
The Chinese Remainder Theorem and its Application
in a High-speed RSA Crypto Chip*

Johann GroBschadl
Graz University of Technology

Institute for Applied Information Processing and Communications
Inffeldgasse 16a, A-80 10 Graz, Austria

Johann.Groszschaed1 @iaik.at

Abstract

The pelformance of RSA hardware is primarily deter-
mined by an ejficient implementation of the long integer
modular arithmetic and the ability to utilize the Chinese
Remainder Theorem (CRT) for the private key operations.
This paper presents the multiplier architecture of the RSA?
crypto chip, a high-speed hardware accelerator for long in-
teger modular arithmetic. The RSA? multiplier datapath is
reconfgurable to execute either one 1024 bit modular expo-
nentiation or two 512 bit modular exponentiations in paral-
lel. Another signijicant characteristic of the multiplier core
is its high degree ofparallelism. The actual RSAy prototype
contains a 1056*16 bit word-serial multiplier which is op-
timized for modular multiplications according to Barret’s
modular reduction method. The multiplier core is dimen-
sioned for a clock frequency of 200 MHz and requires 227
clock cycles for a single 1024 bit modular multiplication.
Pipelining in the highly parallel long integer unit allows to
achieve a decryption rate of 560 Mius for a 1024 bit ex-
ponent. In CRT-mode, the multiplier executes two 512 bit
modular exponentiations in parallel, which increases the
decryption rate by a factor of 3.5 to almost 2 MbiiYs.

1. Introduction

Many popular crypto-systems like the RSA encryption
scheme [RSA78], the Diffie-Hellman (DH) key agreement
scheme [DH76], or the Digital Signature Algorithm (DSA)
mat941 are based on long integer modular exponentiation.
A major difference between the RSA scheme and crypto-
systems based on the discrete logarithm problem is the fact
that the modulus used in the RSA encryption scheme is the

‘The work described in this paper was supported by the Austrian
Science Foundation (FWF) under grant number P1259MNF “Hochge-
schwindigkeits-Langzahlen-Multiplizierer-Chip”.

product of two prime numbers. This allows to utilize the
Chinese Remainder Theorem (CRT) in order to speed up the
private key operations. From a mathematical point of view,
the usage of the CRT for RSA decryption is well known.
But for a hardware implementation, a special multiplier ar-
chitecture is necessary to meet the requirements for efficient
CRT-based decryption.

This paper presents the basic algorithmic and architec-
tural concepts of the RSA? crypto chip, and describes how
they were combined to provide optimum performance. A
special focus is directed towards the implementation of
the CRT-based decryption. The major design goal with
the RSAy was the maximization of performance on se-
veral levels, including the implemented hardware algo-
rithms, the multiplier architecture, and the VLSI circuit
technique. The RSA? crypto chip applies the FastMM al-
gorithm [MPPS95] for modular multiplication. FastMM
algorithm is based on Barret’s modular reduction method
[Bar871 and performs a modular multiplication by three
simple multiplications and one addition. The division-
free property of Barret’s modular reduction method makes
FastMM algorithm very attractive for hardware implemen-
tation.

The core of the RSAy crypto chip is its 1056*16 bit
word-serial multiplier, which schedules the multiplicand
fully parallel and the multiplier in 16 bit words. As a conse-
quence of this direct processing of long integers, the com-
putation time for an n bit modular exponentiation is dra-
matically reduced. Furthermore, Booth recoding [Mac611 is
implemented to halve the number of partial-products. Thus
the multiplication speed is almost doubled with low addi-
tional hardware effort. In addition, pipelining significantly
increases the throughput in RSA en- and decryption. Due
to the high degree of parallelism in the multiplier core, the
RSAy crypto chip executes a 1024 bit modular multiplica-
tion in 227 clock cycles. The multiplier core is dimensioned
for a clock frequency of 200 MHz and designed in a full-

1063-9527/00 $10.00 0 2000 IEEE
384

custom methodology, which results in a very small silicon
area.

By taking advantage of the Chinese Remainder Theorem
(CRT), the computational effort of the RSA decryption can
be reduced significantly. If the two prime numbers P and
Q of the modulus N are known, it is possible to calculate
the modular exponentiation M = CD mod N separately
modP and modQ with shorter exponents, as described in
[QC82] and [SV93]. Since the length of the exponent is
about n/2 , approximately 3n/4 modular multiplications are
necessary for a single modular exponentiation. The RSAy
crypto chip is able to compute two exponentiations in par-
allel, as the 1024 bit multiplier core can be split into two
512 bit multipliers. Running the two 512 bit multipliers
in parallel allows both CRT related exponentiations to be
computed simultaneously. Compared to the non-CRT based
RSA decryption performed on an n bit hardware, utilizing
the CRT results in a speed-up factor of approximately 3.5.

The rest of the paper is structured as follows: In the next
section, the implemented algorithms for exponentiation and
modular multiplication are presented. Section 3 focusses on
the Chinese Remainder Theorem and explains how it can be
used to speed up the RSA decryption. Section 4 presents the
architecture of the RSA7 multiplier core and describes the
execution of a simple multiplication. In section 5 , imple-
mentation problems like floorplanning and clock distribu-
tion are discussed. This topic is carried on in section 6, and
it is detailed how the multiplier architecture was adapted to
comply with the requirements for efficient CRT-based RSA
decryption. The paper finishes with a summary of results
and conclusions in section 7.

2 Implemented algorithms

In order to develop high-speed RSA hardware, we not
only need good and efficient algorithms for modular arith-
metic, but also a multiplier architecture which has to be op-
timized for those algorithms. This section presents hard-
ware algorithms for exponentiation, modular reduction and
modular multiplication.

3n/2 modular multiplications for an n bit exponent E , as-
suming the exponent contains roughly 50% ones. There-
fore, the efficient implementation of the modular multipli-
cation is the key to high performance.

2.2 Barret’s modular reduction method

In 1987, Paul Barret introduced an algorithm for the
modulo reduction operation which he used to implement
RSA encryption on a digital signal processor [Bar87]. At
a first glance, a modular reduction is simply the computa-
tion of the remainder of an integer division :

N = Z-qN with q =

But, compared to other operations, even to the multiplica-
tion, a division is very costly to implement in hardware.
Barret’s basic idea was to replace the division with a mul-
tiplication by a precomputed constant which approximates
the inverse of the modulus. Thus the calculation of the ex-
act quotient q = [%] is avoided by computing the quotient
@instead:

L

Although equation (2) may look complicated, it can be cal-
culated very efficiently, because the divisions by Zn- ’ or
2n+1, respectively, are simply performed by truncating the
least significant n - 1 or n + 1 bits of the operands. The ex-
pression L22n/N] depends on the modulus N only and is
constant as long as the modulus does not change. This con-
stant can be precomputed, whereby the modular reduction
operation is reduced to two simple multiplications and some
operand truncations.

When calculating a modular reduction according to Bar-
ret’s method, the result may not be fully reduced, but it is
always in the range 0 to 3N - 1. Therefore, one or two sub-
tractions of N could be necessary to get the exact result.

2.3 FastMM algorithm
2.1 Binary exponentiation method

When applying the binary exponentiation method (also
known as square and multiply algorithm), a modular expo-
nentiation C E mod N is performed by successive modular
multiplications [Knu69]. The MSB to LSB version of the
algorithm is frequently preferred against the LSB to MSB
one, because the latter requires storage of an additional in-
termediate result. Modular reduction after each multiplica-
tion step avoids the exponential growth in size of the inter-
mediate results. The square and multiply algorithm needs

A closer look at Barret’s algorithm shows that trunca-
tion of operands at n - l or n + l bit borders are necessary.
For reasons of regularity, it would be advantageous to ap-
ply truncations only at multiples of the word-size w of the
multiplier hardware (usually 16 or 32 bit) rather than at the
original bit positions. Therefore, we modified Barret’s algo-
rithm in order to apply the truncations only at multiples of
w, whereby these truncations can be performed by succes-
sive w bit right-shift operations. In the modified Barret re-
duction, denoted as FastMM algorithm [MPPS95], the quo-

385

X = A.B mod N + eN with e E (0 , l)

Z = A[n+Zw-1..0].B[n+Zw-1..0]
Q = Z [Q n + w - l . . n-w] . N l [n + S w - l . . 01

NegR = Q[2n+4w-1 . .n+2w] . NegN[n+2w-l ..O]
X = Z[n+Zw-l..O]+NegR[n+2w-1..0]

Figure 1. Modular multiplication according to the FastMM algorithm.

tient is calculated as follows: 3 Chinese Remainder Theorem

The FastMh4 algorithm combines multiplication and modi-
fied Barret reduction to implement the modular multiplica-
tion by three multiplications and one addition according to
the formulas shown in figure 1. The values in the squared
brackets indicate the bit positions of the operands. All three
multiplications and the addition are performed with n+2w

The complexity of the RSA decryption M = CD mod N
depends directly on the size of D and N . The decryption ex-
ponent D specifies the numbers of modular multiplications
necessary to perform the exponentiation, and the modulus
N determines the size of the intermediate results. A way of
reducing the size of both D and N is to take advantage of
properties stated by the Chinese Remainder Theorem (CRT)
and Fermat’s Little Theorem.

significant bits. The FastMM algorithm uses two constants,
N1 and NegN, to calculate the (possibly not fully reduced)

Mathematical background

result of the modular multiplication. Since these two con-
stants depend on the modulus N only, they can be precom-
puted according to the following equations:

2n+w
N I = (4)

NegN = 2n+2w - N (5)

Precomputation of N1 and NegN has no significant influ-
ence on the overall performance i f the modulus N changes
rarely compared to the data.

*2n+w The constant N 1 approximates the exact value of 7
with limited accuracy, therefore some error eN is intro-
duced when calculating the result X . An exact analysis
of the FastMM algorithm according to Phe981 shows
that the result of the modular multiplication is given as
AB mod N + eN with e E (0 , l) . This means that X
might not be fully reduced, but is in the range 0 to 2N - 1,
thus the error is at most once the modulus.

When applying the square and multiply algorithm to-
gether with FastMM algorithm to calculate a modular ex-
ponentiation, no correction of the intermediate results is
necessary. Although the intermediate results are not always
fully reduced, continuing the exponentiation with an incom-
plete reduced intermediate result does not cause an error
bigger than once the modulus. An exact proof with detailed
error estimation can be found in [Dhe98] or [PP89]. If a
final modular reduction is necessary after the modular ex-
ponentiation has finished, it can be performed by adding
NegN to the result. Thus the final reduction requires no
additional hardware effort or precomputed constants.

In the following, some basic facts and conclusions of
the CRT are summarized. This mathematical background
knowledge is of elementary importance for the efficient re-
alization of RSA decryption.

Theorem 1 (Chinese Remainder Theorem) Let the num-
bers nl , n2, . . . nk be positive integers which are relatively
prime in pair, i.e. gcd (n i l n j) = 1 when i # j . Further-
more, let n = n1n2 . . . n k and let 2 1 , x z , , . . xk be inte-
gers. Then the system of congruences

x x1 modnl
x E x2modn2

X E X k modnk

has a simultaneous solution x to all of the congruences, and
any two solutions are congruent to one another modulo n.
Furthermore there exists exactly one solution x between 0
andn-1 .

A constructive proof of the Chinese Remainder Theorem is
given in [Kob94]. The unique solution x of the simultane-
ous congruences satisfying 0 5 x < n can be calculated as

386

where T , = and si = riL1 mod ni for i = 1,2 , . . . , k .
In [MW97], this method is termed as Gauss’s algorithm.

Corollary 1.1 I f the integers n 1,712 , . . . , n k are pairwise
relatively prime and n = n1n2 . . . nk, then for all inre-
gers a , b it is always valid that a 3 b mod n i f and only
; f a G b mod 71, for eachi = 1,2, . . . , k.

As a consequence of the CRT, any positive integer a < n
can be uniquely represented as a k-tuple [a 1 a2 , . . . , ak]
and vice versa, whereby ai denotes the residue a mod n,
for each i = 1,2 , . . . , 1. The conversion of a into the
residue system defined by n1, 122,. . . , n k is simply done
by modular reductions a mod n,. Conversion back from
residue representation to “standard notation” is somewhat
more difficult as it requires the calculation stated in equa-
tion (6).

Theorem 2 (Fermat’s Little Theorem) Let p be a prime.
Any integer a not divisible by p satisjes ap-’

For a proof refer to [Kob94]. Fermat’s little theorem is very
useful for calculating the multiplicative inverse of an integer
a because ap-’ G a-’ mod p.

Corollary 2.1 I f an integer a is not divisible by p and if
n 3 m mod p - 1, then an

Collorally (2.1) states that when working modulo a prime
p , the exponents can be reduced mod(p - 1). This allows
to perform the RSA decryption with significantly shorter
exponents.

1 mod p .

am mod p.

3.2 RSA decryption using the CRT

Since P and Q are primes, any message M < N = PQ
is uniquely represented by the tuple [M p , M Q] , where
MP = M mod P and MQ = M mod Q. Therefore, it is
also possible to obtain M by computation of M p , MQ and
recombining them according to equation (6), rather than
the usual computation of M = C D mod N . By using the
corollary (2. l), the size of the exponent can be scaled down:

Mp = M mod P = (CD mod N) mod P
= CD mod P (since N = PQ)

= CDp mod P with Dp = D mod (P - 1)

Furthermore, it is easily observed that the ciphertext C
can be reduced modulo P before computing M p , so the
lengths of all operands are scaled down by half. With the
quantities Cp = C mod P and CQ = C mod Q, as well
as Dp = D mod (P - 1) and DQ = D mod (Q - I) , we
get the following equations for M p and MQ:

(7)
mod P - - ~ D m o d (P - 1)

M p = CpDp mod P and MQ = mod Q (8)

The recombination of M p and MQ to get M can be
done according to equation (6). For the special case
of k = 2, n1 = P , 712 = Q and n = N = PQ, we get
T I = N / P = Q and ~2 = N / Q = P . Moreover, equation
(6) can be simplified by using Fermat’s little theorem:

M = (M p Q (Q-’ mod P) + MQP (P-‘ mod Q)) mod N

= (M p Q (Qp-2 mod P) + MQP (PQ-’ mod Q)) mod N

= (M p (Qp-’ mod N) + MQ (PQ-’ mod N)) mod N (9)

The last equality in equation (9) comes from the fact
that a (b mod c) = (ab) mod (a.) for any nonnegative in-
tegers a , b, c. Note that the coefficients QP-’ mod N
and PQ-l mod N are constant and can be precomputed,
thereby the effort for the recombination of M p and MQ is
reduced to two multiplications, one addition and one reduc-
tion modulo N .
When assuming that the exponents D P = D mod (P - 1)
and DQ = D mod (Q - 1), as well as the constants which
are needed for the recombination Rp = QP-’ mod N and
RQ = PQ-‘ mod N have been precomputed, the CRT-
based RSA decryption can take place according to the fol-
lowing steps [SV93]:

1. Calculate C p = C mod P and CQ = C mod Q.
2. Calculate the exponentiations M p = CpDp mod P

3. Calculate the coefficients S p = MpRp mod N and

4. Calculate M = S p + SQ. If M 2 N then calculate

and MQ = C Q ~ Q mod Q.

SQ = MQRQ mod N .

M = M - N .

It is obvious to see that the initial reductions of the ci-
phertext C (step 1) and the Chinese recombination (steps 3
and 4) do not cause significant computational cost com-
pared to the calculations in step 2. The two exponentia-
tions (step 2) can be computed independent from each other
and in parallel. Compared to the non-CRT based decryption
performed on an n bit hardware, one of the CRT-based ex-
ponentiations is about 4 times faster if an n/2 bit hardware
is used. This dramatic speed improvement is due to the
50% length reduction of both, the exponent and the mod-
ulus. Performing the two exponentiations within step 2 in
parallel requires two n/2 bit modular multipliers, yielding a
speed up factor of 4 - 6, with e accounting for the steps 1 , 2
and 4. See section 6 for a suggested reconfigurable modular
multiplier which is able to execute either one n bit exponen-
tiation or two n/2 bit exponentiations in parallel.

4 Multiplier architecture

In section 2 it was explained how a modular exponen-
tiation can be calculated by continued modular multiplica-

387

,w
High Registers (S+C) - :< CLA

W , '

' ,w/2

4 :2dL
Part.Prod. Generator 4

1 Carry Save Adder

Booth
Rec. '

Lc_l Low Register

Figure 2. Basic architecture of'the partial parallel multiplier.

tions, and how three simple multiplications and one addi-
tion result in a modular multiplication. The multiplier hard-
ware which will be introduced in this section is optimized
for executing long integer multiplications according to the
FastMM algorithm.

4.1 Partial parallel multiplier

Figure 2 illustrates the architecture of the high-speed
word-serial multiplier of the RSA?, in the following de-
noted as partial parallel multiplier (PPM). According to
the word-size w, the PPM processes w/2 partial-products
of n bits at once, whereby n denotes the length of the mod-
ulus. In order to reach a high degree of parallelism, a word-
size of w = 16 was chosen for the PPM. The actual RSA?
prototype is optimized for a modulus length of n = 1024,
thus the PPM has a dimension of (n + 2w) * w = 1056* 16
bits. The PPM could be implemented in an array type ar-
chitecture [Rab96] or a Wallace tree architecture [Wa164].
For RSA? the array architecture is the better choice since
it results in a more regular layout and less routing effort,
especially when Booth recoding is applied.

Booth recoding [Mac611 is implemented to halve the
number of partial-products, which almost doubles the mul-
tiplication speed with low additional hardware effort. Ac-
cording to the word-size w, the PPM processes w/2 partial-
products of n bits at once. Since Booth recoding incorpo-

rates a radix 4 encoding of the multiplier, it requires a more
complex partial-product generator (PPG) and a Booth re-
coder circuit (BR). The Booth recoder circuit is needed to
generate the appropriate control signals for the PPG. As-
suming w = 16 and n = 1024, there are eight PPGs re-
quired to calculate the eight partial-products, whereby each
PPG consists of 1024 Booth multiplexers.

In order to reduce these w/2 partial-products to a single
redundant number, the array multiplier needs w/2 - 2 carry
Save adders (CSA), assuming that the first three partial-
products are processed by one CSA. Each CSA in the mul-
tiplier core consists of n half-cycle full adders presented in
[Sch96], which introduce only low latching overhead and
allow the maximum clock frequency to be kept high.

The output of the CSA is accumulated to the current in-
termediate sum in a carry save manner, too. This implies
a cany save accumulator circuit performing a 4:2 reduc-
tion. The accumulator circuit also consists of half cycle full
adders, thus the 4:2 reduction is finished after one clock cy-
cle. Aligning the intermediate sum to the next CSA output
is done by a w bit hard-wired right shift operation. Be-
side the carry save adders, also two carry lookahead adders
(CLA) are required to perform a redundant to binary con-
version of 16 bit words. Redundant to binary conversion is
a 2:l reduction, therefore a pipelined version of the CLA
proposed in [BK82] is used to overcome the carry delay.

Additionally, the PPM also consists of seven registers,

388

each of them is n bit wide: HighSum and Highcarry, Low,
Multiplicand, Data, NI and NegN. Note that the registers
Data, NI and NegN are not shown in figure 2. The reg-
isters HighSum and Highcarry store the upper part of the
product. Two registers are necessary since the upper part
is only available in redundant representation. Register Low
receives the lower part of the result and register Multipli-
cand contains the actual multiplicand. The register Data
is commonly used for storing the n bit block of cipher-
text/plaintext to become de/encrypted. The registers NI
and NegN contain the two precomputed constants for the
FastMM algorithm. All seven registers and the accumula-
tor are connected by an n bit bus to enable parallel register
transfers.

4.2 Execution of a simple multiplication

In order to explain how the PPM executes a single mul-
tiplication, let us assume a modulus length of n = 1024 bit
and a word-size of w = 16. This means that each shift opera-
tion of the registers results in a 16 bit right-shift of the stored
value. At the beginning of a multiplication, the multiplicand
resides within the register Multiplicand, and the multiplier
(which is assumed to be available in redundant representa-
tion) resides within the registers HighSum and Highcarry.
A single multiplication takes place in the following way:

1.

2.

3.

4.

5.

Within each step, a 16 bit word of the (redundant) mul-
tiplier is shifted out of the registers HighSum and High-
Carry, starting with the least significant word. These
16 bit words are converted from redundant into binary
representation by a CLA, which requires three clock
cycles.

When the 16 bit binary multiplier word reaches the
Booth recoder circuit, it generates the control signals
for the PPG. The PPG calculates a set of eight partial-
products, which is propagated to the CSA. Booth re-
coding and the distribution of the control signals re-
quires two clock cycles.

Within three clock cycles, the CSA reduces the set of
eight partial-products to a single redundant number.
However, as the CSA is a pipelined circuit, one set of
eight partial-products can be processed each clock cy-
cle.

The output of the CSA is then accumulated to the cur-
rent intermediate sum within one cycle. Now, the least
significant 16 bit of the intermediate sum already rep-
resent a word of the lower part of the product.

A CLA is used again to convert the redundant 16 bit
words of the lower part into binary representation.

6.

Subsequently, the binary words are shifted into the reg-
ister Low, where they finally represent the complete
lower part of the product.

After the last set of eight partial-products has been pro-
cessed, the upper part of the result resides within the
accumulator after three cycles and can be loaded into
the registers HighSum and Highcarry.

Whenever the upper part of the product is needed as operand
for the next multiplication, it can be used as the multiplier
which is allowed to be redundant. The lower part of the
product always appears in binary representation; therefore
it might be used as multiplicand or as multiplier. The fol-
lowing table summaries the operand requirements and ap-
pearance of the product.

I operand 11 representation I schedule
sequentially,

of multiplication
lowerpart /I binary sequentially, 1 ofuroduct w bit words

parallel, end
of multiDlication

I upperpart /I redundant 1
of Droduct

I I 1 I I

The steps needed for a single multiplication depend on the
length of the modulus n and the word-size w on which the
multiplier operates. The actual RSAy prototype has a word-
size of w = 16 and needs exactly 80 clock cycles for a sin-
gle 1024 bit multiplication.

4.3 Execution of a modular multiplication

When applying the square and multiply algorithm, a
modular exponentiation is performed by successive square
and multiply steps. For a square step, the result of the
previous modular multiplication, which resides within the
register Low, acts as both, multiplicand as well as multi-
plier. For a multiply step, the n bit block of data to become
de/encrypted is the multiplicand, and the result of the previ-
ous modular multiplication is the multiplier.

According to the FastMM algorithm presented in sec-
tion 2, a modular multiplication takes place in the following
way:

1. For multiplication 1 of the FastMM algorithm, the (re-
dundant) registers High are loaded from register Low
and register Multiplicand is either loaded from regis-
ter Low (square step) or from register Data (multiply
step). After the multiplication has been performed as

389

E
2
2
3

a

a
n Slices: n / 4 . . . n/2 - 1

Slices: n/4 - 1 . . . 0
b

. . .buffer with one cycle delay

Figure 3. The clocked folding principle.

described in section 4.2, the lower part of the result re-
sides within the register Low and the upper part resides
within the accumulator.

2. For multiplication 2 of the FastMM algorithm, the (re-
dundant) registers High are loaded from the accumu-
lator and register Multiplicand is loaded from register
NI. The multiplication is performed as described in
section 4.2, but without shifting the words of the lower
part result into register Low. Note that only the upper
part of the result from multiplication 2 is needed for
the next multiplication. Register Low still contains the
lower part result of multiplication 1.

3. For multiplication 3 of the FastMM algorithm, the (re-
dundant) registers High are loaded from the accumu-
lator and register Multiplicand is loaded from register
NegN. The multiplication is performed as described in
section 4.2, but the accumulator is initialized with the
lower part result of multiplication 1. Thus, multipli-
cation 3 is performed together with the addition of the
FastMM algorithm. The result of the modular multi-
plication resides within register Low after multiplica-
tion 3.

A modular multiplication for 1024 bit operands requires
227 cycles when it is performed on a PPM with a word-size
o f w = l 6 .

5 Floorplanning and clocked folding

From the viewpoint of floorplanning, the RSAy datapath
shown in figure 2 can be divided into two parts: a regular

part which includes all n bit wide circuits (registers, carry
save adders, partial-product generators, and the accumula-
tor), and a peripheral part which consists of all the other
circuits (CLA, booth recoder, and control logic). Since the
regular part is about 80% of the total chip area, its layout
is subject of detailed optimization. In order to exploit the
regularity of the datapath structure, the regular part is built
of n -t 2w identical copies of a one bit slice. This slice con-
sists of seven 1-bit register cells, eight 1-bit adder cells and
eight 1 -bit partial-product generator cells, including a uni-
form inter-cell routing.
A slice-based layout for the regular part of the RSAy crypto
chip has two significant advantages:

1. The place-and-route procedure needs to be solved
only for a single slice.

2. As all bit positions have a uniform layout, the verifica-
tion process (parasitics extraction, timing simulation,
back annotation) is simplified. If a particular timing is
verified within a single slice, it is also verified in all
other slices.

The slices are supposed to connect by abutment, as also
the routing between the slices is uniform. Since the wire
length of control signals and inter-slice routing grows with
the width of a single slice, narrow slices reduce the total area
demand. Based on a 0 . 6 ~ CMOS process, the slice width is
limited to about 35pm with a corresponding slice length of
about 1 mm, which results in a datapath layout size of about
35*1 mm. Such an aspect ratio would be unacceptable,
because chip packages are most frequently considered for
square shapes. Not only packaging requires a fairly square
shaped chip layout, also the distribution of global signals

390

4
Slices: 3 n / 4 . . . n - 1

b, u

t Y

E Slices: 3 n / 4 - 1 . . . n / 2
b

Fold 1
Slices: n / 4 . . . n / 2 - 1

Fold 0
Slices: n / 4 - 1 . . . O

2

. . .buffer with one cycle delay

Figure 4. Reconfigured multiplier datapath for CRT-based RSA decryption.

(e.g. control signals, output signals of the booth recoder) is
much easier when the layout has an aspect ratio close to 1,
since the corresponding wires are significantly shorter. Also
minimizing the clock skew is very important. Again, delays
due to interconnection must be minimized.

In order to fulfill the requirement for a square shaped lay-
out, a special floorplanning technique termed folding is ap-
plied to the regular part of the RSA7 datapath. The 1056 bit
wide regular part is divided into four folds, whereby each
fold consists of 264 slices, as illustrated in figure 3. Note
that folding can only be applied if the direction of data sig-
nal flow is restricted from more to less significant bit posi-
tions. It is not difficult to see that the components shown in
figure 2 can be arranged in a way to meet this restriction.

But folding has also a serious disadvantage: Transmit-
ting data signals between folds requires long interconnec-
tion wires, therefore buffers have to be inserted to maintain
the increased capacitive load. The additional delay caused
by the buffers and the interconnection wires would compro-
mise the overall performance. This pipeline bottleneck can
be removed by inserting buffers with one cycle delay be-
tween the folds. Since the data signal flow is limited from
more to less significant bit positions, the architecture allows
one cycle delay between subsequent folds. When all data
input signals for fold 2 are provided by fold 3, the control
signals can also be delayed by one cycle, causing calcu-
lations taking place in fold 2 to be delayed by one cycle.
Likewise calculations in fold 1 and fold 0 are delayed by
two and three cycles. The additional delay of three cycles
caused by this clocked folding does not compromise over-
all latency very much. But on the other hand, buffers with
one cycle delay allow much higher clock frequencies than
ordinary buffers.

6 Fast reconfigurable multiplier datapath

For efficient CRT-based RSA decryption, a number of
hardware options to the architecture presented in section 4
are required. As a consequence of the folding technique,
the regular part of the multiplier is already divided into four
parts. So it is obvious to add a second irregular part to get
two n/2 bit multipliers. Each of this n/2 bit multipliers
consists of two folds and one irregular part. By adding mul-
tiplexers to switch between the folds and the irregular parts,
the multiplier is reconfigurable to perform either one n bit
exponentiation or two n/2 bit exponentiations in parallel.
The block diagram in figure 3 represents the multiplier ar-
chitecture if non-CRT based RSA decryptions is selected.
In this case all four folds are needed to execute an n bit
exponentiation. Alternatively, the architecture can be split
into to two multipliers, each consisting of two folds and
one irregular part, as illustrated in figure 4. Note that the
multiplexers to switch between CRT-based and non CRT-
based operating mode are not shown in figure 4. Each of
the n/2 bit multipliers is connected to the same control sig-
nals, causing them running synchronously, except for the
exponents D p , DQ controlling the square and multiply se-
quences (not shown in figure 4). Thus the clocked folding
technique is also very advantageous for the realization of a
reconfigurable multiplier datapath.

Beside a second irregular part and a number of multi-
plexers, also additional storage is required for CRT-based
RSA decryption. The precomputed exponents, the precom-
puted coefficients for Chinese recombination and the prime
decomposition P , Q have to be stored on-chip. Embedded
SRAM provides a low area solution for that purpose. Note
that there is no necessity for additional registers in the mul-

391

tiplier core, as in CRT mode the registers NegN and NI are
also split into two parts, whereby one part stores the pre-
computed constants for modP calculations, and the other
part stores the constants for modQ calculations.

7 Summary of results and conclusions

The subject of this paper was to present efficient algo-
rithms for modular arithmetic and a multiplier architecture
which is optimized for these algorithms. The prototype of
the RSA7 crypt0 chip is designed for a modulus length
of n = 1024 bits and a multiplier word-size of w = 16.
Based on a 0 . 6 ~ standard CMOS process, the silicon area
of the multiplier core is about 70 mm' and contains approx.
1,000,000 transistors, whereby most parts of the chip were
implemented in full custom design methodology. The exe-
cution of a 1024 bit modular multiplication needs 227 clock
cycles. When the multiplier core is clocked with 200 MHz,
this results in a decryption rate of 560 kbit/s. In CRT mode,
the decryption rate increases to 2 Mbit/s. This high perfor-
mance confirms the efficiency of the implemented hardware
algorithms and the multiplier architecture. Furthermore, the
proposed design is highly scalable with respect to the mul-
tiplier word-size as well as the modulus length. The only
limiting factor is the available silicon area. A state-of-the-
art 0 . 2 5 ~ CMOS process would allow to increase the multi-
plier word-size to w = 32, which doubles the performance.
The high regularity of the design makes it attractive for im-
plementation in a full custom design methodology. Another
significant advantage of the architecture is its reconfigura-
bility to execute either one 1024 bit exponentiation or two
512 bit exponentiations in parallel. Thus the CRT-based
RSA decryption increases the performance by a factor of
3.5, with only low additional hardware effort.

References

P. Barrett. Implementing the Rivest, Shamir
and Adleman public-key encryption algorithm
on a standkd digital signal processor. In A.
M. Odlyzko, editor, Advances in cryptology:
CRYPT0 '86: proceedings, volume 263 of Lec-
ture Notes in Computer Science, pp 3 11-323,
Springer-Verlag, Berlin, Germany, 1987.

R. P. Brent and H. T. Kung. A regular layout for
parallel adders. IEEE Transactions on Comput-
ers, C-31(3), pp. 260-264, 1982.

W. Diffie and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Infona-
tion Theory, IT-22(6) pp. 644-654, November
1976.

[Dhe98]

[Knu69]

[Kob94]

[Mac611

J. F. Dhem. Design of an efJicient public-
key cryptographic library for RISC-based smart
cards. Thesis (Ph.D.), Universite catholique de
Louvain, Louvain-la-Neuve, Belgium, 1998.

D. E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, USA, 1969.

N. Koblitz. A Course in Number Theory and
Cryptography, volume 114 of Graduate texts
in mathematics. Springer-Verlag, Berlin, Ger-
many, second edition, 1994.

0. L. MacSorley. High-speed Arithmetic in Bi-
nary Computers. Proceedings of the Institute of
Radio Engineers, 49:67-91, 1961.

[MPPS95] W. Mayerwieser, K. C. Posch, R. Posch, and
V. Schindler. Testing a High-speed Data Path:
The Design of the RSAP Crypto Chip. J. UCS:
Journal of Universal Computer Science, 1(1 1)
pp. 728-744, November 1995.

[MVV97]

[Nat94]

[PP891

[QC821

[Rab961

[RSA781

A. J. Menezes, P. C. Van Oorschot, and S . A.
Vanstone. Handbook of applied cryptography.
The CRC Press series on discrete mathematics
and its applications. CRC Press, Boca Raton,
FL, USA, 1997.

National Institute of Standards and Technology
(NIST). FIPS Publication 186: Digital Signa-
ture Standard. National Institute for Standards
and Technology, Gaithersburg, MD, USA, May
1994.

K. C. Posch and R. Posch. Approaching encryp-
tion at ISDN speed using partial parallel mod-
ulus multiplication. IIG report 276, Institutes
for Information Processing Graz, Graz, Austria,
November 1989.

J.-J. Quisquater and C. Couvreur. Fast decipher-
ment algorithm for RSA public-key cryptosys-
tem. IEE Electronics Letters, 18(21), pp. 905-
907, October 1982.

J. M. Rabaey. Digital Integrated Circuits - A
Design Perspective. Prentice Hall Electronics
and VUZ Series, Prentice Hall, Upper Saddle
River, NJ, USA, 1996.

R. L. Rivest, A. Shamir, and L. Adleman. A
Method for Obtaining Digital Signatures and
Public Key Cryptosystems. Communications
of the Association for Computing Machinery,
21(2) pp. 120-126, February 1978.

392

[Sch96] V. Schindler. A low-power true single phase
clocked (TSPC) full-adder. Proceedings of the
22nd ESSCIRC, Neuchstel, Switzerland, pp.
72-75,1996.

[SV93] M. Shand and J. Vuillemin. Fast Implementa-
tion of RSA Cryptography. Proceedings of 11th
Symposion on Computer Arithmetic, 1993.

C. S. Wallace. A suggestion for a fast multiplier.
IEEE Transactions on Electronic Computation,

[wa164]

EC-13(1), pp. 1617,1964.

[YS89] J. Yuan and C. Svensson. High-speed CMOS
circuit technique. IEEE Journal of Solid-State
Circuits, 24(l), pp. 62-70,1989.

393

