n bit exponent E ,  as- 
suming the exponent contains roughly 50% ones. There- 
fore, the efficient implementation of the modular multipli- 
cation is the key to high performance. 

2.2 Barret’s modular reduction method 

In 1987, Paul Barret introduced an algorithm for the 
modulo reduction operation which he used to implement 
RSA encryption on a digital signal processor [Bar87]. At 
a first glance, a modular reduction is simply the computa- 
tion of the remainder of an integer division : 

N = Z-qN with q = 

But, compared to other operations, even to the multiplica- 
tion, a division is very costly to implement in hardware. 
Barret’s basic idea was to replace the division with a mul- 
tiplication by a precomputed constant which approximates 
the inverse of the modulus. Thus the calculation of the ex- 
act quotient q = [%] is avoided by computing the quotient 
@instead: 

L 

Although equation (2) may look complicated, it can be cal- 
culated very efficiently, because the divisions by Zn- ’  or 
2n+1, respectively, are simply performed by truncating the 
least significant n - 1 or n + 1 bits of the operands. The ex- 
pression L22n/N] depends on the modulus N only and is 
constant as long as the modulus does not change. This con- 
stant can be precomputed, whereby the modular reduction 
operation is reduced to two simple multiplications and some 
operand truncations. 

When calculating a modular reduction according to Bar- 
ret’s method, the result may not be fully reduced, but it is 
always in the range 0 to 3N - 1. Therefore, one or two sub- 
tractions of N could be necessary to get the exact result. 

2.3 FastMM algorithm 
2.1 Binary exponentiation method 

When applying the binary exponentiation method (also 
known as square and multiply algorithm), a modular expo- 
nentiation C E  mod N is performed by successive modular 
multiplications [Knu69]. The MSB to LSB version of the 
algorithm is frequently preferred against the LSB to MSB 
one, because the latter requires storage of an additional in- 
termediate result. Modular reduction after each multiplica- 
tion step avoids the exponential growth in size of the inter- 
mediate results. The square and multiply algorithm needs 

A closer look at Barret’s algorithm shows that trunca- 
tion of operands at n - l or n + l bit borders are necessary. 
For reasons of regularity, it would be advantageous to ap- 
ply truncations only at multiples of the word-size w of the 
multiplier hardware (usually 16 or 32 bit) rather than at the 
original bit positions. Therefore, we modified Barret’s algo- 
rithm in order to apply the truncations only at multiples of 
w, whereby these truncations can be performed by succes- 
sive w bit right-shift operations. In the modified Barret re- 
duction, denoted as FastMM algorithm [MPPS95], the quo- 
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X = A.B mod N + eN with e E ( 0 , l )  

Z = A[n+Zw-1..0].B[n+Zw-1..0] 
Q = Z [ Q n + w - l . .  n-w]  . N l [ n + S w - l . .  01 

NegR = Q[2n+4w-1 . .n+2w] .  NegN[n+2w-l  ..O] 
X = Z[n+Zw-l..O]+NegR[n+2w-1..0] 

Figure 1. Modular multiplication according to the FastMM algorithm. 

tient is calculated as follows: 3 Chinese Remainder Theorem 

The FastMh4 algorithm combines multiplication and modi- 
fied Barret reduction to implement the modular multiplica- 
tion by three multiplications and one addition according to 
the formulas shown in figure 1. The values in the squared 
brackets indicate the bit positions of the operands. All three 
multiplications and the addition are performed with n+2w 

The complexity of the RSA decryption M = CD mod N 
depends directly on the size of D and N .  The decryption ex- 
ponent D specifies the numbers of modular multiplications 
necessary to perform the exponentiation, and the modulus 
N determines the size of the intermediate results. A way of 
reducing the size of both D and N is to take advantage of 
properties stated by the Chinese Remainder Theorem (CRT) 
and Fermat’s Little Theorem. 

significant bits. The FastMM algorithm uses two constants, 
N1 and NegN, to calculate the (possibly not fully reduced) 

Mathematical background 

result of the modular multiplication. Since these two con- 
stants depend on the modulus N only, they can be precom- 
puted according to the following equations: 

2n+w 
N I  = (4) 

NegN = 2n+2w - N  ( 5 )  

Precomputation of  N1 and NegN has no significant influ- 
ence on the overall performance i f  the modulus N changes 
rarely compared to the data. 

*2n+w The constant N 1 approximates the exact value of 7 
with limited accuracy, therefore some error eN is intro- 
duced when calculating the result X .  An exact analysis 
of the FastMM algorithm according to Phe981 shows 
that the result of the modular multiplication is given as 
AB mod N + eN with e E ( 0 , l ) .  This means that X 
might not be fully reduced, but is in the range 0 to 2N - 1, 
thus the error is at most once the modulus. 

When applying the square and multiply algorithm to- 
gether with FastMM algorithm to calculate a modular ex- 
ponentiation, no correction of the intermediate results is 
necessary. Although the intermediate results are not always 
fully reduced, continuing the exponentiation with an incom- 
plete reduced intermediate result does not cause an error 
bigger than once the modulus. An exact proof with detailed 
error estimation can be found in [Dhe98] or [PP89]. If a 
final modular reduction is necessary after the modular ex- 
ponentiation has finished, it can be performed by adding 
NegN to the result. Thus the final reduction requires no 
additional hardware effort or precomputed constants. 

In the following, some basic facts and conclusions of 
the CRT are summarized. This mathematical background 
knowledge is of elementary importance for the efficient re- 
alization of RSA decryption. 

Theorem 1 (Chinese Remainder Theorem) Let the num- 
bers nl , n2, . . . nk be positive integers which are relatively 
prime in pair, i.e. gcd ( n i l  n j )  = 1 when i # j .  Further- 
more, let n = n1n2 . . . n k  and let 2 1 ,  x z , ,  . . xk be inte- 
gers. Then the system of congruences 

x x1 modnl 
x E x2modn2 

X E X k  modnk 

has a simultaneous solution x to all of the congruences, and 
any two solutions are congruent to one another modulo n. 
Furthermore there exists exactly one solution x between 0 
andn-1 .  

A constructive proof of the Chinese Remainder Theorem is 
given in [Kob94]. The unique solution x of the simultane- 
ous congruences satisfying 0 5 x < n can be calculated as 
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where T ,  = and si = riL1 mod ni for i = 1,2 , .  . . , k .  
In [MW97], this method is termed as Gauss’s algorithm. 

Corollary 1.1 I f  the integers n 1,712 , . . . , n k  are pairwise 
relatively prime and n = n1n2 . . . nk, then for all inre- 
gers a ,  b it is always valid that a 3 b mod n i f  and only 
; f a  G b mod 71, for eachi = 1,2, .  . . , k. 

As a consequence of the CRT, any positive integer a < n 
can be uniquely represented as a k-tuple [ a 1 a2 , . . . , ak ] 
and vice versa, whereby ai denotes the residue a mod n, 
for each i = 1,2 , .  . . , 1. The conversion of a into the 
residue system defined by n1, 122,. . . , n k  is simply done 
by modular reductions a mod n,. Conversion back from 
residue representation to “standard notation” is somewhat 
more difficult as it requires the calculation stated in equa- 
tion (6). 

Theorem 2 (Fermat’s Little Theorem) Let p be a prime. 
Any integer a not divisible by p satisjes ap-’ 

For a proof refer to [Kob94]. Fermat’s little theorem is very 
useful for calculating the multiplicative inverse of an integer 
a because ap-’ G a-’ mod p. 

Corollary 2.1 I f  an integer a is not divisible by p and if 
n 3 m mod p - 1, then an 

Collorally (2.1) states that when working modulo a prime 
p ,  the exponents can be reduced mod(p - 1).  This allows 
to perform the RSA decryption with significantly shorter 
exponents. 

1 mod p .  

am mod p.  

3.2 RSA decryption using the CRT 

Since P and Q are primes, any message M < N = PQ 
is uniquely represented by the tuple [ M p ,  M Q ] ,  where 
MP = M mod P and MQ = M mod Q. Therefore, it is 
also possible to obtain M by computation of M p ,  MQ and 
recombining them according to equation (6), rather than 
the usual computation of M = C D  mod N .  By using the 
corollary (2. l), the size of the exponent can be scaled down: 

Mp = M mod P = (CD mod N )  mod P 
= CD mod P (since N = PQ)  

= CDp mod P with Dp = D mod ( P  - 1) 

Furthermore, it is easily observed that the ciphertext C 
can be reduced modulo P before computing M p ,  so the 
lengths of all operands are scaled down by half. With the 
quantities Cp = C mod P and CQ = C mod Q, as well 
as Dp = D mod ( P -  1)  and DQ = D mod (Q - I ) ,  we 
get the following equations for M p  and MQ: 

(7) 
mod P - - ~ D m o d ( P - 1 )  

M p  = CpDp mod P and MQ = mod Q (8) 

The recombination of M p  and MQ to get M can be 
done according to equation (6). For the special case 
of k = 2, n1 = P ,  712 = Q and n = N = PQ, we get 
T I  = N / P  = Q and ~2 = N / Q  = P .  Moreover, equation 
(6) can be simplified by using Fermat’s little theorem: 

M = ( M p Q  (Q-’ mod P )  + MQP (P-‘  mod Q ) )  mod N 

= ( M p Q  (Qp-2  mod P )  + MQP (PQ-’ mod Q ) )  mod N 

= ( M p  (Qp-’ mod N )  + MQ (PQ-’ mod N ) )  mod N (9) 

The last equality in equation (9) comes from the fact 
that a ( b  mod c )  = (ab) mod (a.) for any nonnegative in- 
tegers a ,  b, c. Note that the coefficients QP-’ mod N 
and PQ-l mod N are constant and can be precomputed, 
thereby the effort for the recombination of M p  and MQ is 
reduced to two multiplications, one addition and one reduc- 
tion modulo N .  
When assuming that the exponents D P  = D mod ( P  - 1) 
and DQ = D mod (Q - 1), as well as the constants which 
are needed for the recombination Rp = QP-’ mod N and 
RQ = PQ-‘ mod N have been precomputed, the CRT- 
based RSA decryption can take place according to the fol- 
lowing steps [SV93]: 

1. Calculate C p  = C mod P and CQ = C mod Q. 
2.  Calculate the exponentiations M p  = CpDp mod P 

3. Calculate the coefficients S p  = MpRp mod N and 

4. Calculate M = S p  + SQ. If M 2 N then calculate 

and MQ = C Q ~ Q  mod Q. 

SQ = MQRQ mod N .  

M = M - N .  

It is obvious to see that the initial reductions of the ci- 
phertext C (step 1) and the Chinese recombination (steps 3 
and 4) do not cause significant computational cost com- 
pared to the calculations in step 2. The two exponentia- 
tions (step 2)  can be computed independent from each other 
and in parallel. Compared to the non-CRT based decryption 
performed on an n bit hardware, one of the CRT-based ex- 
ponentiations is about 4 times faster if an n/2 bit hardware 
is used. This dramatic speed improvement is due to the 
50% length reduction of both, the exponent and the mod- 
ulus. Performing the two exponentiations within step 2 in 
parallel requires two n/2 bit modular multipliers, yielding a 
speed up factor of 4 - 6, with e accounting for the steps 1 , 2  
and 4. See section 6 for a suggested reconfigurable modular 
multiplier which is able to execute either one n bit exponen- 
tiation or two n/2 bit exponentiations in parallel. 

4 Multiplier architecture 

In section 2 it was explained how a modular exponen- 
tiation can be calculated by continued modular multiplica- 
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Figure 2. Basic architecture of'the partial parallel multiplier. 

tions, and how three simple multiplications and one addi- 
tion result in a modular multiplication. The multiplier hard- 
ware which will be introduced in this section is optimized 
for executing long integer multiplications according to the 
FastMM algorithm. 

4.1 Partial parallel multiplier 

Figure 2 illustrates the architecture of the high-speed 
word-serial multiplier of the RSA?, in the following de- 
noted as partial parallel multiplier (PPM). According to 
the word-size w, the PPM processes w/2 partial-products 
of n bits at once, whereby n denotes the length of the mod- 
ulus. In order to reach a high degree of parallelism, a word- 
size of w = 16 was chosen for the PPM. The actual RSA? 
prototype is optimized for a modulus length of n = 1024, 
thus the PPM has a dimension of (n + 2w) * w = 1056* 16 
bits. The PPM could be implemented in an array type ar- 
chitecture [Rab96] or a Wallace tree architecture [Wa164]. 
For RSA? the array architecture is the better choice since 
it results in a more regular layout and less routing effort, 
especially when Booth recoding is applied. 

Booth recoding [Mac611 is implemented to halve the 
number of partial-products, which almost doubles the mul- 
tiplication speed with low additional hardware effort. Ac- 
cording to the word-size w, the PPM processes w/2 partial- 
products of n bits at once. Since Booth recoding incorpo- 

rates a radix 4 encoding of the multiplier, it requires a more 
complex partial-product generator (PPG) and a Booth re- 
coder circuit (BR). The Booth recoder circuit is needed to 
generate the appropriate control signals for the PPG. As- 
suming w = 16 and n = 1024, there are eight PPGs re- 
quired to calculate the eight partial-products, whereby each 
PPG consists of 1024 Booth multiplexers. 

In order to reduce these w/2 partial-products to a single 
redundant number, the array multiplier needs w/2 - 2 carry 
Save adders (CSA), assuming that the first three partial- 
products are processed by one CSA. Each CSA in the mul- 
tiplier core consists of n half-cycle full adders presented in 
[Sch96], which introduce only low latching overhead and 
allow the maximum clock frequency to be kept high. 

The output of the CSA is accumulated to the current in- 
termediate sum in a carry save manner, too. This implies 
a cany save accumulator circuit performing a 4:2 reduc- 
tion. The accumulator circuit also consists of half cycle full 
adders, thus the 4:2 reduction is finished after one clock cy- 
cle. Aligning the intermediate sum to the next CSA output 
is done by a w bit hard-wired right shift operation. Be- 
side the carry save adders, also two carry lookahead adders 
(CLA) are required to perform a redundant to binary con- 
version of 16 bit words. Redundant to binary conversion is 
a 2:l reduction, therefore a pipelined version of the CLA 
proposed in [BK82] is used to overcome the carry delay. 

Additionally, the PPM also consists of seven registers, 
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each of them is n bit wide: HighSum and Highcarry, Low, 
Multiplicand, Data, NI and NegN. Note that the registers 
Data, NI and NegN are not shown in figure 2. The reg- 
isters HighSum and Highcarry store the upper part of the 
product. Two registers are necessary since the upper part 
is only available in redundant representation. Register Low 
receives the lower part of the result and register Multipli- 
cand contains the actual multiplicand. The register Data 
is commonly used for storing the n bit block of cipher- 
text/plaintext to become de/encrypted. The registers NI 
and NegN contain the two precomputed constants for the 
FastMM algorithm. All seven registers and the accumula- 
tor are connected by an n bit bus to enable parallel register 
transfers. 

4.2 Execution of a simple multiplication 

In order to explain how the PPM executes a single mul- 
tiplication, let us assume a modulus length of n = 1024 bit 
and a word-size of w = 16. This means that each shift opera- 
tion of the registers results in a 16 bit right-shift of the stored 
value. At the beginning of a multiplication, the multiplicand 
resides within the register Multiplicand, and the multiplier 
(which is assumed to be available in redundant representa- 
tion) resides within the registers HighSum and Highcarry. 
A single multiplication takes place in the following way: 

1. 

2. 

3. 

4. 

5. 

Within each step, a 16 bit word of the (redundant) mul- 
tiplier is shifted out of the registers HighSum and High- 
Carry, starting with the least significant word. These 
16 bit words are converted from redundant into binary 
representation by a CLA, which requires three clock 
cycles. 

When the 16 bit binary multiplier word reaches the 
Booth recoder circuit, it generates the control signals 
for the PPG. The PPG calculates a set of eight partial- 
products, which is propagated to the CSA. Booth re- 
coding and the distribution of the control signals re- 
quires two clock cycles. 

Within three clock cycles, the CSA reduces the set of 
eight partial-products to a single redundant number. 
However, as the CSA is a pipelined circuit, one set of 
eight partial-products can be processed each clock cy- 
cle. 

The output of the CSA is then accumulated to the cur- 
rent intermediate sum within one cycle. Now, the least 
significant 16 bit of the intermediate sum already rep- 
resent a word of the lower part of the product. 

A CLA is used again to convert the redundant 16 bit 
words of the lower part into binary representation. 

6. 

Subsequently, the binary words are shifted into the reg- 
ister Low, where they finally represent the complete 
lower part of the product. 

After the last set of eight partial-products has been pro- 
cessed, the upper part of the result resides within the 
accumulator after three cycles and can be loaded into 
the registers HighSum and Highcarry. 

Whenever the upper part of the product is needed as operand 
for the next multiplication, it can be used as the multiplier 
which is allowed to be redundant. The lower part of the 
product always appears in binary representation; therefore 
it might be used as multiplicand or as multiplier. The fol- 
lowing table summaries the operand requirements and ap- 
pearance of the product. 

I operand 11 representation I schedule 
sequentially, 

of multiplication 
lowerpart /I binary sequentially, 1 ofuroduct w bit words 

parallel, end 
of multiDlication 

I upperpart /I redundant 1 
of Droduct 

I I 1  I I 

The steps needed for a single multiplication depend on the 
length of the modulus n and the word-size w on which the 
multiplier operates. The actual RSAy prototype has a word- 
size of w = 16 and needs exactly 80 clock cycles for a sin- 
gle 1024 bit multiplication. 

4.3 Execution of a modular multiplication 

When applying the square and multiply algorithm, a 
modular exponentiation is performed by successive square 
and multiply steps. For a square step, the result of the 
previous modular multiplication, which resides within the 
register Low, acts as both, multiplicand as well as multi- 
plier. For a multiply step, the n bit block of data to become 
de/encrypted is the multiplicand, and the result of the previ- 
ous modular multiplication is the multiplier. 

According to the FastMM algorithm presented in sec- 
tion 2, a modular multiplication takes place in the following 
way: 

1. For multiplication 1 of the FastMM algorithm, the (re- 
dundant) registers High are loaded from register Low 
and register Multiplicand is either loaded from regis- 
ter Low (square step) or from register Data (multiply 
step). After the multiplication has been performed as 
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Figure 3. The clocked folding principle. 

described in section 4.2, the lower part of the result re- 
sides within the register Low and the upper part resides 
within the accumulator. 

2. For multiplication 2 of the FastMM algorithm, the (re- 
dundant) registers High are loaded from the accumu- 
lator and register Multiplicand is loaded from register 
NI. The multiplication is performed as described in 
section 4.2, but without shifting the words of the lower 
part result into register Low. Note that only the upper 
part of the result from multiplication 2 is needed for 
the next multiplication. Register Low still contains the 
lower part result of multiplication 1. 

3. For multiplication 3 of the FastMM algorithm, the (re- 
dundant) registers High are loaded from the accumu- 
lator and register Multiplicand is loaded from register 
NegN. The multiplication is performed as described in 
section 4.2, but the accumulator is initialized with the 
lower part result of multiplication 1. Thus, multipli- 
cation 3 is performed together with the addition of the 
FastMM algorithm. The result of the modular multi- 
plication resides within register Low after multiplica- 
tion 3. 

A modular multiplication for 1024 bit operands requires 
227 cycles when it is performed on a PPM with a word-size 
o f w = l 6 .  

5 Floorplanning and clocked folding 

From the viewpoint of floorplanning, the RSAy datapath 
shown in figure 2 can be divided into two parts: a regular 

part which includes all n bit wide circuits (registers, carry 
save adders, partial-product generators, and the accumula- 
tor), and a peripheral part which consists of all the other 
circuits (CLA, booth recoder, and control logic). Since the 
regular part is about 80% of the total chip area, its layout 
is subject of detailed optimization. In order to exploit the 
regularity of the datapath structure, the regular part is built 
of n -t 2w identical copies of a one bit slice. This slice con- 
sists of seven 1-bit register cells, eight 1-bit adder cells and 
eight 1 -bit partial-product generator cells, including a uni- 
form inter-cell routing. 
A slice-based layout for the regular part of the RSAy crypto 
chip has two significant advantages: 

1. The place-and-route procedure needs to be solved 
only for a single slice. 

2. As all bit positions have a uniform layout, the verifica- 
tion process (parasitics extraction, timing simulation, 
back annotation) is simplified. If a particular timing is 
verified within a single slice, it is also verified in all 
other slices. 

The slices are supposed to connect by abutment, as also 
the routing between the slices is uniform. Since the wire 
length of control signals and inter-slice routing grows with 
the width of a single slice, narrow slices reduce the total area 
demand. Based on a 0 . 6 ~  CMOS process, the slice width is 
limited to about 35pm with a corresponding slice length of 
about 1 mm, which results in a datapath layout size of about 
35*1 mm. Such an aspect ratio would be unacceptable, 
because chip packages are most frequently considered for 
square shapes. Not only packaging requires a fairly square 
shaped chip layout, also the distribution of global signals 
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Figure 4. Reconfigured multiplier datapath for CRT-based RSA decryption. 

(e.g. control signals, output signals of the booth recoder) is 
much easier when the layout has an aspect ratio close to 1, 
since the corresponding wires are significantly shorter. Also 
minimizing the clock skew is very important. Again, delays 
due to interconnection must be minimized. 

In order to fulfill the requirement for a square shaped lay- 
out, a special floorplanning technique termed folding is ap- 
plied to the regular part of the RSA7 datapath. The 1056 bit 
wide regular part is divided into four folds, whereby each 
fold consists of 264 slices, as illustrated in figure 3. Note 
that folding can only be applied if the direction of data sig- 
nal flow is restricted from more to less significant bit posi- 
tions. It is not difficult to see that the components shown in 
figure 2 can be arranged in a way to meet this restriction. 

But folding has also a serious disadvantage: Transmit- 
ting data signals between folds requires long interconnec- 
tion wires, therefore buffers have to be inserted to maintain 
the increased capacitive load. The additional delay caused 
by the buffers and the interconnection wires would compro- 
mise the overall performance. This pipeline bottleneck can 
be removed by inserting buffers with one cycle delay be- 
tween the folds. Since the data signal flow is limited from 
more to less significant bit positions, the architecture allows 
one cycle delay between subsequent folds. When all data 
input signals for fold 2 are provided by fold 3, the control 
signals can also be delayed by one cycle, causing calcu- 
lations taking place in fold 2 to be delayed by one cycle. 
Likewise calculations in fold 1 and fold 0 are delayed by 
two and three cycles. The additional delay of three cycles 
caused by this clocked folding does not compromise over- 
all latency very much. But on the other hand, buffers with 
one cycle delay allow much higher clock frequencies than 
ordinary buffers. 

6 Fast reconfigurable multiplier datapath 

For efficient CRT-based RSA decryption, a number of 
hardware options to the architecture presented in section 4 
are required. As a consequence of the folding technique, 
the regular part of the multiplier is already divided into four 
parts. So it is obvious to add a second irregular part to get 
two n/2 bit multipliers. Each of this n/2 bit multipliers 
consists of two folds and one irregular part. By adding mul- 
tiplexers to switch between the folds and the irregular parts, 
the multiplier is reconfigurable to perform either one n bit 
exponentiation or two n/2 bit exponentiations in parallel. 
The block diagram in figure 3 represents the multiplier ar- 
chitecture if non-CRT based RSA decryptions is selected. 
In this case all four folds are needed to execute an n bit 
exponentiation. Alternatively, the architecture can be split 
into to two multipliers, each consisting of two folds and 
one irregular part, as illustrated in figure 4. Note that the 
multiplexers to switch between CRT-based and non CRT- 
based operating mode are not shown in figure 4. Each of 
the n/2 bit multipliers is connected to the same control sig- 
nals, causing them running synchronously, except for the 
exponents D p ,  DQ controlling the square and multiply se- 
quences (not shown in figure 4). Thus the clocked folding 
technique is also very advantageous for the realization of a 
reconfigurable multiplier datapath. 

Beside a second irregular part and a number of multi- 
plexers, also additional storage is required for CRT-based 
RSA decryption. The precomputed exponents, the precom- 
puted coefficients for Chinese recombination and the prime 
decomposition P ,  Q have to be stored on-chip. Embedded 
SRAM provides a low area solution for that purpose. Note 
that there is no necessity for additional registers in the mul- 
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tiplier core, as in CRT mode the registers NegN and NI are 
also split into two parts, whereby one part stores the pre- 
computed constants for modP calculations, and the other 
part stores the constants for modQ calculations. 

7 Summary of results and conclusions 

The subject of this paper was to present efficient algo- 
rithms for modular arithmetic and a multiplier architecture 
which is optimized for these algorithms. The prototype of 
the RSA7 crypt0 chip is designed for a modulus length 
of n = 1024 bits and a multiplier word-size of w = 16. 
Based on a 0 . 6 ~  standard CMOS process, the silicon area 
of the multiplier core is about 70 mm' and contains approx. 
1,000,000 transistors, whereby most parts of the chip were 
implemented in full custom design methodology. The exe- 
cution of a 1024 bit modular multiplication needs 227 clock 
cycles. When the multiplier core is clocked with 200 MHz, 
this results in a decryption rate of 560 kbit/s. In CRT mode, 
the decryption rate increases to 2 Mbit/s. This high perfor- 
mance confirms the efficiency of the implemented hardware 
algorithms and the multiplier architecture. Furthermore, the 
proposed design is highly scalable with respect to the mul- 
tiplier word-size as well as the modulus length. The only 
limiting factor is the available silicon area. A state-of-the- 
art 0 . 2 5 ~  CMOS process would allow to increase the multi- 
plier word-size to w = 32, which doubles the performance. 
The high regularity of the design makes it attractive for im- 
plementation in a full custom design methodology. Another 
significant advantage of the architecture is its reconfigura- 
bility to execute either one 1024 bit exponentiation or two 
512 bit exponentiations in parallel. Thus the CRT-based 
RSA decryption increases the performance by a factor of 
3.5, with only low additional hardware effort. 
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