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a b s t r a c t

Reverse logistics or closed-loop supply chains where product returns are integrated with traditional for-
ward supply chains have been one of the major topics of research since about the last one and a half decades.
In this paper, we address the inventory management issue in closed-loop supply chains, and develop deter-
ministic and stochastic models for a two-echelon system with correlated demands and returns under
generalized cost structures. In particular, we address the following questions – Do closed-loop supply
chains cost more than traditional forward supply chains? Does a higher rate of return always translate into
lower demand variability and hence lower expected costs? What is the relationship between expected costs
and correlations between demands and returns? Models developed and numerical examples shown in the
paper reveal that although a higher rate of return and a higher correlation between demand and return
reduce the variability of net demand, it may not necessarily lead to cost savings; rather the movement of
costs will depend on the values of system parameters. We also quantify the cost savings in case the actual
demand and return information is available at the time of decision-making. We conclude the paper by pro-
viding managerial implications and directions for future research.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, since about the last one and a half decades, a lot of
research interest has been shown in reverse logistics (Alamri,
2011; Chan, Yin, & Chan, 2010; Dowlatshahi, 2010a, 2010b;
El-Sayed, Afia, & El-Kharbotly, 2010; Fleischmann et al., 1997;
Kim, Song, Kim, & Jeong, 2006; Lee, Gen, & Rhee, 2009; Mutha &
Pokharel, 2009; Ravi, Shankar, & Tiwari, 2005, 2008; Rubio,
Chamorro, & Miranda, 2008; Tsai & Hung, 2009; Weeks, Gao,
Alidaeec, & Rana, 2010), closed-loop supply chains (Guide & Van
Wassenhove, 2009; Huang, Yan, & Qiu, 2009; Kannan, Haq, &
Devika, 2009; Min, Ko, & Ko, 2006; Morana & Seuring, 2007; Neto,
Walther, Bloemhof, Van Nunen, & Spengler, 2010), sustainable
supply chains (Field & Sroufe, 2007; Geldermann, Treitz, & Rentz,
2007; Linton, Klassen, & Vaidyanathan, 2007; Vachon & Klassen,
2007), and sustainable product design/manufacturing/operations
(El Saadany & Jaber, 2010, 2011; Gungor & Gupta, 1999; Jaber &
El Saadany, 2009, 2011; Jaber & Rosen, 2008; Jayaraman, 2006;
Kleindorfer, Singhal, & Van Wassenhove, 2005; Konstantaras,
Skouri, & Jaber, 2010; Nagel & Meyer, 1999; Rubio & Corominas,
2008; Tseng, Divinagracia, & Divinagracia, 2009; Yan, Chen, &
Chang, 2009). There has been a recent review of the quantitative
ll rights reserved.

hamad Y. Jaber.
models for inventory and production planning in closed-loop sup-
ply chains (Akcali & Cetinkaya, 2011). The literature on production,
manufacture and waste disposal models assumes that an item can
be recovered for an indefinite number of times. This is not true, in
general. See, for example, El Saadany, Jaber, and Bonney (in press),
who address this limitation. A number of edited books have been
published on these subjects (Dekker, Fleischmann, Inderfurth, &
Van Wassenhove, 2004; Dyckhoff, Lackes, & Reese, 2003; Flapper,
Van Nunen, & Van Wassenhove, 2005; Guide & Van Wassenhove,
2003). Also, many special issues of journals have been devoted to
these topics (Interfaces (30 (3), 2000, 33 (6), 2003); California
Management Review 46 (2), 2004; Production and Operations
Management 15 (3 and 4), 2006; Journal of Operations Manage-
ment 25 (6), 2007; Computers & Operations Research 34 (2),
2007; International Journal of Production Research 45 (18 and
19), 2007; International Journal of Production Economics 111,
2008). Although known by different names, the basic idea behind
all these is to integrate product returns with the traditional for-
ward supply chain, which may involve from collection of returns
and design of reverse logistics networks to disposal, product recov-
ery, production scheduling and inventory management with re-
turns, new product design and remarketing of recovered
products (Guide & Van Wassenhove, 2002). Handling end-of-use
or end-of-life product returns by manufacturers has been made
obligatory by many developed countries in North America and Eur-
ope to prevent wastage and pollution. Therefore, it has become
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imperative for manufacturers to design products with recyclable
components as much as possible so that they can extract the max-
imum economic value from product returns. The appropriate
recovery operation will, however, depend on the quality of returns.
Thierry, Salomon, Van Nunen, and Van Wassenhove (1995) classify
product recovery operations into five categories – repair, refurbish-
ing, remanufacturing, cannibalization and recycling – based on the
quality and degree of disassembly of returns. Among these, the
most prominent recovery operation is remanufacturing, which is
particularly useful for products with long technological cycles such
as automobile engines, machine tools and photocopiers. The size of
the remanufacturing industry in the US is estimated between $40
and $53 billion. The cost of remanufacturing is generally 40–60%
(sometimes as low as 20%) of the cost of manufacturing a new
product. However, a remanufactured product is considered to be
‘as good as new’ and sold often with the same warranty but at dis-
counted (as low as 50%) prices either through the same channel as
a manufactured product or through a separate channel (Souza,
2009; Thierry et al., 1995). This provides manufacturers with an
opportunity to turn in profits from returns and simultaneously
build corporate image by projecting ‘‘green’’ and environment-
friendly supply chains.

Inventory management in closed-loop supply chains is much
more complicated than in traditional forward supply chains since
returns are more uncertain than demands in terms of quantity,
quality and timing (Guide, Jayaraman, Srivastava, & Benton,
2000), and also valuation and setting inventory holding costs of
returns are not straightforward (Teunter, Van der Laan, &
Inderfurth, 2000). In addition, correlation between demands and
returns adds another dimension of complexity to such systems.
It may vary from a perfect positive correlation for reparable items
to a fair degree of correlation for short life-cycle products such as
reusable containers (Kelle & Silver, 1989) and single-use cameras
(Toktay, Wein, & Zenios, 2000) to almost no correlation for long
life-cycle products such as durables (e.g. electrical and electronic
equipment). In the literature, it is usually assumed that demands
and returns are independent (Fleischmann & Kuik, 2003; Fleisch-
mann et al., 1997; Mahadevan, Pyke, & Fleischmann, 2003). The
extension of single-echelon closed-loop supply chains to multi-
echelons involving multiple levels of inventory locations further
complicates such systems. Recently, Yuan and Gao (2010) has
developed an inventory-control model for a closed-loop supply
chain with a retailer, a manufacturer, a supplier and a collector
for deterministic demand and return rates allowing no shortages.
Only a handful of references that deal with stochastic multi-
echelon closed-loop supply chains are available in the literature
(DeCroix, 2006; Korugan & Gupta, 1998; Minner, 2001; Muckstadt
& Isaac, 1981; Savaskan, Bhattacharya, & Van Wassenhove, 2004).
Although these papers make valuable contributions to the litera-
ture, they make a number of assumptions, including the indepen-
dence between demands and returns and the non-existence or
non-relevance of some of the costs – set-up, inventory holding
and shortage – at some or all of the stocking points, for the pur-
pose of tractability. Mitra (2009) does address the above cost
issue; however, independence between demands and returns is
assumed in the paper.

The present paper considers a two-echelon closed-loop supply
chain with set-up and inventory holding costs at all the stages and
shortage costs at the stages stocking serviceable inventory. Also,
demands and returns may be correlated (for optimal models using
genetic algorithms for two-echelon inventory systems with corre-
lated demands, readers may refer to Xiong and Sun (2010)). We de-
velop deterministic and stochastic models for such a system. For the
stochastic model, we assume that the system is under periodic re-
view. In particular, we address the following questions in the paper:
� Do closed-loop supply chains cost more than traditional forward
supply chains? In other words, does the incorporation of returns
into the forward supply chain increase the cost of the supply
chain?
� Does a higher rate of return translate into lower demand vari-

ability? Does it mean lower expected costs of the systems under
every situation?
� What is the relationship between the expected costs of the sys-

tem and correlations between demands and returns? Do higher
correlations necessarily mean lower expected costs?
� Given that the availability of information reduces expected

costs (Ketzenberg, Van der Laan, & Teunter, 2006), how can
the savings, in case the actual demand and return information
is available, be quantified so that the savings can be traded off
against the cost of acquisition of information?

The paper is organized as follows. Sections 2 and 3 present the
problem description and model formulations, both deterministic
and stochastic, respectively. Section 4 provides numerical exam-
ples and sensitivity analyses. The case when the actual demand
and return information is available is presented in Section 5. Final-
ly, Sections 6 and 7 present the managerial implications and direc-
tions for future research, respectively.

 

2. Problem description

In this paper, we consider a two-echelon inventory system with
returns. Returns are remanufactured, which are ‘as good as new’
after recovery (100% recovery rate is assumed) and are inter-
changeable with new items that are procured from an outside sup-
plier to meet customer demand from the serviceable stock. It is
assumed that a remanufactured item and a new item are of the
same value, and as such they have the same inventory holding
costs. It is also assumed that a returned item awaiting recovery
is of lower value than an item in the serviceable stock, and hence
has a lower inventory holding cost. The time to remanufacture a
batch of returns is assumed to be insignificant compared to the
time to procure new items from the outside supplier at the corre-
sponding stage. As such, the remanufacturing order is initiated and
realized at the same instant as replenishments from the outside
supplier are realized at the corresponding stage. The simultaneous
replenishment of remanufactured and new items is an assumption
in the problem, which leads to the same cycle length at the corre-
sponding stages. However, in general, the cycle lengths need not be
the same in case of alternate replenishments of remanufactured
and new items, which, of course, is beyond the scope of the system
under consideration in the paper.

We consider set-up costs and inventory holding costs at all the
stages and shortage costs at the stages containing serviceable
stock, and develop deterministic and stochastic models for the sys-
tem. It may be noted here that in a closed-loop supply chain, there
exist many other components of cost such as collection, transpor-
tation, inspection, sorting, recovery, disposal and remarketing.
However, in this paper, we have analyzed the cost structure of
the system from the inventory management point of view, and
restricted to set-up, inventory holding and shortage costs (for
stochastic models only). The objective is to determine the values
of the inventory policy variables (order quantities in case of the
deterministic model, and review periods and order-up-to levels
in case of the stochastic model) at all the stages that minimize
the (expected) total costs of the system. In the stochastic model,
it is further assumed that while demands and returns – both
Normally distributed – in different periods are i.i.d., demand and
return in a given period may be correlated. Also, every return is 
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associated with a demand for the item; in addition, there are fresh
customer demands. Demands generated against returns are not
immediately fulfilled from the serviceable stock. Neither are they
backordered. Rather, they are fulfilled in the next cycle when
remanufactured and procured items replenish the serviceable
stock. Freshly generated demands, on the other hand, are instanta-
neously fulfilled from the serviceable stock if there is adequate
inventory; otherwise, they are backordered and are fulfilled when
replenishments arrive. Photocopiers, which are an ideal item for
remanufacturing (Thierry et al., 1995), taken on lease, may be cited
as an example in this context. Machines that break down are re-
turned to the dealer for remanufacturing. The concerned custom-
ers are quoted a service time until which they have to wait for
the delivery of their machines. The delivered machines may be
the same ones after remanufacturing or new ones procured by
the dealer from the manufacturer. It hardly matters to the custom-
ers since the machines have been taken on lease anyway and they
should not have any issue as long as the machines perform the re-
quired functions to their satisfaction (Souza, 2009). However, if
there are fresh demands for photocopiers, they have to be met
immediately if there is adequate stock. Otherwise, they have to
be backordered and fulfilled as soon as replenishments arrive in
the next cycle. In this case also, fresh demands can be met by either
remanufactured or new machines from the serviceable stock since,
as mentioned before, remanufactured machines are ‘as good as
new’.

More descriptions of the system are provided in the next sec-
tion on model formulation.
2 
Echelon 2 
3. Model formulation

In this section, we first develop an analytic model for a deter-
ministic two-echelon inventory system comprising three stages.
Stages 1 and 2 belong to the lower echelon (echelon 1) and higher
echelon (echelon 2), respectively, and stock serviceable inventory.
On the other hand, Stage 3, which remanufactures returns, belongs
to echelon 1, supplementing the serviceable stock at the corre-
sponding echelon. We derive the total cost (TC) of the system.

Subsequently, we consider the two-echelon inventory system
described above under stochastic demands and returns. The sys-
tem follows a periodic review inventory control policy where at
the beginning of every review period, if the inventory position
(on hand plus on order minus backorder) is less than the order-
up-to level, an order is placed to bring the inventory position to
the order-up-to level. We could also consider a continuous review
inventory control policy. However, a continuous review policy is
more appropriate for fast moving items. Since, in Section 2, we
took the example of photocopiers, which are not so fast moving,
we felt a periodic review policy would have been more appropriate
for modelling the system. However, the application of a continuous
review policy for such systems would be an interesting direction
for future research. We consider two situations based on whether
any shortage at the higher echelon is fulfilled by emergency ship-
ments or allocated to the lower echelon. We develop expected total
cost (ETC) models for the system under consideration.
3 1 

(1-r)Q = Order quantity 

µ = Demand rµ = Returns 

rQ  

Echelon 1 

Fig. 1. Set-up of the inventory system.  
3.1. Deterministic model

This model considers deterministic, stationary and uniform
(uniformly occurring over time) demand and return rates. Since
demand and return rates are stationary and uniform, we develop
infinite-horizon, average-cost inventory models for the systems
under consideration. Had demand and return rates been non-
stationary and lumpy, and the length of the planning horizon
been finite, we would have applied the Wagner–Whitin dynamic
programming algorithm to determine the optimal order quantities
in different periods. Also, the Wagner–Whitin algorithm assesses
holding costs based on residual inventory levels at the ends of
the periods, does not allow shortages and is applicable for solving
deterministic problems only (Silver, Pyke, & Peterson, 1998,
pp. 201–209). However, in this paper, holding costs are assessed
based on the time-average inventory levels and shortages are
allowed for the stochastic version of the problem. The results of
the deterministic model are used to derive the policy parameters
for the stochastic models described in the subsequent sections.

The following notations have been used in model formulation.

 

Ai
 Set-up cost at Stage i (i = 1, 2, 3)

hi
 Inventory holding cost per unit per period at Stage i (i = 1,

2, 3)

l
 Demand per period

r
 Fraction of demand returned per period (0 < r < 1)

Q
 Batch size/order quantity

T
 Cycle length

n
 Integer multiple
The system comprises three stages. Stage 1 in echelon 1 faces
customer demand and Stage 2 in echelon 2 gets supplies from an
outside supplier and caters to the demand of Stage 1. Stage 3,
which recovers returns, belongs to echelon 1 and supplements
the serviceable stock at Stage 1. The system is represented by
Fig. 1.

It is apparent from Fig. 1 that if Q is the batch size at Stage 1, the
cycle length is Q/l. The recovered quantity at Stage 3 in Q/l is rQ.
So, the order quantity with Stage 2 is (1 � r)Q. The order quantity
at Stage 2 with the outside supplier is n(1 � r)Q, where n is an inte-
ger. Fig. 2 shows the inventory diagrams. It may be observed from
Fig. 2 that Stages 1 and 3 have the same cycle length since it is as-
sumed in Section 2 that replenishments of new items from Stage 2
and remanufactured items from Stage 3 at Stage 1 are synchro-
nized and they arrive at the same point in time. However, it is also
mentioned in Section 2 that, in general, had replenishments from
Stages 2 and 3 arrived alternately at Stage 1, the cycle lengths at
Stages 1 and 3 would not have been necessarily the same.

From Fig. 2, it is apparent that the number of set-ups at Stages 1, 2
and 3 will be l/Q, l/nQ and l/Q, respectively. The average
on-hand inventories at Stages 1 and 3 are Q/2 and rQ/2, respectively.

The expression for the average on-hand inventory at Stage 2 can
be derived as follows:

� Area of the triangle in one cycle = 1
2 nð1� rÞQ � nQ

l .
� Area of one small triangle = 1

2 ð1� rÞQ � Q
l. There are n such tri-

angles in one cycle.
� Hence, the area under the on-hand inventory plot in one cycle =



2Q

Stage 2 on-
hand inventory 

Slope = µ/2 

Time
4Q/µ

Time

Stage 1 on-
hand inventory 

Q

Q/µ

Slope = µ

1.5Q

Q

0.5Q

0.5QStage 3 on-
hand inventory 

Time

Q/µ

Slope = 0.5µ

Fig. 2. Echelon and on-hand inventories at Stages 1, 2 and 3 (n = 4, r = 0.5).
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1
2

nð1� rÞQ � nQ
l
� n� 1

2
ð1� rÞQ � Q

l

¼ 1
2

nðn� 1Þð1� rÞQ
2

l

� There are l/nQ cycles in one time period. Hence, Stage 2 aver-
age inventory =
1
2

nðn� 1Þð1� rÞQ
2

l
� l

nQ
¼ 1

2
ðn� 1Þð1� rÞQ :
Following are the expressions for TC(n,Q), and optimal TC, Q, T
and n.

TCðn;QÞ ¼ A1l
Q
þ A2l

nQ
þ A3l

Q
þ 1

2
Qh1 þ

1
2
ðn� 1Þð1� rÞQh2 þ

1
2

rQh3

¼
A1 þ A2

n þ A3

� �
l

Q
þ 1

2
Q ½h1 þ ðn� 1Þð1� rÞh2 þ rh3�

From the Economic Order Quantity (EOQ) formula

Q �ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 A1 þ A2

n þ A3

� �
l

h1 þ ðn� 1Þð1� rÞh2 þ rh3

vuut
and

T�ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 A1 þ A2

n þ A3

� �
l½h1 þ ðn� 1Þð1� rÞh2 þ rh3�

vuut

TC�ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 A1 þ

A2

n
þ A3

� �
l½h1 þ ðn� 1Þð1� rÞh2 þ rh3�

s

Also,

dTC�ðnÞ
dn

¼ 0) n� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2½h1 � ð1� rÞh2 þ rh3�
ðA1 þ A3Þð1� rÞh2

s
ð1Þ

We observe from the above deterministic model (1) that when
r = 0, A3 = 0 and h3 = 0, the closed-form expressions for n⁄, Q⁄ and
T⁄ converge with the respective expressions for a traditional
two-stage inventory system (Silver et al., 1998, p. 480). It may also
be noted that in the above model, TC⁄(n) has been differentiated
with respect to n, relaxing the constraint that n has to be an inte-
ger. If n turns out to be a non-integer, the values of TC⁄(n) will have
to be computed for the immediately higher and lower integers sur-
rounding n, and the integer for which TC⁄(n) gives the lower value
will have to be taken as the optimal value of n. This will ensure the
optimality of n since TC⁄(n) is a convex function in n (Silver et al.,
1998, pp. 517–518).

3.2. Stochastic model

These models consider stochastic, stationary and uniform de-
mand and return rates.

The following notations have been used in model formulation in
addition to those described earlier.

 

Si
 Order-up-to level at Stage i
(i = 1, 2)
ki
 Safety factor at Stage i (i = 1,
2)
li
 Lead time at Stage i (i = 1, 2)

pi
 Shortage cost per unit at

Stage i (i = 1, 2)

fi
 Density function of demand

at Stage i (i = 1, 2)

l
 Mean demand per period

r
 Standard deviation of

demand per period

c
 Standard deviation of

random error per period

/
 PDF of the standard normal

distribution

U
 CDF of the standard normal

distribution

COV
 Covariance

COR
 Correlation
Fig. 1 represents the set-up of the system. Suppose D (�N(l,r2))
and R are the random variables representing demand and return,
respectively, per period where demands and returns in different
periods are i.i.d. but for any given period, demand and return are
correlated given by the relationship: R = rD + e, e (random
error) � N(0,c2). Therefore, COV(D,R) = COV(D,rD + e) = rr2 assum-
ing COV(D,e) = 0. Also, COR(D,R) = COV(D,R)/(r2(r2r2 + c2))1/2 =
rr2/(r2(r2r2 + c2))1/2. Substituting c2 = mr2r2, where m = c2/r2r2,
we can write COR(D,R) = 1/(1 + m)1/2.

Stages 1 and 2 follow periodic review policies and there are n
cycles at Stage 1 for every cycle at Stage 2, i.e. if review is done
every T periods at Stage 1, at Stage 2, review is done every nT peri-
ods. Since the order quantity at Stage 1, i.e. the demand faced by
Stage 2, in any period reflects the demand faced by Stage 1 in
the immediately preceding period, ignoring the short supply from
Stage 2, if any, in the previous period, the net demand per period
faced by Stage 1, and Stage 2, after factoring in returns at Stage 1
can be expressed as D–R or (1 � r)D � e and it can be shown that
D–R � N((1 � r)l, (1 � r)2r2 + c2). As mentioned in the section on
problem description, demands generated against returns are not
immediately satisfied from the serviceable stock. Neither are they
backordered. The concerned customers are rather quoted a service
time equal to the cycle time at Stage 1, T, and the demands are sat-
isfied when the recovered returns replenish the serviceable stock
in the next cycle. However, fresh demands are immediately satis-
fied from the serviceable stock, if available; otherwise, they are
backordered and are satisfied as soon as replenishments arrive.
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Therefore, the following expressions for the order-up-to levels can
be written.

S1 ¼ ð1� rÞlðT þ l1Þ þ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
S2 ¼ ð1� rÞlnT þ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffi
nT
p

It may be noted that since demand, and return, occur uniformly
at Stage 1, protection against uncertainty is required over both the
review period and the lead time, which is reflected in the expres-
sion for the order-up-to level at Stage 1. However, since orders
placed by Stage 1 are at discrete time intervals, demand faced by
Stage 2 is lumpy and therefore coverage required for Stage 2 is
only for the review period, which is why the lead time is missing
from the expression for the order-up-to level at Stage 2 (Mitra &
Chatterjee, 2004).

3.2.1. Emergency shipment
In case there is any short supply from Stage 2, the shortfall is

made up by expediting deliveries to Stage 1 on an emergency basis.
The premium for the expedited delivery reflects the shortage cost
at Stage 2. In other words, there is no backordering at Stage 2,
and it is equivalent to the lost sales case. To determine ETC per per-
iod for the system, the following expressions need to be derived.

� Expected total set-up cost per period at Stages 1, 2 and 3
¼ A1

T
þ A2

nT
þ A3

T

� Expected total cycle stock cost per period at Stages 1, 2 and 3
¼ 1
2
lTh1 þ

1
2
ðn� 1Þð1� rÞlTh2 þ

1
2

rlTh3
� Expected safety stock cost per period at Stage1
¼ h1

Z S1

�1
ðS1 � xTþl1 Þf1ðxTþl1 ÞdxTþl1
where xTþl1 represents net demand during T + l1 periods
� h1k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
ignoring negative net

demand and shortage at Stage 1:
� Expected safety stock cost per period at Stage 2
¼ h2

Z S2

�1
ðS2 � xnTÞf2ðxnTÞdxnT where xnT represents net

demand during nT periods

� h2 k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffi
nT
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffi
nT
p
f/ðk2Þ

�

�k2þk2Uðk2Þg� ignoring negative net demand at Stage 2:
� Expected shortage cost per period at Stage 1
¼ p1

T

Z 1

S1

ðxTþl1 � S1Þf1ðxTþl1 ÞdxTþl1

¼ p1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
f/ðk1Þ � k1 þ k1Uðk1Þg
� Expected shortage cost per period at Stage 2
¼ p2

nT

Z 1

S2

ðxnT � S2Þf2ðxnTÞdxnT

¼ p2

nT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffi
nT
p
f/ðk2Þ � k2 þ k2Uðk2Þg
While the rest of the derivations are straightforward, for the last
three derivations, readers are referred to Hadley and Whitin (1979,
pp. 168–169) and Silver et al. (1998, pp. 720–723).

Therefore, the following expression for ETC per period can be
written.

ETC ¼ A1

T
þ A2

nT
þ A3

T
þ 1

2
lTh1 þ

1
2
ðn� 1Þð1� rÞlTh2

þ 1
2

rlTh3 þ h1k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p

þ h2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffi
nT
p

þ p1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
f/ðk1Þ � k1 þ k1Uðk1Þg þ

p2

nT
þ h2

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffi
nT
p
f/ðk2Þ � k2 þ k2Uðk2Þg ð2Þ

The optimal values of T, n, k1 and k2 may be obtained from (2) by
differentiating and iteratively solving four simultaneous equations.
However, for simplicity, in this paper, we take the optimal values
of T and n from the deterministic model (1) and solve for k1 and
k2 from (2), which is known to work well in models with forward
flows only. The extent of error introduced by this approximation is
checked by simulation in the section on numerical examples. It can
be shown that the optimal values of k1 and k2 may be obtained by
solving the following two equations:

1�Uðk1Þ ¼
h1T
p1

and 1�Uðk2Þ ¼
h2nT

p2 þ h2nT
ð3Þ

 

3.2.2. Allocation
In this case, if there is any shortage at Stage 2, the shortage

quantity is allocated to Stage 1 and is also backordered at Stage
2. As such, there is no separate shortage cost at Stage 2; the effect
of any shortage at Stage 2 is reflected in the possibility of added
shortage costs at Stage 1. In the expression for ETC, the expected
total set-up cost and cycle stock cost per period for Stages 1–3,
and the expected safety stock cost per period at Stage 2 will remain
the same as in (2). However, the expected safety stock cost and
shortage cost per period at Stage 1 are derived as follows.

As Stage 1 will have n cycles for every cycle at Stage 2, it is as-
sumed that the first n � 1 cycles will face no short supply from
Stage 2 whereas if there is any shortage at Stage 2, the shortage
quantity will be reflected in the order-up-to level at Stage 1 in
the last cycle. Therefore, for the first n � 1 cycles, the expected
safety stock and shortage quantity per period at Stage 1 will
remain the same as in (2). However, in the last cycle, depending
on whether there is a shortage at Stage 2 or not, there will be
two expressions for the safety stock at Stage 1. Let xTþl1 and ynT rep-
resent net demands faced by Stage 1 in T + l1 periods and Stage 2 in
nT periods, respectively. The shortage quantity at Stage 2, provided
that there is a shortage at that stage, is given by ynT � S2. Since any
shortage at Stage 2 will get reflected in the order-up-to level at
Stage 1, the effective order-up-to level at Stage 1 in case of a short-
age at Stage 2 will be set at S1 � (ynT � S2) or S1 + S2 � ynT. There-
fore, for the last cycle, the following expression for the safety
stock at Stage 1 can be written:

Safety stock at Stage 1 for the last cycle =
Z ynT¼S2

ynT¼�1

Z xTþl1
¼S1

xTþl1
¼�1
ðS1 � xTþl1 Þf1ðxTþl1 ÞdxTþl1

" #
f 2ðynT ÞdynT

þ
Z ynT¼1

ynT¼S2

Z xTþl1
¼S1þS2�ynT

xTþl1
¼�1

ðS1 þ S2 � xTþl1 � ynT Þf1ðxTþl1 ÞdxTþl1

" #
f 2ðynTÞdynT

The above expression cannot be expressed in a closed form.
Therefore, we make an approximation by substituting the actual
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shortage quantity at Stage 2, ynT � S2, by the expected shortage
quantity, given that there is a shortage at Stage 2, i.e.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffi
nT
p
f/ðk2Þ � k2 þ k2Uðk2Þg

1�Uðk2Þ

Then the above expression simplifies to the following.
Safety stock at Stage 1 for the last cycle =

Uðk2Þ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p� �

þ ½1�Uðk2Þ� k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p� �

where k ¼ k1 �
ffiffiffiffiffiffiffi

nT
Tþl1

q
/ðk2Þ�k2þk2Uðk2Þ

1�Uðk2Þ
.

It was shown by Mitra and Chatterjee (2004) that the approxi-
mation introduced negligible errors in determining the actual ETC,
especially for high shortage cost to inventory holding cost ratios.

The following expression for the expected shortage quantity at
Stage 1 in the last cycle can be written in a similar way by making
the same approximation.

Expected shortage quantity at Stage 1 for the last cycle =

Z ynT¼S2

ynT¼�1

Z xTþl1
¼1

xTþl1
¼S1

ðxTþl1 � S1Þf1ðxTþl1 ÞdxTþl1

" #
f2ðynTÞdynT

þ
Z ynT¼1

ynT¼S2

Z xTþl1
¼1

xTþl1
¼S1þS2�ynT

ðxTþl1þynT�S1 � S2Þf1ðxTþl1 ÞdxTþl1

" #
f2ðynT ÞdynT

� Uðk2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
f/ðk1Þ � k1 þ k1Uðk1Þg

� �

þ ½1�Uðk2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
f/ðkÞ � kþ kUðkÞg

� �

where k is given as above.
Now the corresponding expressions for the safety stock and ex-

pected shortage quantity at Stage 1 have to be weighted in the ra-
tio (n � 1):1 and the following expression for ETC per period can be
written.
ETC ¼ A1

T
þ A2

nT
þ A3

T
þ 1

2
lTh1 þ

1
2
ðn� 1Þð1� rÞlTh2 þ

1
2

rlTh3

þ n� 1
n

h1k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
þ p1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
f/ðk1Þ � k1 þ k1Uðk1Þg

� �

þ 1
n

Uðk2Þ h1k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
þ p1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
f/ðk1Þ � k1 þ k1Uðk1Þg

� �

þ½1�Uðk2Þ� h1k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
þ p1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
f/ðkÞ � kþ kUðkÞg

� �
2
66664

3
77775þ h2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffi
nT
p

ð4Þ
where k is given as above.
As before, the optimal values of T and n can be obtained from

the deterministic model (1). However, it may be difficult to deter-
mine the optimal values of k1 and k2 from (4) in a straightforward
manner. We may, therefore, conduct an exhaustive search on the
Normal table to obtain the values of k1 and k2 that minimize ETC.
4. Numerical examples and sensitivity analysis

We consider the following numerical examples to estimate the
extent of errors introduced by the approximations made in the
models.
l ¼ 100; r ¼ 1;5;10; c ¼ 1;2;3; r ¼ 0:1;0:15;0:2;0:3;0:5
A1 ¼ 25; A2 ¼ 100; A3 ¼ 50
h1 ¼ 2; h2 ¼ 1; h3 ¼ 0:5
p1 ¼ 10;20;50; p2 ¼ 10
l1 ¼ 0:25; l2 ¼ 0:50

The maximum coefficient of variation for D, R and D–R is 0.32,
which means a very insignificant probability of D, R and D–R being
negative. For our convenience, let us denote the models by the fol-
lowing: Model I: Emergency shipment, Model II: Allocation.

For each of the 135 problem instances, for Models I and II the val-
ues of the policy variables (n, T, k1 and k2) are obtained from the
formulas given in the corresponding sections. For example, for
r = 1, c = 1, r = 0.1 and p1 = 10, the values of n, T, k1 and k2 are 1,
1.31, 0.64 and 1.20, respectively, for Model I, and 1, 1.31, 1.10 and
0, respectively, for Model II. Once the values of the policy variables
are determined for each problem instance, the models are simulated
using SLAM II (Simulation Language for Alternative Modelling) for
1000 periods while data collection is started after the first 100 peri-
ods to eliminate the initial bias. Thus we calculate the ETC per period
for each model and for each problem instance. Tables A.1 and A.2 in
Appendix A show the ETC per period for Models I and II, respectively.
Next, we perform an exhaustive search on the possible ranges of the
policy variables, and using SLAM II, determine the combinations of
values of the policy variables that result in the best possible ETC
per period, denoted by ETCbest, for each model and for each problem
instance. ETCbest may not represent the true optimal solution to the
problem, but it should be very close to optimality since it is obtained
by an exhaustive search on the possible values of the policy
variables. Thereafter we compute the per cent error for each model
and for each problem instance by the following formula: ((ETC �
ETCbest)/ETCbest) � 100. We note that the per cent errors increase
with r, and hence reproduce in Table 1 the average and maximum
per cent errors only when r = 10, i.e. when r is the maximum.

It may be observed from Table 1 that the average error is less than
1% and the maximum error is less than 2%, and the data are for r = 10
when the per cent errors are the maximum. Had we included all the

 

problem instances, both the average errors and the maximum errors
would have been significantly lower. Therefore, we may conclude
that the models developed in the paper very closely represent the
behaviour of the actual system and may be used to derive the values
of the policy variables for inventory control.

We also compute the average ETC for different values of r for the
models, which are plotted in Fig. 3.

We observe from Tables A.1 and A.2 and Fig. 3 that the average
ETC first increases and then decreases with r. For r = 0.1 and 0.15,
the value of n is 1, and for r = 0.2, 0.3 and 0.5, the value of n is 2.
From the deterministic model (1), we may verify that when n = 1,
the effective inventory holding cost is h1 + rh3, which will increase
with r. Therefore, ETC may increase with r as long as n = 1, and the
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Fig. 3. Average ETC for different values of r for the models.

Table 1
Average and maximum per cent errors for different models (r = 10).

Model Average error (%) Maximum error (%)

I 0.57 0.87
II 0.87 1.93
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average ETC does increase when r is increased from 0.1 to 0.15.
However, when n = 2, the effective inventory holding cost is
h1 + h2 � r(h2 � h3), which will decrease when r is increased as long
as n = 2 since h2 > h3 based on our assumption that returned items
awaiting recovery are of lower value than items in the serviceable
stock. Therefore, ETC is expected to decrease with increase in r as
long as n = 2, and as a result we observe that the average ETC
decreases when r is increased from 0.2 to 0.5. When n also in-
creases with r (from r = 0.15 to r = 0.2 in this case), which can easily
be verified from the expression of n⁄ in the deterministic model (1),
it will not be possible to make a general comment on the effective
inventory holding cost because it will depend on the parameter
values. The implication of this observation is as follows. From the
discussions in Section 3.2 it is clear that COR(D,R) increases with
r, and as such the variability of net demand, D–R decreases with
increasing r, which intuitively should produce lower expected
costs for higher values of r. However, that may not be always true
as we have just observed. We can also make out from Section 3.2
that COR(D,R) increases, and the variability of D–R decreases, with
decreasing c, and as expected, Tables A.1 and A.2 in Appendix A
show that ETC indeed decreases with decreasing c.

One final observation from Tables A.1 and A.2 is that when we
compare between Model I and Model II, we see that ETC is always
lower for allocation than for emergency shipment for a given set of
values of the parameters, r, r, c and p1. This, of course, need not be
always true and will depend on the parameters. For example, if the
shortage cost at Stage 1 is extremely high compared to the cost of
emergency shipment in case of a shortage at Stage 2, perhaps
emergency shipment will be a more economically viable option
than allocation.
5. Special case: Utilization of actual demand and return
information

The model for this special case is developed for the system de-
scribed in Section 3.2.1. Here it is assumed that demand and return
information as they occur at Stage 1 is available at Stage 2. Stage 2
may utilize the actual demand and return information for the last
T � l2 periods of the last cycle at Stage 1 at the time of placing
orders with the outside supplier. If DT�l2 and RT�l2 represent the
actual demand and return, respectively, at Stage 1 during the last
T � l2 periods of the last cycle, the actual net demand faced by
Stage 2 during this period is DT�l2 � RT�l2 . Therefore, while setting
the order-up-to level at Stage 2, protection is required only for
(n � 1)T + l2 periods. Hence, although the order-up-to level at Stage
1 remains the same as shown in Section 3.2, the order-up-to level
at Stage 2 has to be modified as follows:

S2 ¼ sþ DT�l2 � RT�l2 þ ð1� rÞl½ðn� 1ÞT þ l2� þ k2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1ÞT þ l2

q
where s is the shortfall in supply, if any, to Stage 1 in the previous
cycle

It may be noted that the order-up-to level, S2 at Stage 2 is
dynamic even though demand and return distributions are station-
ary. The following expression for the expected total cost (ETC0) per
period can be derived. For a detailed description of the system and
model formulations for forward flows only, one may refer to Mitra
and Chatterjee (2004).

ETC0 ¼ A1

T
þ A2

nT
þ A3

T
þ 1

2
lTh1 þ

1
2
ðn� 1Þð1� rÞlTh2

þ 1
2

rlTh3 þ h1k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
þ h2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1ÞT þ l2

q
þ p1

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ l1

p
f/ðk1Þ � k1 þ k1Uðk1Þg

þ p2

nT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1ÞT þ l2

q
f/ðk2Þ�k2þk2Uðk2Þg ð5Þ

It may be observed that the optimal values of T and n will re-
main the same as in (2) if the deterministic model (1) is used.
Moreover, the expressions for optimal k1 and k2 will also be the
same as (3). Therefore, the expressions for ETC in Section 3.2.1
and ETC0 can be directly compared to measure the savings in the
event of utilization of actual demand and return information.

ETC� ETC0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2r2 þ c2

q ffiffiffiffiffiffi
nT
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1ÞT þ l2

q� �
h2k2½

þ p2

nT
f/ðk2Þ � k2 þ k2Uðk2Þg

i
It may be observed from the above expression that savings may

be realized due to information availability only when the lead time
at Stage 2, l2 is less than the review period at Stage 1, T.

In addition to the above, suppose the actual return information
in a period is available to Stage 1 before demand for that period
occurs. Given R = R (a constant) for a period, the conditional

distribution of D for that period is given by N lþ CORðD;RÞ�rffiffiffiffiffiffiffiffiffiffiffiffiffi
r2r2þc2
p

�
ðR� rlÞ;r2ð1� COR2ðD;RÞÞ� and the conditional distribution of

net demand D–R for that period is given by N lþ CORðD;RÞ�rffiffiffiffiffiffiffiffiffiffiffiffiffi
r2r2þc2
p

�
ðR� rlÞ � R;r2ð1� COR2ðD;RÞÞ�.

Proposition 1. The variance of net demand at Stage 1 is lower when
the actual return information for a period is available before demand
for that period occurs.

 

Proof. Had the proposition been true, the following would have
held.

ð1� rÞ2r2 þ c2 > r2ð1� COR2ðD;RÞÞ

or ð1� rÞ2r2 þmr2r2 > r2ð1� 1
1þm

Þ

or

ð1� rÞ2 þmr2 >
m

1þm
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which simplifies to

ð1� r �mrÞ2 > 0;

which completes the proof. h

Proposition 1 implies that if the actual return information for a
period is available at Stage 1 before demand for that period occurs,
the average inventory holding and shortage costs of the system
will further reduce. It may be noted that in this case Stage 1 will
also experience dynamic order-up-to levels.
6. Managerial implications

The derivations in the paper and observations from the numer-
ical examples lead to the following managerial implications.

� Incorporating returns in the traditional forward supply chains
may or may not increase the cost of the inventory system under
generalized cost structures. We may observe from the determin-
istic model (1) that when n = 1, the effective set-up and inventory
holding costs for a supply chain with forward flows only are
A1 + A2 and h1, respectively, while for a closed-loop supply chain,
the respective costs are A1 + A2 + A3 and h1 + rh3. Therefore, when
n = 1, a closed-loop supply chain is always costlier than a supply
chain with forward flows only. When n > 1, the effective set-up
and inventory holding costs for a traditional supply chain with
forward flows are A1 þ A2

n and h1 + (n � 1)h2, respectively, while
the corresponding costs for a closed-loop supply chain are
A1 þ A2

n þ A3 and h1 + (n � 1)(1 � r)h2 + rh3. The effective inven-
tory holding cost for a closed-loop supply chain can be rewritten
as h1 + (n � 1)h2 � r[(n � 1)h2 � h3]. Since h2 > h3 as mentioned
before, the effective inventory holding cost for a closed-loop sup-
ply chain is lower than that for a traditional supply chain while
the effective set-up cost of a traditional supply chain is lower
than that of a closed-loop supply chain. Therefore, when n > 1,
whether incorporating returns into the forward supply chain will
increase or decrease the cost of the system will depend on the val-
ues of the parameters. For example, if we consider the following
parameter values: l = 100, r = 0.2, 0.5, A1 = 25, A2 = 100, A3 = 5,
h1 = 2, h2 = 1 and h3 = 0.5, for a traditional supply chain without
returns, n = 2 and TC = 212.13. On the other hand, for a closed-
loop supply chain, when r = 0.2, n = 2 and TC = 215.41, and when
r = 0.5, n = 3 and TC = 202.90. Therefore, we observe that when
n > 1, whether a closed-loop supply chain will cost lower than a
traditional forward supply chain will depend on the parameter
values. Following the above arguments, it may be concluded that
in reverse supply chains, the focus of managers should be on
recovering the economic value of returns as far as possible to
boost profitability, adhering to rules and regulations imposed
by appropriate authorities in connection with returns manage-
ment and building a socially responsible corporate image.
� If demand and return in a period are correlated, the variabil-

ity of net demand may decrease. However, implementation
of the same especially in the presence of set-up costs is
not straightforward. It requires that demands generated
against returns are not instantaneously met even if there
are serviceable units in the stock; rather the concerned cus-
tomers are quoted a service time equal to the cycle time of
the stage. In other words, demands generated against returns
are never backordered and they are satisfied in the next
cycle when returns are recovered and replenish the service-
able stock. On the other hand, freshly generated demands
are met from the serviceable stock, if possible; otherwise,
they are backordered and are satisfied when fresh stocks
arrive. If one wishes to do away with all these constraints
on implementation of correlated demands and returns, one
has to model the system assuming that demands and returns
are independent random variables, which is the assumption
made by the majority of the papers dealing with inventory
systems with returns.
� When the rate of return increases, the correlation between

demand and return increases and the variability of net demand
decreases. However, in contrast to our intuition, the expected
cost of the system may actually not decrease. We have shown
in the paper that the expected cost of the system decreases with
the rate of return only when n > 1. Managers need to realize that
correlations between demands and returns may not always lead
to cost reduction.
� We have also compared between emergency shipment and

allocation in case of a shortage in the higher echelon. In our
experimental set-up, it is observed that allocation always
results in lower expected costs than emergency shipment.
However, we note that this is not true in general and the out-
come will depend on the parameter values such as the holding
cost and shortage cost ratios. For example, if the system deals
with critical components with high service levels, probably
emergency shipment will be preferred to allocation. On the
other hand, for not-so-critical components, maybe allocating
the shortage at the higher echelon to the lower echelon would
suffice.
� It is also observed that utilization of actual demand and

return information in deriving the values of the policy vari-
ables does lead to cost savings. Moreover, if the return infor-
mation is available to Stage 1 before demand for that period
occurs, the variability of net demand further reduces for a
given rate of return leading to further reduction in holding
and shortage costs. The implications for managers would be
capturing the relevant information and making use of it,
and also dealing with dynamic order-up-to levels at the
respective stages despite facing stationary demand and return
distributions.

7. Directions for future research

In this paper, we developed deterministic and stochastic models
for a two-echelon closed-loop supply chain with correlated
demands and returns under generalized cost structures. The inte-
gration of returns with traditional forward supply chains compli-
cates the analysis of such systems to a great extent. Therefore,
for tractability, a number of assumptions are made in the literature
on closed-loop supply chains. Nevertheless, efforts should be made
to develop models for more general multi-echelon inventory sys-
tems with returns that provide near-optimal, if not optimal, solu-
tions to such problems. Simulation, in this context, may come in
handy when developing models for systems comprising multiple
levels with practical considerations turns out to be extremely dif-
ficult. Simulation also helps in scenario analysis. We assume in the
paper that demands and returns in different periods are indepen-
dent; however, demand and return in a given period may be corre-
lated. It may be noted that in a set-up with returns, lagged
correlations between demands and returns are very much relevant,
and we expect to address the issue in future research. Also, it is as-
sumed that demands and returns are Normally distributed. Models
should be developed for other continuous (Gamma, Log-Normal,
etc.) and discrete (Poisson, etc.) distributional assumptions. Locat-
ing recovery operations in the higher echelon would be another
interesting case worth considering (Mitra, 2009). Finally, a holistic
approach by integrating inventory management with revenue
management and vehicle routing with backhauling, for example,
might be a relevant direction for future research in closed-loop
supply chains.

 

 



Table A.1
ETC for Model I for different values of r, r, c and p1.

r p1 r = 1 r = 5 r = 10

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

0.1 10 274.63 278.90 283.62 291.06 292.64 295.08 313.43 314.26 315.60
20 275.91 280.98 286.60 295.44 297.32 300.21 322.03 323.01 324.61
50 277.32 283.28 289.88 300.27 302.49 305.89 331.53 332.68 334.56

0.15 10 276.09 280.42 285.18 291.45 293.12 295.66 312.54 313.41 314.83
20 277.33 282.48 288.13 295.58 297.56 300.58 320.64 321.68 323.36
50 278.70 284.74 291.38 300.14 302.46 306.01 329.56 330.78 332.76

0.2 10 275.94 280.50 285.46 290.77 292.59 295.35 311.32 312.28 313.84
20 276.91 282.13 287.81 293.90 295.98 299.14 317.43 318.53 320.31
50 278.01 283.98 290.47 297.43 299.81 303.42 324.34 325.60 327.63

0.3 10 273.30 277.99 283.01 285.94 287.98 291.00 303.85 304.94 306.70
20 274.23 279.61 285.37 288.71 291.06 294.52 309.25 310.50 312.51
50 275.29 281.44 288.02 291.85 294.53 298.49 315.34 316.77 319.07

0.5 10 268.05 272.98 278.10 276.28 278.94 282.61 288.86 290.35 292.68
20 268.91 274.56 280.44 278.35 281.40 285.62 292.77 294.49 297.16
50 269.88 276.35 283.08 280.68 284.18 289.00 297.20 299.16 302.22

Table A.2
ETC for Model II for different values of r, r, c and p1.

r p1 r = 1 r = 5 r = 10

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

0.1 10 272.38 275.23 278.38 283.35 284.40 286.03 298.28 298.83 299.73
20 273.75 277.47 281.58 288.05 289.43 291.55 307.52 308.24 309.41
50 275.26 279.92 285.08 293.21 294.94 297.60 317.65 318.55 320.02

0.15 10 273.90 276.79 279.97 284.16 285.28 286.97 298.25 298.84 299.78
20 275.23 279.00 283.13 288.60 290.04 292.25 306.94 307.70 308.93
50 276.69 281.42 286.61 293.46 295.27 298.04 316.47 317.42 318.97

0.2 10 273.75 276.82 280.16 283.73 284.96 286.81 297.56 298.21 299.26
20 274.92 278.79 282.99 287.50 289.04 291.38 304.93 305.74 307.06
50 276.19 280.92 286.07 291.58 293.47 296.33 312.91 313.90 315.51

0.3 10 271.21 274.35 277.72 279.68 281.05 283.08 291.70 292.44 293.61
20 272.34 276.32 280.58 283.05 284.79 287.35 298.25 299.18 300.67
50 273.55 278.43 283.64 286.68 288.80 291.94 305.30 306.43 308.25

0.5 10 266.11 269.41 272.84 271.62 273.40 275.86 280.03 281.03 282.59
20 267.16 271.35 275.70 274.15 276.41 279.53 284.82 286.09 288.07
50 268.28 273.42 278.74 276.85 279.62 283.44 289.94 291.49 293.92
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