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Abstract: The Internet of Things (IoT) technology enables physical devices to communicate with each other for
preparing, gathering, and sharing hazard warnings or critical information without human intervention. With respect
to emergency applications of IoT technology, an essential issue is to provide an efficient and robust scheme for data
gathering. The proposed solution in the existing approaches is to construct a spanning tree over the IoT devices and
collect data using the tree. The shortcoming of these algorithms is that they do not take into account the probability
of device mobility or failure. In such cases, the spanning tree is split, and it becomes impossible to deliver critical
data to the base station on time. In this paper, we propose a reliable spanning tree construction algorithm, which is
called reliable spanning tree construction in IoT (RST-IoT). Our algorithm utilizes the artificial bee colony algorithm
to generate proper trees. In this method, hop count distances of the devices from the base station, residual energies
of the devices, and their mobility probabilities are considered to measure the appropriateness of the trees. Moreover,
the proposed algorithm generates a number of trees instead of a single one. These trees are arranged according to
their preferences and used for data gathering in succession. Each tree is employed for data gathering upon splitting
the preceding one. The simulation results show that RST-IoT improves the reliability of data gathering in emergency
applications compared to the previous approaches.
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1. Introduction
The Internet of Things (IoT) is a novel paradigm that considers the interaction of smart things. The main idea
of IoT is that smart things or objects, such as sensors, actuators, smart phones, and RFID tags, are spread
everywhere ubiquitously. These devices have interactions with each other and are able to collect and exchange
data. The IoT paradigm covers a broad range of applications, comprising environmental monitoring [1, 2],
transportation services, smart cities [3], emergency situation explorers, and industrial processes controllers [4].

Reliable data gathering is an important issue to support emergency applications under IoT technology.
The devices send the critical information to the base station for processing and decision making. Furthermore,
the base station sends some commands to the devices under its control [5, 6]. Transferring important data over
the network requires a reliable backbone. The common approach for data gathering in IoT systems is to construct
a spanning tree over the available devices [7–11]. The drawback of the existing algorithms is the unreliability of
their generated trees. This shortcoming is mostly due to their failure in considering the characteristics of IoT
devices. These devices are usually mobile and equipped with low-power batteries. Therefore, it is possible that
the spanning tree is split because of the mobility of some devices or their energy exhaustion.
∗Correspondence: l.farzinvash@tabrizu.ac.ir
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In this paper, we propose a novel method for constructing spanning trees among IoT devices, namely
reliable spanning tree construction in IoT (RST-IoT), which increases the reliability of data gathering. For this
purpose, the algorithm takes into account the common features of IoT devices. The considered criteria for tree
construction are hop count distances of the devices from the base station and their residual energies. Moreover,
as stated in [12], IoT devices have certain mobility patterns over time. Therefore, mobility probabilities of devices
are also taken into account in this work. It is worth mentioning that all of the above-mentioned measures are
important to construct proper trees. For example, as shown in the simulation results, the resultant spanning
trees are more proper when incorporating all of the criteria in comparison with the scenario that only the hop
count distance measure is taken into account.

Constructing optimal spanning trees over devices is an NP-hard problem [13]. Swarm intelligence
algorithms are appropriate methods in solving such optimization problems [14]. Therefore, we employ the
artificial bee colony (ABC) algorithm for tree construction. The considered criteria, comprising hop count
distances of the devices from the base station, mobility probabilities of devices, and their residual energies, form
the objective of the proposed algorithm. In the resultant trees, the internal nodes are more resident and have
more energy. Therefore, the lifetime and the reliability of the obtained trees are increased. Furthermore, the
algorithm generates a number of trees instead of a single one. These trees are sorted according to the amount
of their properness. First, the most proper tree is employed for data gathering. After splitting this tree, the
next most proper tree is used. This procedure continues until all trees are exhausted. Then the algorithm is
reexecuted for the next period. In summary, the major contributions of this work are stated as follows:

• We propose a new algorithm for spanning tree construction in IoT systems using the ABC algorithm. Al-
though the problem has previously been studied in [8], it did not address network reliability. Furthermore,
the mentioned work proposed heuristic schemes to tackle the problem, which yields less performance in
comparison to swarm intelligence-based approaches.

• We enhance the reliability of data gathering using the most effective criteria, comprising the hop count
distances of the devices from the base station, mobility probabilities of the devices, and their residual
energies. These criteria are employed by the ABC algorithm to construct appropriate trees.

The rest of this paper is organized as follows. Section 2 reviews the related work on the intended problem.
The network model is presented in Section 3. In Section 4, the RST-IoT algorithm is discussed, and its features
are explained using a practical example. Moreover, we compare the proposed method with previous algorithms
in different scenarios in Section 5. Finally, the paper is concluded in Section 6.

2. Related work
The studies related to our work are categorized into two groups. The first group comprises routing algorithms
among IoT devices, which have not used a tree structure [12, 15–27]. These approaches considered various
measures such as reliability and energy efficiency. The second category is the tree-based schemes, which provided
a backbone tree for data transmission to the base station in IoT systems [7–11].

Reliable data routing in IoT was investigated in [12, 15–17]. These works considered different criteria, such
as device mobility and link reliability, to select the best routes for data transmission. In [12], the authors studied
the mobility of the devices and found that IoT devices have certain mobility patterns over time. Therefore, it
is possible to predict the mobility of each device according to its history. Ali et al. [15] designed a stochastic
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routing algorithm for IoT systems. In this scheme, the authors modeled the network as an absorbing Markov
chain to compute the expected delivery ratio and delay. Accordingly, the transmission probability of each link
is computed based on the local information. The shortcoming of this approach is the probability of choosing
improper paths for data transmission. To provide reliability, the proposed scheme in [16] established backup
routes for the nodes. These routes are used for data transmission in the case of primary route failure.

The cross-layer routing scheme was examined in [18], in which different layers cooperate with each other
to enhance the performance. This work proposed a mathematical model to select optimal paths among IoT
devices. Moreover, physical and link layer parameters such as power levels of the links and the maximum number
of required retransmissions are derived from this model. The authors noticed that if the link cost is defined
consistent with the objective function, solving the model is equivalent to finding the shortest paths among the
devices. Accordingly, they proposed a heuristic algorithm to establish a route between two devices in a short
time. In the proposed scheme, the sender initially generates a route request packet. This packet is transmitted
toward the base station in a multihop fashion. The base station has some knowledge about the network and
selects the least-cost path among the IoT devices. This study focuses on finding the best route and does not
adopt backup routes. Therefore, it is vulnerable to device mobility and link failure.

The proposed algorithm in [19] also provided a cross-layer solution for efficient data delivery. The MAC
layer is assumed to be TDMA, where a randomization technique is used for scheduling. To this end, the
time is divided into a number of frames. The IoT devices compete to get the channel in each frame. This
technique diminishes collision considerably. Moreover, it does not require rescheduling if the routing paths are
changed. The routing layer of the algorithm employs a bioinspired technique to forward packets toward one of
the available base stations. The devices drop some pheromone on the data transmission paths. This behavior
constructs pheromone trails, which have the highest concentrations nearby the base stations. To perform data
transmission, each device sends its packets to the neighbor with the most pheromone. As the closer devices to
the base stations have more pheromone, the packets are delivered to the closest base station after a number of
iterations. However, this algorithm is not able to support device mobility due to its slow convergence speed.

Energy-efficient data gathering in IoT systems was examined in [20–25]. Rani et al. [20] proposed a
multitier framework, in which the nodes in each tier are responsible for collecting the data of the lower one. The
nodes of the first tier monitor the environment and transmit the sensed data to the second one. This procedure
continues until all the data reach the uppermost tier, which comprises a number of base stations. To diminish
energy consumption, the nodes of the second tier act as cluster heads and aggregate the sensed data. The
authors modeled the problem of determining the nodes of each tier as an optimization problem and proved its
NP-hardness. Next, they proposed an efficient heuristic algorithm to tackle the problem. To diminish energy
consumption, the proposed algorithms in [23–25] exploited the similarity of the sensed data by the sensors.
In [23], the nodes send the current sensed data toward the base station if the difference from the previously
sent data exceeds a predefined threshold. In the scheme proposed by Jin et al. [24], the correlated data are
routed to common relay nodes. This raises the possibility of performing data aggregation. Hence, the amount
of transmitted data and the energy consumption are decreased.

Debroy et al. [26] investigated the device-to-device routing problem in cognitive IoT networks. To fairly
manage concurrent device-to-device communications, the authors proposed an evolutionary game-based path
construction algorithm. The proposed scheme considers the channel availability to maximize the end-to-end
data transmission rate. In addition, it adjusts the transmission power in each node to increase the transmission
rate while interference is kept at an acceptable level. Zhong et al. [27] also studied cognitive IoT networks. This
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work exploited opportunistic routing for data transmission. In this scheme the forwarder nodes are selected
dynamically based on a number of criteria per packet. The considered measures for forwarder node selection in
[27] are channel availability and the amount of required energy for data transmission.

In the rest of this section, we analyze the existing tree construction schemes for IoT systems. In the
proposed algorithm in [8], the spanning tree is constructed in some rounds. Initially, the spanning tree contains
only the base station. The base station broadcasts control packets to its neighbors. These nodes select the base
station as their parent. In the next round, IoT devices repeat the same procedure and announce their presence
in the tree by broadcasting control packets. The nontree devices that receive these packets select their parents
and join the tree. This procedure continues until the tree is completed. It is possible that a nontree device
receives two or more control packets. In this case, the most appropriate device is selected as the parent. The
measures to evaluate the properness of a parent are the number of children, residual energy, and hop count
distance from the base station. More specifically, it is preferred to select a parent with fewer children and more
residual energy that is closer to the base station.

Tang et al. [9] proposed a hierarchical algorithm for spanning tree construction. In this scheme, the
network is partitioned into a number of cells. Next, some cells are grouped into a subregion. The upper-
level subregions are formed similarly. This procedure continues until the hierarchical tree is completed. This
approach is developed to support spatial range queries. To diminish the energy consumption, each device reports
its sensed data to the base station only if its difference from the previously reported data is discernible. The
proposed algorithm in [10] also constructed a hierarchical spanning tree for processing spatial range queries.
These algorithms were aimed at efficient processing of spatial range queries while failing to consider network
reliability. Li et al. [11] also employed a spanning tree for data collection. This work assumed that the tree is
given in advance, and its concern was to provide a proper data transmission schedule such that delay requirement
is preserved. In some applications, it is sufficient to disseminate messages to a specific subset of nodes. In this
case, a multicast tree is constructed among the base station and the mentioned nodes [28].

3. The proposed model

The underlying IoT is modeled as an undirected graph G = (V, E) . In the intended setting, V represents the
set of the network nodes comprising devices and the base station, and E denotes the set of the links between
the nodes. Furthermore, each node ni has two main properties:

• pi : IoT devices are almost moving randomly. The mobility probability of the devices can be predicted
according to their histories [12]. The mobility probability of ni , namely pi , is a random number within
the range of [0,1]. The mobility probability of the base station is set to 0. In other words, it is assumed
that this node has no mobility.

• ei : This variable shows the residual energy of ni . The energy of the base station is assumed to be
unlimited.

In the proposed algorithm, it is assumed that K spanning trees are constructed over the network.
Spanning tree tk has the following features, which are used in the proposed algorithm:

• mpk : As stated before, the mobility probability of internal nodes is an effective criterion on the reliability
of spanning trees. In the proposed algorithm, the most resident devices are selected as the internal nodes
in order to increase the reliability of the trees. Each internal node ni has some children over tk , where
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the number of children is shown by chk
i . The internal nodes with more children play more important

roles in the data gathering procedure. Therefore, the number of children of the internal nodes should be
considered as an effective factor. Accordingly, the mobility probability of tk (i.e., mpk ) is defined as:

mpk =
∑
ni∈V

(chk
i + 1) pi. (1)

To clarify the concept of mp -variable, in the following we compute mp of the proposed example in Figure
1a. A sample spanning tree for this configuration is given in Figure 1b. Using Eq. (1), the mp -variable
of this tree is derived as follows:

mpk = 4 p0 + p1 + p2 + 4 p3 + p4 + p5 + p6 + 3 p7 + p8 + 2 p9 = 9.68. (2)

n8 (0.72, 12)

n1 (0.06, 12)

n3 (0.54, 4)

n5 (0.45, 4)

Base Station (n0)(0, 20)

n9 (0.64, 6)

n6 (0.65, 10)

n4 (0.83, 18)

n7 (0.97, 20)

n2 (0.53, 10)

n8 (0.72, 12)

n1 (0.06, 12)

n3 (0.54, 4)

n5 (0.45, 4)

Base Station (n0)(0, 20)

n9 (0.64, 6)

n6 (0.65, 10)

n4 (0.83, 18)

n7 (0.97, 20)

n2 (0.53, 10)

(a) The intended network. (b) A sample spanning tree.

Figure 1. An example IoT network. The p - and e -variables of the nodes are illustrated in the figure.

• erk : The other important factor to increase the robustness of the spanning trees is to select the nodes
with more energy as the internal nodes. Considering the above discussion about the mp -variable, the
ch -variables of the internal nodes are effective on the reliability of the spanning trees. Therefore, the
residual energy of tk , namely erk , is defined as:

erk =
∑
ni∈V

(chk
i + 1) ei. (3)

The er of the depicted tree in Figure 1b is computed in Eq. (4):

erk = 4 e0 + e1 + e2 + 4 e3 + e4 + e5 + e6 + 3 e7 + e8 + 2 e9 = 214 J. (4)

• hck : This criterion presents the total hop count distances of the devices from the base station and is
formulated as:

hck =
∑
ni∈V

hk
i , (5)

1714



NAJJAR-GHABEL et al./Turk J Elec Eng & Comp Sci

where hk
i denotes the hop count distance of node ni from the base station over tk . Although this measure

does not impact reliability, it is important to reduce the data collection delay and improve the lifetime.
Therefore, this criterion is also considered in the tree construction algorithm.

The hc of the illustrated tree in Figure 1b is equal to 16 and is calculated as follows:

hck = hk
1 + hk

2 + hk
3 + hk

4 + hk
5 + hk

6 + hk
7 + hk

8 + hk
9 = 16. (6)

The utilized notations in the intended model are listed in Table 1.

Table 1. The list of utilized notations in this paper.

Definitions Symbols
V Set of the nodes comprising IoT devices and base station
E Set of the network links
ni The ith node of V
pi Mobility probability of ni

ei Residual energy of ni

K Number of spanning trees
tk The kth spanning tree
chk

i Number of children of ni over tk
mpk Total mobility probability of tk
erk Total residual energy of tk
hk
i Hop count distance of ni from the base station over tk

hck Total hop count distance of tk
|.| Size of a given set

4. Reliable tree-based data gathering in IoT
In this section, we explain the proposed approach for reliable tree construction in IoT systems. The algorithm
constructs a set of reliable spanning trees for data gathering. First, data gathering is performed over the most
proper tree. This tree remains operational until one of its internal devices moves or runs out of energy. In
this case, the tree is split and data gathering is interrupted. Therefore, the next most proper spanning tree is
employed. This procedure continues until all trees are utilized. The rest of this section is organized as follows.
We briefly explain the ABC algorithm in Section 4.1. Next, the RST-IoT algorithm is expounded using an
illustrative example in Section 4.2.

4.1. ABC algorithm
In the proposed algorithm, we employ the ABC algorithm for tree construction. The advantage of this method
is that it does not require parameter setting. Moreover, it has been shown that this approach yields better
performance in comparison to other swarm intelligence algorithms such as the genetic algorithm (GA) and
particle swarm optimization (PSO) [29, 30]. This optimization algorithm is based on the intelligent behavior of
bees for food collection. A bee colony contains three types of bees:

• Employed bee: An employed bee is currently employed at a specific food source to exploit it.

• Onlooker bee: The bees that find a proper food source based on the information given by the employed
bees.
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• Scout bee: These bees search the environment randomly to find a new food source.

The ABC algorithm is designed according to the communications of the bees to find the best food
sources. In this algorithm, the position of a food source denotes a possible solution of the optimization problem.
Moreover, the nectar amount of a food source is equivalent to its quality. The steps of the algorithm are briefly
described as follows:

1. Initialization: In order to solve the optimization problems using the ABC algorithm, an initial population
is generated randomly. Each member of this population is a possible solution (food source position) for
the optimization problem. Moreover, the number of employed bees is equal to the size of the population.

2. Employed bee phase: After generating the initial population, the food source positions (solutions) are
updated in some rounds. An employed bee modifies the position of a food source (solution) in her memory
using the local information and checks the nectar amount (quality) of the new source (new solution). If
the nectar amount increases by this modification, the bee remembers the new position (new solution).

3. Onlooker bee phase: The employed bees share the information of the food sources, comprising their
positions and nectar amounts, with the onlooker bees. Each onlooker bee selects a food source with a
probability, which is computed using the nectar amounts of the sources. Similar to the previous phase,
each onlooker bee makes a modification of the position of the selected food source (solution), considering
the local information, and tests the nectar amount (quality) of the new source (solution). If the nectar
amount of the new source is more than that of the old one, the bee remembers the new position (new
solution).

4. Scout bee phase: The scout bees search the environment to find new food sources (solutions) randomly
and substitute them for the abandoned ones. In other words, these bees replace a predetermined number
of food sources (solutions) with worse nectar amounts by random new food sources (solutions).

4.2. RST-IoT algorithm
Algorithm 1 illustrates the proposed algorithm, which customizes the ABC algorithm to solve the spanning tree
construction problem. In the proposed scheme, K random spanning trees are constructed in the initialization
phase. The other phases are repeated with maxIT iterations to find proper trees. In this context, cIt displays
the number of the current iteration. The resultant trees of each phase form the current solution space, which is
denoted by csl . The final solution space, namely fsl , is derived after the execution of the algorithm. Moreover,
the nectar amount of tk is shown by nck , and NC is a vector of size K that maintains nc -variables of the
trees. The steps of the proposed algorithm can be explained as follows:

1. Initialization: In this phase, K spanning trees are constructed over the network. These trees form the
initial solution space of the ABC, which is denoted by isl . Tree tk is modeled using a binary array of
length |E| . The corresponding elements to the tree links are set to 1. To construct tk , |V | − 1 elements
of the array are randomly chosen and set to 1. Other elements are filled with 0, meaning that their
corresponding links are not included in tk . In the proposed scheme, it is possible that the selected links
form a loop. Therefore, the procedure should be repeated until a tree is obtained.

2. Employed bee (first phase of Algorithm 1): After generating initial trees, the employed bees reorganize the
trees in the hope of finding more proper ones. To update tk , an employed bee modifies its corresponding
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array and exchanges a pair of 0- and 1-value elements. The bee remembers the new tree if its nectar
amount is more than the old one. Similar to the initialization phase, tree reorganization may lead to loop
formation. Therefore, the employed bees should repeat tree reorganization until no loop exists in the new
solution.

3. Onlooker bee (second phase of Algorithm 1): The aim of employing onlooker bees is to improve the quality
of worse trees in a probabilistic manner. In other words, the trees with less nectar should be selected with
a higher probability. Therefore, the probability of selecting tk , namely selk , is defined as:

selk =
sbk∑K

m=1 sbm
, (7)

where sbk denotes the suitability of tk and is computed as:

sbk =

K∑
m=1

ncm − nck. (8)

Each onlooker bee adopts a spanning tree using a roulette wheel selection (RWS) mechanism. The onlooker
bee modifies the selected tree with the hope of increasing its nectar amount. For this purpose, it selects
a random pair of 0- and 1-elements from the corresponding array to the tree and flips their values. The
onlooker bee remembers the new tree as the solution if it increases the nectar amount compared to
the old one. It is worth mentioning that the loop preservation condition is checked after applying the
modifications. If a loop is formed as a result of tree reorganization, the onlooker bee repeats the mentioned
operation until a loop-free tree is established.

4. Scout bee (third phase of Algorithm 1): Some trees do not have enough nectar and should be abandoned.
Therefore, in this phase, the scout bees consider the nectar amounts of the trees and replace the trees
with low nectar amounts with new random ones.

Input: Graph G = (V, E) .
Output: fsl .

1. [isl] = Initialization(G) .
2. cIt ← 0 .
3. csl ← isl .
4. for cIt = 1 to maxIt do
5. [csl, NC] = Employed bee(G, csl, NC).

6. [csl, NC] = Onlooker bee(G, csl, NC).

7. [csl, NC] = Scout bee(G, csl, NC).

8. end for
9. Sort the trees in csl according to their nc -variables.

10. fsl ← csl .
Algorithm 1: Spanning tree construction.

The remaining point is to compute nck . To solve multiobjective problems with the ABC algorithm, the
weighted sum of the chosen criteria is considered as the nectar amount of a given solution. In the intended
problem, our aim is to increase the reliability of the trees. Spanning tree tk is split if its internal nodes do

1717



NAJJAR-GHABEL et al./Turk J Elec Eng & Comp Sci

not work properly, which occurs if these nodes move or their energies are exhausted. Therefore, the criteria
to evaluate the appropriateness of tk are mpk , erk , and hck . More specifically, nck is defined as the linear
combination of these criteria in such a way that mpk and hck are minimized, while erk remains as high as
possible. This variable is described as follows:

nck = w1

(
1 − mpk − mpMin

mpMax − mpMin

)
+ w2

(
erk − erMin

erMax − erMin

)
+ w3

(
1 − hck − hcMin

hcMax − hcMin
,

)
where

mpMax = max1≤k≤K mpk,

mpMin = min1≤k≤K mpk,

erMax = max1≤k≤K erk,

erMin = min1≤k≤K erk,

hcMax = max1≤k≤K hck,

hcMin = min1≤k≤K hck.

(9)

In this equation, mpMin , mpMax , erMin , erMax , hcMin , and hcMax are used to normalize the
phrases and keep them at the same level. In addition, w1 , w2 , and w3 are the corresponding weights to mobility
probability, residual energy, and hop count distance measures.

To clarify the proposed algorithm, we apply it to the presented tree in Figure 1b. The corresponding
array to this tree is depicted in Figure 2. The elements of this array indicate the presence of links (n1, n2) ,
(n2, n5) , (n3, n5) , (n2, n3) , (n1, n3) , (n0, n3) , (n3, n4) , (n0, n4) , (n5, n6) , (n6, n9) , (n7, n9) , (n6, n7) ,
(n0, n7) , (n7, n8) , (n0, n8) , (n0, n5) , and (n5, n7) in the network. The amounts of corresponding elements to
the depicted tree in Figure 1b are set to 1. The nectar amount of the considered tree is equal to 0.46.

0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0

Figure 2. The corresponding array to the given tree in Figure 1b.

After the accomplishment of the tree construction procedure, a number of trees are derived. Figure 3
presents two most suitable trees for the proposed configuration in Figure 1a.

5. Performance analysis

In this section, we compare the achieved performance by RST-IoT against two schemes. The first one is the
proposed algorithm in [8], which is called ETSP. In the second approach, named HCT-IoT, we modify our
algorithm and only consider the hop count distance as the performance measure. As RST-IoT and HCT-IoT
employ the ABC algorithm, the resultant trees may differ in various runs. To reduce the variance of the results,
these algorithms are executed 50 times and the average is considered as the outcome. The algorithms are
implemented using MATLAB.

The dimensions of the simulation environment are 120m × 120m , where 20 devices are scattered
randomly over the monitoring area. The devices are assumed to be heterogeneous; that is, their initial energies
and mobility probabilities are not identical. The mentioned criteria are selected within the ranges of [1 J − 20 J ]
and [0 − 1 ], respectively. To implement node mobility, the time domain is divided into equal-sized slots. In
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(a) The most suitable tree. (b) The second most suitable tree.

Figure 3. The generated spanning trees by RST-IoT for the given network in Figure 1a.

each time slot, node ni moves with probability pi . Moreover, the transmission ranges of all devices are set to
10m . Table 2 lists the amounts of utilized parameters.

Table 2. The amounts of employed parameters.

Parameter Value
Network dimensions 120m × 120m
Transmission range 10m
Number of employed bees K
Number of onlooker bees K/4
Number of scout bees K
w1 0.45
w2 0.45
w3 0.1
maxIt 1000

To investigate the effectiveness of the proposed algorithm, we consider two measures of reliability and
energy consumption. These criteria are defined as follows:

• Reliability is considered as a property of IoT systems that enables such networks to remain operational
in the case of mobility or energy exhaustion of the devices. This criterion is formally defined as:

Reliability =
DFF

TDFF
, (10)

where DFF represents the number of devices that fail simultaneously due to mobility or energy exhaustion
so that the spanning tree is not split. Obviously, such failures occur at the leaf nodes. The TDFF measure
represents the total number of failures. The resultant reliability by the considered algorithms is studied
in Section 5.1.

• Average energy consumption is the average of the energy consumed by devices to transmit the generated
data to the base station. We study this measure in Section 5.2. To have an accurate comparison of the
methods, it is assumed that no fault occurs in the simulations performed in that section.
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5.1. Reliability comparison
An important issue in IoT systems is the reliability of data gathering. In the simulations performed in this
section, we compare RST-IoT to HCT-IoT and ETSP from this point of view. Figure 4 illustrates the reliability
of the considered algorithms by varying the number of failures from 1 to 4. The number of nodes is fixed at
20 in this figure. In addition, parameter K is assumed to be equal to 10. The reported results in this figure
show that RST-IoT is more reliable than the other algorithms. More specifically, it improves the reliability by
24.23% and 55.78% when compared to HCT-IoT and ETSP, respectively.

The impact of enlarging the IoT system on its reliability is investigated in Figure 5. In the reported
simulations in this figure, K is set to 20, and the number of nodes is varied from 4 to 20. From this figure, we
can see that network enlargement diminishes the reliability. Furthermore, according to the results in this figure,
RST-IoT improves the reliability by 46% and 82% on average compared to HCT-IoT and ETSP, respectively.
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Figure 4. The achieved reliability versus number of si-
multaneous failures.

Figure 5. The achieved reliability versus number of
nodes.

The next considered criterion is the number of spanning trees. We vary the number of spanning trees
from 1 to 20 to investigate its impact on the reliability. The results are reported in Figure 6. The number of
nodes is set to 20 in the reported results in this figure. From the findings of this set of simulations, we can
see that the average reliability is improved by increasing the number of trees. These results indicate that RST
is more fault tolerant than HCT-IoT and improves reliability by 20% relative to this algorithm. Since ETSP
generates only one spanning tree, it is not considered in this experiment.

The time complexity of the performed simulations in Figures 5 and 6 are reported in Tables 3 and 4,
respectively. As is expected, the running time of the considered algorithms increases with enlarging node set
or increasing parameter K . In addition, it is seen from these tables that the running time of the proposed
algorithm is acceptable. Hence, it can be employed in practical scenarios.

5.2. Consumed energy comparison
Consumed energy of the IoT system is defined as the total energy consumed by all devices. Simulation results
in Figure 7 reveal that the consumed energy by HCT-IoT and ESTP is more than the energy required by
RST-IoT. This method improves average consumed energy in the data gathering process by incorporating the
residual energy and hop count measures in the objective function. Furthermore, the obtained results illustrate
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Table 3. The running time of the simulations in Figure 5 (seconds).

Algorithm / |V | 4 8 12 16 20
RST-IoT 1.98 2.27 2.29 3.13 4.20
HCT-IoT 1.92 2.14 2.19 3.01 3.96
ETSP 0.05 0.06 0.08 0.15 0.18

Table 4. The running time of the simulations in Figure 6 (seconds).

Algorithm / K 1 5 10 15 20
RST-IoT 2.42 3.067 4.20 5.21 5.60
HCT-IoT 2.28 2.83 3.96 5.10 5.53

that RST-IoT decreases the average consumed energy by 45.02% and 51.13% in comparison to HCT-IoT and
ETSP, respectively. Based on Figure 7, we can also infer that the consumed energy by HCT-IoT is lower than
the energy required for ETSP. This is because it diminishes total hop count distance, which leads to energy
consumption reduction. Moreover, the performance gap between our scheme and other methods is increased by
enlarging the network. This verifies the scalability of our algorithm in comparison to HCT-IoT and ETSP. The
running time of the presented simulations in Figure 7 is the same as the reported results in Table 3.
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Figure 6. The achieved reliability versus number of span-
ning trees.

Figure 7. Average consumed energy versus number of
nodes.

6. Conclusion
In this study, we addressed the problem of reliable data gathering in IoT systems. Our proposed algorithm,
namely RST-IoT, utilizes a tree structure for data collection. To achieve high-throughput solutions, we
customized the ABC algorithm for the tree construction problem. The advantage of using this technique is
that it is a swarm intelligence optimization scheme and generates near-optimal trees. The nectar amount of
each solution is computed using a number of criteria, comprising hop count distances between devices and the
base station, residual energies of the devices, and their mobility probabilities. Through the use of the ABC, a
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number of spanning trees are generated. These trees are sorted according to their preferences, and each tree
is employed for data gathering after the splitting of the preceding one. The simulation results indicate that
RST-IoT is superior to the existing approaches in terms of reliability and energy consumption. Therefore, it is
suitable to handle emergency applications under IoT technology.
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