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Abstract

Confirmatory factor analysis (CFA) is a quantitative data analysis method that belongs to the family of structural equation
modeling (SEM) techniques. CFA allows for the assessment of fit between observed data and an a priori conceptualized,
theoretically grounded model that specifies the hypothesized causal relations between latent factors and their observed
indicator (manifest) variables. Because population-level equivalence between data and model cannot be shown with sample
data, CFA should be viewed as a mainly disconfirmatory technique. That is, CFA facilitates the statistical rejection – or, at best,
a tentative retention – of a specific theory regarding the factor(s) responsible for the observed relations in the data. If, on the
other hand, the investigator’s intentions are a mostly ungrounded exploration of relations suggested by the data, classical
exploratory factor analysis is the more appropriate approach. In this article, typical steps in a CFA are introduced theoretically
and via example: from model specification and identification, to parameter estimation, data-model fit assessment, and
potential model modification. Didactic references are provided for a more in-depth study of CFA and SEM techniques in the
social and behavioral sciences.

Overview

The term factor analysis describes a host of methods, all of
which have the purpose of facilitating a better understanding
of the unobserved variables (factors) that underlie a set of
directly measurable and observed variables (for a nontechnical
overview, see Bandalos and Finney, 2010 and references
therein). These factors are often believed to represent
constructs, psychological or otherwise, that have a direct
bearing on the measured variables; as such, they are assumed
to motivate (and in turn be inferable from) the pattern of
covariances (unstandardized correlations) among those
observed variables. In the late 1960s, works by Karl Jöreskog
(e.g., 1966, 1967) articulated a method for confirmatory factor
analysis (CFA), an application of normal theory maximum
likelihood estimation to factor models with specific theoret-
ical latent structures. Such structures could include the a priori
specification of the number of factors, their orthogonality or
obliquity, and which variables had zero and nonzero relations
with those factors. This distinguishes CFA from well-known
exploratory factor analysis (for classic introductions, see
Gorsuch, 1983; Mulaik, 1972) wherein the number and
nature of the factors emerge from the observed variables’
data through a mathematical algorithm, largely blind to any
substantive theory. Most crucial in Jöreskog’s CFA work was
the provision for a formal statistical c2-test of the fit between
the pattern of relations among the measured variables and the
theorized factor model, thereby facilitating the disconfirma-
tion or tentative confirmation of a hypothesized factor model.
Soon after, Jöreskog and others put forth a more general
framework for the integration of measured and latent vari-
ables into causal networks, serving as the foundation for
what is often known as structural equation modeling (SEM).
CFA, which may be considered a special case within the
more general SEM framework, is the focus of the current
article.

CFA Model Specification, Identification, and
Parameter Estimation

Suppose an educational researcher wishes to investigate the
possibility of a low positive relation between reading and
mathematics ability for fifth grade students, which is measured
by standardized tests such as the Stanford Achievement Test or
the Iowa Test of Basic Skills. The model shown in Figure 1
might be hypothesized. Measured variables X1 through X6,
shown in rectangles, are believed to be caused by the latent
factors x1 and x2, shown in ellipses. Here, x1 and x2 represent
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Figure 1 Hypothetical CFA model of reading and mathematics ability.
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true latent (unobserved) reading and mathematics ability,
respectively, with X1 through X3 being standardized reading
test measures (Read1 through Read3) and X4 through X6 being
standardized mathematics test measures (Math1 through
Math3). Table 1 includes a simulated variance/covariance
matrix for the observed variables X1 through X6 based on test
data from n ¼ 1200 fifth graders. Our example’s focus is the
noncausal covariance between reading and mathematics
ability, f21. In SEM path diagrams, a covariance is indicated
by a two-headed arrow connecting the two constructs, and –

because a variance is a covariance of a variable (observed or
latent) with itself – it, too, is depicted by a two-headed
arrow, in this case from the variable to itself.

A factor’s hypothesized causal impact on its measured indi-
cator variables, its loading, is symbolized by an arrow from the
factor to the variable with magnitude lij, where i denotes the
observed variable and j denotes the latent factor. Note that
such a model explicitly posits the factors as causing the vari-
ables, rather than the variables causing the factors; the latter
type of model, in which the factor is characterized as emergent
rather than latent, is much less common and beyond the scope
of this article (but see Kline, 2013). In many cases, there is no
arrow from a factor to a variable, such as from x1 to X4; this
implies that reading ability has no theoretical causal bearing
on the Math1 variable. Finally, to the extent that the factors
do not perfectly explain each variable, a residual term, di, is
included as an influential contributor (with its variance shown
by a two-headed arrow from di to itself). This residual might
consist of variable-specific measurement error as well as other
influences. Thus, each observed variable is the sum of two
parts, that attributable to the latent factor(s) and a residual
part unique to the variable.

The causal relations of the hypothesized model shown in
Figure 1 may be expressed as a system of six regression-like
structural equations:

X1 ¼ l11x1 þ 0x2 þ d1 [1]

X2 ¼ l21x1 þ 0x2 þ d2 [2]

X3 ¼ l31x1 þ 0x2 þ d3 [3]

X4 ¼ 0x1 þ l42x2 þ d4 [4]

X5 ¼ 0x1 þ l52x2 þ d5 [5]

X6 ¼ 0x1 þ l62x2 þ d6 [6]

Equivalently, these equations can be represented in matrix
form, as in 2
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That is,

X ¼ Lxþ d [8]

where X is a column vector of observed variables, L is a matrix
of factor loadings, x is a vector of latent constructs, and d is
a column vector of residuals.

The implication of Figure 1 and the accompanying struc-
tural equations is that the population variance/covariance
matrix for the X variables, S, is a function of (1) the lij loadings
in matrix L, (2) the variances and covariance of the latent
factors in a matrix F, and (3) the variances and covariances
among the residuals in a matrix Qd (note that in Figure 1 all
residual covariances are zero as implied by the absence of
two-headed arrows between the d terms). More specifically, if
all model parameters (loadings, variances, and covariances)
are contained in a single column vector q, the population
variance/covariance matrix of the observed variables that is
implied by the model and its parameters, S(q), is given by

SðqÞ ¼ LFL0 þQd [9]

A vector of parameter estimates, bq, can be derived so that the
model-implied variance/covariance matrix S(bq) is as similar
as possible to the observed variance/covariance matrix, S,
provided that model identification has first been ensured. To
that end, each parameter in a model must be expressible as
a function of the variances and covariances of the observed
variables. When a system of such relations can be uniquely

Table 1 Simulated data and selected parameter estimates for the reading and mathematics ability model in Figure 1

X1 X2 X3 X4 X5 X6

Variance/covariance matrix (n [ 1200)
129.96
79.75 192.65

694.20 871.11 12038.48
307.03 391.75 3402.04 9876.38
230.99 415.74 2476.89 4815.24 12126.41
37.85 53.36 416.71 740.98 656.84 135.722

Standardized factor loadings and indicator reliability estimates
x1 0.70* 0.73* 0.79* 0 0 0
x2 0 0 0 0.75* 0.60* 0.85*
R2 0.49 0.53 0.62 0.56 0.35 0.73
Data-model fit indices
c2 ¼ 16.98, df ¼ 8

p ¼ 0.030
CFI ¼ 0.996 SRMR ¼ 0.016 RMSEA ¼ 0.031

Note. *p < 0.05.
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solved for the unknown parameters, the model is just-identified.
When multiple such expressions exist for one or more
parameters, the model is overidentified and, in that case, a best-
fit (although not unique) estimate for each parameter is
derived. If, however, at least one parameter cannot be
expressed as a function of the observed variables’ variances
and covariances, the model is underidentified, and some or all
parameters cannot be estimated on the basis of the data
alone. This underidentification might be the result of the
researcher attempting to impose a model that is too complex
relative to the number of variances and covariances of the
observed variables. Additionally, empirical underidentification
might arise when unfortunate estimates for select parameters
(e.g., values of zero for factor covariances) render subsets of
model parameters inestimable. Fortunately, in most CFA
applications, it suffices to ensure that (1) the total number of
parameters to be estimated, t, does not exceed the number of
unique variances and covariances of the observed variables, u,
and (2) each latent factor has an assigned unit of
measurement. To accomplish the latter condition for the
model in Figure 1, we set the factor variances to unity
(alternatively, for each of the two factors we could have
specified one of the factor loadings to equal unity, thereby
setting each factor’s units equal to those of the observed
variable). The model in Figure 1 is overidentified with
u ¼ 6(7)/2 ¼ 21 nonredundant observed variances and
covariances and t ¼ 13 parameters to be estimated: six factor
loadings, one covariance between the two latent factors, and
six variances of the residual terms associated with the
observed variables.

Given that a model is just- or (preferably) overidentified,
sample estimates can be obtained through a variety of estima-
tion methods. These include maximum likelihood and general-
ized least squares, both of which assumemultivariate normality
and are asymptotically equivalent, as well as asymptotically
distribution-free estimation methods that generally require
a substantially larger sample size. These methods iteratively
minimize a function of the discrepancy between S and S(bq),
where S is the unrestricted variance/covariance matrix of the
observed X variables and S(bq) is the model-implied variance/
covariance matrix reproduced from the iteratively changing
parameter estimates. The standardized maximum likelihood
estimates of key parameters in the reading and mathematics
ability model are presented in Table 1. Before focusing on the
estimate of the example’s main parameter of interest (f21), we
should consider whether or not there is any evidence
suggesting data-model misfit, any statistical – and
theoretically justifiable – rationale for modifying the
hypothesized model, or any indication of factor unreliability.

Data-Model Fit Assessment and Model Modification

One of the advantages of CFA is the ability to assess the quality
of the fit of the data to the model. A multitude of measures
exists that assist the researcher in deciding whether to reject
or tentatively retain an a priori specified overidentified model
(see Marsh et al., 1988; Tanaka, 1993). In general, measures
to assess the fit between the variances and covariances observed
in the data and those implied by the model can be classified

into three categories: absolute, parsimonious, and incremental.
Absolute fit indices are those that improve as the overall discrep-
ancy between S and S(bq) decreases. Examples of such
measures include the model c2 statistic that tests the stringent
null hypothesis H0: S ¼ S(q), the standardized root
mean-square residual (SRMR) that roughly assesses the
average standardized discrepancy between observed and
model-implied variances and covariances, and the
goodness-of-fit index (Jöreskog and Sörbom, 1996) designed
to evaluate the amount of observed variance/covariance
information that can be accounted for by the model.

Parsimonious fit indices take into account not just the overall
absolute fit, but also the degree of model complexity required
to achieve that fit. Indices such as the adjusted goodness-of-fit
index (Jöreskog and Sörbom, 1996), the Akaike Information
Criterion (Akaike, 1974), and the root mean-square error of
approximation (RMSEA, Steiger and Lind, 1980) indicate
greatest data-model fit when data have reasonable absolute
fit and models are relatively simple. Finally, incremental fit
indices such as the normed fit index (Bentler and Bonett,
1980) and the comparative fit index (CFI, Bentler, 1990)
gauge the data-model fit of a hypothesized model relative to
that of a more restrictive baseline model with fewer parameters.

The three types of fit indices together help the researcher to
converge upon a decision regarding the CFA model’s accept-
ability. In our example, the statistically significant maximum
likelihood c2 ¼ 16.98 (df ¼ u � t ¼ 8, p < 0.05) indicates
that the observed variance/covariance matrix would occur
rarely if our model correctly depicted the true population
relations. This absolute fit statistic, however, is notoriously
sensitive to very small and theoretically trivial model
mis-specifications (e.g., slight amounts of error covariance)
under large sample conditions. As such, other fit indices are
generally preferred for model evaluation. According to Hu
and Bentler (1999), for example, CFI values of 0.96 or greater
together with SRMR values less than 0.09 (or with RMSEA
values less than 0.06) point to acceptable data-model fit. The
indices in Table 1 suggest no appreciable data-model
inconsistency given the Hu and Bentler recommendations.

After the data-model fit has been assessed, a decision about
that model’s worth must be reached. Acceptable fit indices
usually lead to the conclusion that no present evidence exists
warranting a rejection of the model or the theory underlying
it. This is not to say that the model and theory have been
confirmed, much less proven as correct; rather, the current
factor model remains as one of possibly many that
satisfactorily explain the relations among the observed
variables (see Hershberger and Marcoulides, 2013). On the
other hand, when fit indices indicate a potential data-model
misfit, one might be reluctant to dismiss the model entirely.
Instead, attempts are often made to modify the model post
hoc so that acceptable fit indices can be obtained. Such
modifications could include the addition of cross-loadings,
allowing a given variable to load on multiple factors, or of
error covariances in which variables’ residuals are allowed to
covary in order to reflect some potential variable relation
above and beyond that motivated by the factor structure itself.

Most CFA software packages will facilitate such model
improvement by providing modification indices (Lagrange
multiplier tests) indicating what changes in the model could
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reap the greatest increase in absolute fit, that is, decrease in the
model c2 statistic. While such indices constitute a potentially
useful tool for remedying incorrectly specified models, it seems
imperative to warn against an atheoretical hunt for the model
with the best fit. Many alternative models exist that can explain
the observed data equally well; hence, attempted modifications
must be based on a sound understanding of the specific theory
underlying the model. Furthermore, when modifications and
reanalyzes of the data are based solely on data-model misfit
information, subsequent fit results might be due largely to
chance rather than true improvements to the model. Modified
structures therefore should be cross-validated with an
independent sample whenever possible. If a new sample is not
available but the initial sample is large enough, one can
randomly split the sample into calibration and validation
subsamples and compute Cudeck and Browne’s (1983)
cross-validation index. When the initial sample is too small,
Browne and Cudeck (1989) also offered a single sample
alternative, an estimate of the expected value of the cross-
validation index. From the analysis of the model in Figure 1,
none of the modification indices suggested changes to the
model that would result in a significant improvement in data-
model fit (i.e., a significant decrease in the model c2 statistic);
thus, we did not report them in Table 1.

Before drawing conclusions regarding the relation between
reading and mathematics ability, the question of the quality
(i.e., reliability) of the factors should be addressed. Traditionally,
this has been accomplished (1) by focusing on the reliability of
scores from individual indicator variables, R2 (i.e., the propor-
tion of variability in an observed variable that can be accounted
for by the underlying factor), or (2) by assessing the reliability of
scores from linear composites of the indicator variables (e.g.,
Miller, 1995; Raykov, 1997). Alternatively, Hancock and
Mueller (2001) suggested a measure (coefficientH) computable
most easily from the standardized factor loadings that can be
used to assess the reliability (i.e., replicability) of a latent
construct itself as reflected by scores from its multiple observed
indicator variables. One of coefficient H’s advantages over tradi-
tional construct reliability measures is that it is never less than
the best indicator variable’s reliability (R2), thereby drawing
information from all indicators in a manner commensurate
with their own ability to reflect the construct. For the current
example, bH ¼ 0.79 and bH ¼ 0.82 for the reading and mathe-
matics ability constructs, respectively, while the R2 values for
the respective factors’ indicator variables in Table 1 range
between 0.49–0.62 and 0.35–0.73. Thus, the two factors exhibit
reasonable and satisfactory levels of construct reliability, given
that about 80% of their variance is explainable by their respec-
tive indicators. Table 1 also lists the standardized factor load-
ings, that is, the standardized versions of the lij parameters in
theLmatrix that indicate the strength and direction of the a pri-
ori specified causal influences of the latent factors on the
observed variables. All factor loadings are positive and statisti-
cally significantly different from zero (p < 0.05).

Finally, our primary research question can be addressed.
The CFA estimate of the correlation between the two latent
constructs reading and mathematics ability is 0.51 and statisti-
cally significantly different from zero (p < 0.05). This estimate
indicates a low to moderate positive association between the
two constructs of interest, as hypothesized.

Conclusion

CFA has become established as an important analytical tool for
many areas of the social and behavioral sciences. It belongs to
the family of SEM techniques that allow for the investigation of
causal relations among latent and observed variables in a priori
specified, theory-derived models. The main advantage of CFA
lies in its ability to aid researchers in bridging the common
gap between theory and observation. For example, an
instrument might be developed by creating multiple items for
each of several specific theoretical constructs (Figure 1).
Instead of analyzing data with an exploratory factor analysis
(where each item is free to load on each factor) and
potentially facing a solution inconsistent with initial theory,
a CFA can give the investigator valuable information
regarding the fit of the data to the specific, theory-derived
measurement model (where items load only on the factors
they were designed to measure), and point to the potential
weakness of specific items. CFA is best understood as
a process, from model conceptualization, identification, and
parameter estimation, to data-model fit assessment and
potential model modification. As opposed to exploratory
methods, CFA’s strength lies in its disconfirmatory nature:
models or theories can be rejected, but results might also
point toward potential modifications to be investigated in
subsequent analyses.

A recent treatment of CFA for applied researchers is Brown
(2009). Popular textbooks on more general SEM – those that
include many CFA examples from disciplines covered in this
encyclopedia and that utilize commonly available software (i.e.,
AMOS, EQS, LISREL, and MPlus) – are Bollen (1989), Byrne
(1998, 2006, 2010, 2012), Kline (2011), Loehlin (2004),
Raykov and Marcoulides (2006), and Schumacker and Lomax
(2010). Social science journals that publish many CFA and
SEM applications and methodological developments include
Educational and Psychological Measurement, Multivariate Behavioral
Research, Journal of Experimental Education, Psychological Methods,
Sociological Methodology, Sociological Methods and Research, and
Structural Equation Modeling: A Multidisciplinary Journal.

See also: Big Five Factor Model, Theory and Structure;
Emotions and Aging; Factor Analysis and Latent Variable
Models in Personality Psychology; Five Factor Model of
Personality, Assessment of; Five Factor Model of Personality,
Facets of; Five Factor Model of Personality, Universality of.
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Relevant Websites

www.ibm.com – AMOS Software.
www.mvsoft.com – EQS Software.
www.ssicentral.com – LISREL Software.
www.statmodel.com – MPlus Software.
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