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Efficient routing algorithms are essential to guarantee reliable communication in Vehicular Adhoc
Networks (VANETs). In this paper, we present a twofold approach entailing the design of a new route
metric for VANET communication, which considers important parameters such as the received signal
strength; transmit power, frequency and the path loss. We further present an improved genetic
algorithm-based route optimization technique (IGAROT) that guarantees better routing in VANETs. We
used IGAROT to determine optimal routes required to communicate road anomalies effectively between
vehicles in VANETs. The performance of our proposed algorithmwas compared with the well-known con-
ventional Genetic Algorithm (GA) route optimization technique under same simulation conditions. Based
on the average route results obtained, our findings indicate that IGAROT provided 4.24%, 75.7% and 420%
increment over the conventional GA in the low, medium and high car density scenarios, respectively. Our
findings suggest that IGAROT improves road anomaly communication among vehicles thus enabling dri-
vers to better navigate anomalous roads with the aim to reduce road-anomaly induced accidents. Further
benefits of our systemmay include the prompt notification of road maintenance agencies concerning per-
sisting road conditions via vehicle to infrastructure communication.
� 2019 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vehicular Adhoc Network (VANET) is a technology that uses
moving vehicles as nodes in a network to create a mobile network.
VANET supposedly turns every participating vehicle into a wireless
router or node, allowing vehicles to have a transmission radius
between 100 and 300 m. Thus, vehicles within this range can con-
nect and in turn create a network with a wider range [1,2]. VANET
comprises of two main components, which are the vehicles and the
roadside infrastructures. These components typically establish
communication between vehicles described as vehicle-to-vehicle
(V2V) communication or between a vehicle and a roadside infras-
tructure known as vehicle-to-infrastructure (V2I) communication.
Usually, the information being communicated are often related to
traffic conditions [2,3], road surface conditions [2,4–8], infotain-
ment [2,3,9] among others, towards ensuring the safety of lives
and properties as well as providing comfort to drivers and passen-
gers alike.
Despite VANET’s promising potentials, a major problem lies in
the design of robust communication routing models for route opti-
mization. With so many dynamic factors militating against effec-
tive routing in VANET, one pertinent research issue entails
constructing an all-encompassing metric that can guarantee reli-
able routing in VANET. These requirements (including developing
both robust route communication metrics as well as effective rout-
ing algorithms) are non-trivial problems for VANET developers and
contributing in this regard served to motivate the approach pro-
posed in this paper.

It is known that the above limitations can be addressed easily
by developing robust VANET communication route metrics and
using robust route optimization techniques to determine optimal
routes for communication. However, very few metrics exist that
consider essential parameters such as the received signal strength,
transmit power, frequency and pathloss required for effective com-
munication. Consequently, incorporating as many parameters in a
single metric is a critical requirement to develop reliable commu-
nication systems for route optimization in VANETs. Furthermore,
pertaining to route optimization, a major limitation concerning
the use of Genetic Algorithm (GA) for routing lies in its frequent
convergence to suboptimal solutions. Consequently, this implies
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that information sent via poorly optimized routes may experience
longer delays. These delays may consequently prevent drivers from
receiving early warning signals that could potentially prevent pos-
sible road accidents. Therefore, it is necessary to improve the per-
formance of the GA optimization technique and design a new
comprehensive metric for route optimization in VANET.

Thus, in this paper, we have presented a twofold approach to
improve V2I communication. The first entails the development of
a VANET communication route metric that factors in its design
essential parameters including the received signal strength; trans-
mit power, frequency and path loss. Secondly, an improved genetic
algorithm route optimization technique (IGAROT) based on a
non-probabilistic selection approach using K-means clustering
technique was developed. We applied IGAROT for road anomaly
communication in VANETs. Our findings have provided the
following contributions:

1) We have developed a new metric for route optimization
towards communicating road surface information between
vehicles and an infrastructure. This metric incorporates key
parameters such as the received signal strength, path loss,
transmit power and frequency of communication.

2) We have developed an improved GA based routing algo-
rithm called IGAROT to determine optimal routes for data
transmission. Our proposed IGAROT overcomes the chal-
lenge of convergence to suboptimal solutions associated
with using the conventional GA for route optimization.

3) Our proposed IGAROT and the developed route metric has
led to an entirely new routing scheme for V2I communica-
tion in VANET.

We organize the rest of the paper as follows: Section 2 presents
a brief literature review, our proposed routing algorithm is
described in Section 3. The method of analysis is described in Sec-
tion 4, while Section 5 presents and discusses the findings of this
paper. We provide concluding remarks in Section 6.
2. Related works

This section presents an overview of some achievements
reported in the literature that motivated this study. Basically, a
major limitation with most VANET communication system models
is their failure to factor in their design as many essential metrics
such as the received signal strength, path loss, transmit power
and frequency [10–12]. In this regard, researchers have made sev-
eral attempts to use different population based meta-heuristic
optimization techniques typically inspired by the biological theory
of evolution and genetics to optimize communication routes
[9,12–14]. In this case, the use of Genetic Algorithm (GA) stands
out [14–16]. However, a major limitation with most GA based
route optimization approaches lies in their convergence to sub-
optimal solutions in complex networks (large number of nodes).

A technique that ensures the formation of stable clusters and
stability in VANET communications was proposed in [10] alongside
a similar approach in [11]. Authors in [10,11] considered vehicular
mobility as a factor in their design. Routing paths with smaller
number of hops and longer lifetime based on deposited probabilis-
tic pheromone concentration were considered for routing informa-
tion. In addition, beacon messages specified in the protocol were
used to make vehicles aware of information about other vehicles
in the same group. This ensured stability and reliability. Results
obtained showed an improved performance in terms of routing
overhead, end-to-end delay as well as the packet delivery ratio
when compared to multicast ad-hoc on-demand distance vector.
However, the proposed system does not monitor the quality of
multicast tree links nor predict the possible link failures.

Ant Colony Optimization (ACO) algorithms have been applied in
several ways to ensure optimum and reliable information routing
in VANET [9,12,17]. This entailed developing objective functions
to either determine the best route among multiple routes or find
an alternative route during link failures. Often, the reported results
showed better performance in reducing link failures as well as
determining the optimal route among all possible communication
routes. However, their model lacked the consideration of essential
metrics such as the transmit power, received signal strength, fre-
quency and path loss. Furthermore, the effects of the ACO param-
eters such as pheromone concentration, pheromone evaporation
rate on the performance of the route optimization algorithm were
not investigated.

An automatic intelligent method for obtaining optimized QoS
parameter configurations in optimal link state routing (OLSR) was
analyzed in [18]. Four different meta-heuristic algorithms namely,
GA, simulated annealing, differential evolution and particle swarm
optimization were considered in [13]. Experimental results showed
that the simulated annealing performed better compared to other
meta-heuristic algorithms considered. However, the computed
paths take longer time when compared to OLSR.

A new alternative route search (ARS) algorithm based on GA
was proposed in [14]. A traffic database was created for logging
traffic status. This approach dynamically searches for an alterna-
tive route based on the current road condition during system mal-
functioning or high traffic. Experimental results showed that the
proposed technique efficiently searched for the best alternative
routes for vehicle navigation. The tuning of the GA optimization
parameters to guarantee optimal values was not considered. In
addition, the reliability of the alternative search route was not
examined.

A new reliability based routing scheme was proposed for
VANET in [19] with a similar approach based on evolving graph
models presented in [20]. A probabilistic function capable of pre-
dicting a wireless link status was used to model the link reliability.
It entailed continuous updating and broadcasts of a routing request
message from the source node to all other nodes (vehicles). Simu-
lation results showed a better performance in terms of end-to-end
delay, packet delivery ratio, link failures and routing requests ratio
when compared to the prediction-based routing protocol. How-
ever, it is computationally complex. In addition, essential metrics
such as path loss, the transmit power and frequency were not con-
sidered in their design.

A survey of different bio-inspired approaches proposed for rout-
ing in VANET is presented in [21]. It was observed that bio-inspired
VANET routing approaches are more robust and capable of adapt-
ing to network disruption, thereby ensuring efficient delivery of
data packet with low complexity in large scale VANET. The VANET
bio-inspired routing approaches were categorized into three
namely; the evolutionary algorithm, swarm intelligence and other
VANET bio-inspired approaches. Detailed overview of each of the
category in terms of complexity, scalability, mobility model,
robustness, and QoS routing performance was presented. Analyses
showed that the bio-inspired approaches can improved the perfor-
mance of VANET routing in terms of the mentioned computational
metrics. Similarly, a review of different position based routing
approaches in VANET was presented in [22]. It was submitted that
due to the rapid change in VANET network topology, position-
based routing protocols are more suitable. The merit and demerits
of each of the position-based routing protocols are highlighted.
However, a hybrid protocol was concluded to be the best choice
for routing in VANET in both highway and urban environments.
This may help address the challenge of local maximum problem
because of inaccurate positioning.



Fig. 1. Design process of the proposed routing system.
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The performance of a position-based V2V routing protocols was
investigated under different vehicle density and velocity in [23]. It
was concluded based on the survey that a number factors such as
the distance of source node from the destination, vehicle density,
velocity, and direction are crucial for development of different
position-based routing protocols. The goal is to improve perfor-
mance in terms of the routing overhead ratio, packet delivery ratio,
and average end-to-end delay. However, there is need to consider
more metrics in a single design in order to develop smarter and
robust VANET routing protocols. Similarly, the impact of vehicle
density and velocity in the development of an intelligent position
based VANET routing protocols was investigated and analyzed in
[24]. Specifically, two position-based routing protocols namely
the Movement Prediction-based Routing (MOPR) and Improved
Greedy Traffic Aware Routing (IGyTAR) algorithm were analyzed
in terms of the packet delivery ratio, average end-to-end delay,
and link failure rate as well as routing overhead. Results obtained
showed that the IGyTAR performs better than the MOPR and
Greedy perimeter stateless routing (GPSR) in terms of the end-
end-delay, routing overhead and packet delivery ratio. While in
terms of the link failure detection, the MOPR performed better.
Further, a survey of Vehicular Delay Tolerant Networks (VDTN)
routing protocols in vehicular environment was presented in
[25]. Different protocols were examined to ensure the suitability
or not for routing in VDTN. Further suggestions for open research
issues towards improving performance of the routing protocols
were presented.

Other VANET routing protocols, which are non-meta-heuristic
based approaches have also been reported in the literature with
attention given to the multicast approaches. A review of different
multicast routing protocols was presented in [26]. The goal was
to examine and classify multicast routing protocols into the geo-
cast and the cluster-based category. It was note that in a dynamic
network environment, multicast routing protocols are more suit-
able and applicable. This protocol minimizes the network power
consumption, transmission, and control overhead by utilizing the
simultaneous transmission of messages from the source node
either to multiple destinations or towards an interested node via
flooding, proactive, and reactive technique. Further details on the
merits and demerits of each multicast routing protocols can be
found in [26]. However, of particular importance is improving
the network scalability, throughput and reducing the end-to-end
delay. A similar approach that examined different VANET cluster-
ing designs with various methods used in electing, affiliating and
managing cluster head was presented in [27]. In addition, recent
research trends in designing robust cluster-based routing protocols
for VANETs as well as open research issues were highlighted in
[27]. However, a major limitation in using the cluster-based rout-
ing approach is the lack of a realistic vehicular channel model.

An approach that uses VANET cluster scheme (VCS) and VANET
multicast routing (VMR) in developing a framework for real time
vehicular communication (RTVC) was proposed in [28]. The pro-
posed framework was able to achieve message delivery to multiple
vehicles with high throughput. It ensured stable communication
between vehicles by harnessing the strength of the VMR and
VCS, respectively. The average speed and the direction of vehicle
were utilized in the formation of clusters among vehicles in the
proposed RTVC framework to achieve message routing stability,
while utilizing VMR for packet delivery to the destination vehicle.
Results obtained showed that the proposed framework achieved
high throughput and low overhead despite the dynamic nature of
the network.

In [29], a hybrid of roulette wheel and rank selection technique
was used for the development of a new variant of GA with a similar
approach proposed in [30]. These variants of GA showed better
performance compared to GA with roulette wheel selection.
Another variant of GA selection method based on selecting individ-
uals in the HLF chromosomes group was proposed in [31]. Simi-
larly, a variant of adaptive GA for global mathematical test
functions and route optimization was presented in [16]. Results
obtained demonstrate a better performance compared to GA based
on the roulette-wheel selection method.

In [32], a GA approach entailing the selection of weak chromo-
somes for mating towards introducing diversity into the popula-
tion was proposed. Simulation results showed better
performance compared to GA with roulette wheel or rank selec-
tion. A Fluid Genetic Algorithm (FGA) based route optimization
technique entailing the replacement of the mutation process in
GA with a smart population diversity was proposed in [33]. An
improved performance in terms of convergence, speed, and accu-
racy was reported compared to the conventional GA.

Several GA selection methods viz elitism, roulette wheel and
tournament were studied for solving route optimization problems
in [34,35] with improved performances reported. Other variants of
GA with polygamy selection approaches with improved conver-
gence performance compared to conventional GA were also pre-
sented in [15,36,37]. However, a major limitation with these
variants of GA selection approaches is their convergence to sub-
optimal solutions because of chromosome over fitting [15,33,38].
Furthermore, the performance of these techniques drops when
applied to route optimization involving higher number of nodes/
cities (more than 10).

3. Proposed routing algorithm

This section presents the methodology adopted to design our
proposed optimized routing algorithm. We considered three stages
namely, the design of the new route metric, the proposed opti-
mized routing algorithm (IGAROT) and the description of the Vehi-
cle to Infrastructure (V2I) routing protocol that anchors our
proposed IGAROT. We summarize this process in Fig. 1 and present
detailed description of each stage as follows:

3.1. The route metric

We present a new route metric that determines how suitable a
communication link Lw will be to route information between two
points iand j separated by some distance, dij. The Global Position
System (GPS) coordinates of each vehicle is used to compute the
Euclidean distance dij, expressed as

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � yjÞ2 þ ðxi � xjÞ2

q
ð1Þ

where ðxi; yiÞ and ðxj; yjÞ represent the coordinates of vehicles i and j
respectively. The transmission power, Ptx of 0 dBm in accordance
with the IEEE 802.11p (WAVE) standard is considered in our com-
putations. The IEEE802.11P was used due to its merit of ensuring
the successful delivery of the information with low latency within
the VANET network [28], therefore satisfying theVANET latency
requirement for safety applications [39,40]. The Received Signal
Strength (RSS) at the destination infrastructure dv , and the path
loss, PLw across each link, Lwprovides a measure for the quality of
the communication link. The PLw is modeled considering free space
path loss (in dB) as [41]:



Fig. 2. Flowchart for Computing the Route Metric of a Communication Link.
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PLW ¼ 20log10ðdijÞ þ 20log10ðf Þ � 147:55 ð2Þ
where f is the signal frequency in Hz, and dij is the Euclidean dis-
tance in meters computed via (1). We used the free space model
for the purpose of simplicity because we assumed that the distance
between vehicles are often obstruction free and fall within the line
of sight. Future works may consider path loss models that are more
realistic without necessarily violating the principles of our proposed
framework. The RSS at dv is then computed as

RSSw ¼ Ptx � PLw ð3Þ
Hence the route metric rw, of the individual links Lw, making up a
single communication route, P, from vehicle i to j is given by

rw ¼
aexp 1� RSSw

RSSTh

� �

v ij þ b
ð4Þ

where RSSTh is the maximum received signal strength (a threshold
value) above which the link fails, a is a scale parameter computed
using the standard deviation of the changing velocity v ij of vehicles
logged in the routing table and b is a corrector parameter intro-
duced to guarantee that (4) exists at zero velocity (when a vehicle
is stationary). Eq. (4) is a normalized route metric, which we have
proposed to evaluate how suitable a route will be for data transmis-
sion. Essentially, we constructed this route metric by considering
the following relationships: a stationary vehicle is better suited to
form a good communication link than a mobile vehicle since mobile
vehicles are highly susceptible to fading channel conditions. Conse-
quently, as a vehicle decelerates, it becomes easier to establish a
stable communication link. This requirement accounts for the
inverse relationship in Eq. (4) between the route metric and the
vehicle’s velocity. Furthermore, we note that stronger received sig-
nal strength (RSS) values at a vehicle’s transceiver typically charac-
terizes a good link. This quality thus accounts for the direct
relationship between the RSS and the route metric in Eq. (4). How-
ever, to ensure that our new metric does not tend to infinity when a
vehicle halts (velocity = 0), we have introduced a corrector parame-
ter b in Eq. (4), while we introduced the parameter a to normalized
the exponential effect of the RSS. We call a the scale parameter
because it simply amplifies the small values typically produced by
the exponential function of the RSS. These parameters take up typ-
ical values of a ¼ 10, and b ¼ 1. Typically, each vehicle measures its
velocity using its speedometer and communicates this velocity
value to other vehicles within its transmission range. Furthermore,
there is a possibility of having multiple potential routes between
the source vehicle sv and the destination infrastructure, dv . Thus,
K denotes the total number of links, L1 ¼ ðsv ;n1Þ, L2 ¼ ðn1;n2Þ. . .
Lk ¼ ðnk;dvÞ for a given route, P. Therefore, the overall route metric
RðPÞ for a given P is the product of the route metric of all the con-
nected links that form the route:

RðPðsv ;dvÞÞ ¼
YK
w¼1

rw ð5Þ

Therefore, the routing task reduces to the choice of a candidate
route P� from within the set of all possible routes Pnðn ¼ 1;2; :::;MÞ
that exists between i and j. Thus, we maximize the objective func-
tion as follows:

ZðP�Þ ¼ argmax
P2M

RðPnÞf g; 8n ¼ 1;2; :::;M ð6Þ

where M is the total number of possible routes between the source
vehicle sv and the destination Infrastructure dv . The ultimate goal is
to maximize the route metric given in (6) by using the proposed
routing algorithm called IGAROT (to be described next). Our pro-
posed IGAROT together with the formulated new system model in
(6) forms a new optimal routing scheme. We present a summary
of the process for computing the route metric of each communica-
tion link in Fig. 2.
3.2. Proposed optimized routing algorithm (IGAROT)

IGAROT is a variant of GA. In IGAROT, we simply replaced the
GA selection method with the K-Means clustering technique lever-
aging from a similar concept for route optimization presented in
[15]. IGAROT uses the number of vehicles involved in a VANET
communication scenario to initialize randomly the population of
individuals, which serves as the initial solution within the intended
search space. To illustrate, if we consider a low-density communi-
cation scenario with 10 vehicles, then this leads to a randomly gen-
erated 1 by 10 initial population size. The algorithm then forms
new generations by selecting the best solutions from the initial
population, which evolves after many generations, thus giving bet-
ter solutions. IGAROT evaluates the fitness of each individual solu-
tion using the communication system model presented in (6).

A non-probabilistic approach based on K-Means clustering
technique selects individual chromosomes for the reproduction
process in IGAROT. This technique selects the Good Group Chromo-
some Cluster (GGCC) in each generation thereby enhancing diver-
sity in the population. The algorithm achieves this by evaluating
the fitness of the individual chromosomes and clustering them into
two non-overlapping groups based on their fitness value. The rea-
son behind the choice of two groups for clustering is to ensure that
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each chromosome belongs to either GGCC or the Fair Group Chro-
mosome Cluster (FGCC). Essentially, IGAROT uses K-Means during
the selection process to group the chromosomes into these two
distinct clusters GGCC and FGCC. Here, GGCC contains the fittest
chromosomes based on their fitness values, while FGCC contains
the weaker chromosomes. Consequently, IGAROT uses this deter-
ministic approach of grouping to filter out weaker chromosomes
during the selection process instead of using the probabilistic roul-
ette wheel approach in the generic GA algorithm. This approach
interestingly guarantees that stronger chromosomes are passed
to subsequent generations implying that better routes with higher
route metrics will be computed during the iteration process. Sum-
marily, this explains the relationship between the chromosomes
and the route metric since each route metric per link in the net-
work is typically encoded as a chromosome in the IGAROT process.

Furthermore, using K-Means clustering approach increases the
convergence speed of the GA process by introducing a high selec-
tion pressure and increasing the average fitness value by selecting
the cluster of GGCC. The iterative K-Means algorithm minimizes
the sum of the distance between each chromosome and its cluster
centroid. K-Means moves the chromosomes of individuals in the
population into a cluster to group them all appropriately based
on their respective distances from the centroid. Mathematically,
let T be the total scatter points for a set of N chromosomes in the

ithgeneration expressed as

T ¼ 1
2

XN
i¼1

XN
j¼1

dðxi; xjÞ ð7Þ

where dðxi; xjÞ is the distance between two chromosomes. We
express (7) in a general form as

T ¼ WðCÞ þ BðCÞ ð8Þ
where WðCÞ is the within class scattered distance, BðCÞ is the
between cluster distance and Ci denotes the cluster number for
the ith observation [15].

The algorithm selects the chromosomes in the cluster with lar-
ger distances for the maximization operation. We summarize the
K-Means clustering algorithm in Table 1. The size of the initial
chromosome population typically reduces due to the K-Means
clustering process as only the GGCC is selected. This chromosome
population in the GGCC typically increases back to the initial pop-
ulation size using the method of elitism selection. This probability
replacement ensures that the algorithm randomly selects certain
percentage of the fitter individual chromosomes in order to
increase the population size in the GGCC. The population then
undergoes a two-point chromosome inversion process during
crossover in order to produce new offspring. The algorithm then
uses a one-point chromosome inversion to ensure diversity in
the population in the form of mutation. We introduced elitism to
ensure convergence to a global solution. The algorithm forms a
new population after the iteration process is completed and the
generation counter is increased by one. Our proposed IGAROT with
elitism continues to iterate until it satisfies a convergence criterion
Table 1
Summary of the K-Means Clustering Process.

Algorithm 1: K-Means Clustering

1. Randomly Select two chromosome fitness cluster centroid C1 and C2.
2. Compute the distance between each individual fitness value and the cluster centroid.
3. Assign individual fitness value into the appropriate cluster based on the computed cen
4. Recomputed the two-centroid position after assigning the fitness value of the chromoso
5. Re-iterate step 2 3, and 4 until centroid stability is attained and no change is observed
6. The two centroids are compared, and the one with the higher numerical centroid value
7. Terminate the clustering process
or a predefined number of generations elapses, which serves as the
stopping criterion. We summarize the process of IGAROT with elit-
ism in the flowchart of Fig. 3. The major difference between our
proposed IGAROT and the clustering GA with polygamy developed
in [15], in terms of the selection process, crossover, mutation and
elitism is summarized in Table 2.

3.3. Description of the vehicle to infrastructure (V2I) routing protocol

We developed the V2I routing protocol based on the following
assumptions:

1. Each vehicle in the VANET is equipped with a GPS device to be
aware of their respective locations.

2. Each vehicle has a transceiver in order to communicate.
3. Each vehicle can measure its instantaneous velocity via its

speedometer at any time and can transmit this information
via its transceiver to an infrastructure/vehicle.

4. A vehicle transmits road surface information only when it
comes to a halt, or when its slows down below a predefined
velocity.

We present the illustration in Fig. 4 in order to describe the V2I
routing protocol that anchors the proposed IGAROT. In essence, the
entire routing process involves a Source Vehicle, sv , (see Fig. 4)
being able to detect the presence of a road anomaly, and being able
to send this data to a Destination Infrastructure, dv , via multiple
hops. The destination infrastructure receives the sensed data and
hosts it in a database for other vehicles to gain access concerning
the road status and for road maintenance agencies to schedule pos-
sible maintenance routines. The following steps are involved in our
proposed routing protocol:

1. The source vehicle, sv , that senses a road anomaly sends out a
broadcast request to all vehicles within its transmission range
to determine the address of the destination infrastructure dv .
In this case (see Fig. 4), all vehicles within the source’s transmis-
sion range, such as vehicle 1 and 2 in Fig. 4 both receive the
request packet. The structure of the broadcast packet is as
shown in Fig. 5 with a description of each packet field given
in Table 3. The packet contains the Source MAC Address (Smac),
Destination MAC Address (Dmac), Source GPS (Sgps), Source
Velocity (SV) and Generic Destination Flag (GDF) field.

2. All vehicles within the transmission range of the source vehicle
receive the broadcast packet and then examine the ‘‘Generic
Destination Flag” field to determine if the message is for an
infrastructure or not. When the flag is set to 1 (meaning that
it is meant for an infrastructure), the vehicles simply append
the following information to the header of the packet: Hop
MAC Address (Hmac), Hop GPS (Hgps), Hop Velocity (HV) as
shown in Fig. 6 and then rebroadcast the message for onward
transmission towards the infrastructure. During the rebroad-
casting process by each hop vehicle, each vehicle examines
troid distance.
me to a cluster.
in cluster of chromosome fitness value resulting in the GGCC and FGCC
is assigned to the GGCC while the other cluster is assigned to the FGCC



Fig. 3. Flowchart of the Developed IGAROT with Elitism Algorithm.

Table 2
Comparison of the Clustering GA and the proposed IGAROT for Route Optimization.

S/NO GA
Processes

Clustering GA IGAROT

1. Initialization Yes Yes
2. Fitness

Evaluation
Yes Yes

3. Selection K-Means with Less Fit
Chromosome Cluster (LFCC)
Discard

K-Means with Selection
Probability Replacement

4. Crossover
Method

Polygamy and Population
Control

Two-Point Chromosome
Inversion

5. Mutation Bit Reversal or String
Reordering

One-Point Chromosome
Inversion

6. Elitism Offspring Parent Replacement Poor Chromosome
Percentage Replacement

Fig. 4. An Illustration of a Broadcast Request Sent out from the Source Vehicle.

Fig. 5. Broadcast Packet sent from the Source Vehicle.

Table 3
A Description of the Packets Field.

Field Description

Source MAC Address
(Smac)

To identify the source vehicle

Destination MAC
Address (Dmac)

To identify the destination infrastructure

Source GPS (Sgps) To determine the coordinates (Position) of the source
vehicle

Source Velocity (SV) To record the instantaneous velocity of the source
vehicle

Generic Destination
Flag (GDF)

To identify the target destination node, which can
either be Infrastructure or Vehicle depending on the
Generic Destination Flag (1 = Infrastructure,
0 = Vehicle)

Hop MAC Address
(Hmac)

To identify the hop vehicle within the transmission
range which received the broadcast, examined it and
rebroadcast to the next hop towards the destination
infrastructure

Hop GPS (Hgps) To determine the coordinates (Position) of the hop
vehicle

Hop Velocity (HV) To record the instantaneous velocity of the hop
vehicle

Fig. 6. Broadcast Packet sent from the Hop Vehicle.

H. Bello-Salau et al. / Engineering Science and Technology, an International Journal 22 (2019) 754–766 759
the hop fields of each packet in order to determine whether the
originating hop address already exists in the packet or not. If it
exists, the hop vehicle simply discards the packet; else, it
appends its own hop information before onward transmission.
This mechanism helps to prevent the problem of broadcast
flooding within the network. Furthermore, it ensures that the
message from the source vehicle always proceeds toward the
destination infrastructure without looping through the
network.

3. Based on a defined maximum number of hops, the source mes-
sage is transmitted through multiple hops (for example,
through vehicles 1–5 in Fig. 4) to the destination infrastructure
(see Fig. 4). During this process, the initial source packet arrives
at the destination infrastructure along with the different hop
information appended to it.
4. At the destination infrastructure, the infrastructure extracts the
information within the packet. The destination infrastructure
then uses the information within the packet to develop a com-
plete routing table of the entire network as illustrated in Table 4.



Fig. 7. An Illustration of the Optimally Computed Path by the Infrastructure.

Fig. 8. An Illustration of the Optimally Path for Sending the Sensed Anomaly to the
Infrastructure.

Fig. 9. Low Density VANET Communication Scenario.

Table 4
Network Routing Table.

Source Vehicle GPS (Sgps) Generic Destination Flag (GDF) Hop GPS (Hgps) Hop Velocity (HV) Destination (Ggps)
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5. Based on the acquired information about the entire network,
the destination infrastructure uses IGAROT to compute the opti-
mal path back to the source vehicle as shown in Fig. 7.

6. The infrastructure sends an acknowledgement back to the
source vehicle using the optimally computed path, for example,
through vehicle 5, 4, and 2 to the source vehicle in Fig. 7.

7. The source vehicle then uses the optimal path placed within the
acknowledgement packet to send the sensed road anomaly data
back to the infrastructure as illustrated in Fig. 8. The data is
stored in the infrastructure’s database and regularly updated
for future access by other vehicles or by road maintenance
agencies.

8. After convergence has occurred within the network, the infras-
tructure’s database is considered updated based on the current
condition of the entire road network. Consequently, drivers ply-
ing or intending to ply the road network can easily query the
closest infrastructure database to obtain the status of the road
in order to improve driving experience/decision.

4. Method of analysis

We analyzed IGAROT and compared its performance to the
known conventional GA routing algorithm. We considered three
different possible car density scenarios that may exist in a typical
VANET. These are: (1) low car density, (2) medium car density
and (3) high car density scenarios each comprising of 10, 20 and
30 vehicles respectively. These were generated using the uniform
random distribution and deployed within a 1000 by 1000 m
defined physical network space. Our overall goal was to determine
the optimal communication route based on the developed model
presented in (6) based on IGAROT and comparing its performance
to the conventional GA. We show different distributions of car
nodes in Figs. 9–11 respectively in order to demonstrate our con-
cept. Observe how the car density increases in each scenario thus
warranting more cars being involved in the communication pro-
cess. More communicating cars in the network typically compli-
cate the routing process, which we seek to investigate by our
new methods.

We fine-tuned IGAROT and the conventional GA in order to
determine the most suitable parameter values for better solution
and convergence to routes with optimal route metric. The param-
eters of IGAROT tuned are the Crossover Probability (Pc), Mutation
Probability (Pm), Elitism Probability (Pe), Poor Chromosome Selec-
tion Replacement Probability (Ps) as well as the Population Size
(Popsize) and Number of Generation (Numgen). While the GA
parameters tuned are the Pc, Pm, Popsize as well as the influence
of the Numgen on its performance. In fine-tuning IGAROT, the Pc,
Pm, Pe, Ps. Popsize, and Numgen were set to 0.4, 0.01, 0.3, 0.6,
100 and 1000 respectively. We tuned the conventional GA using
the same initial values for IGAROT. The Pc was varied in the range
of 0.1–1 with an increment of 0.1, Pmwas varied from 0 to 0.1 with
an increment of 0.01, Popsize within 20–100 with an increment of
10, Numgen was varied from 100 to 1000 with an increment of
100, Pe and Ps were varied incrementally from 0 to 1 with an incre-
ment size of 0.1. In tuning these routing algorithms, we conducted
100 independent simulations based on the parameter ranges ear-
lier stated. We present in Table 5 the best parameter values aver-
aged over 100 independent simulations. We used these parameter
settings for both IGAROT and the conventional GA in order to
optimize the route metric model in (6). This determines the best



Fig. 10. Medium Density VANET Communication Scenario.

Fig. 11. High Density VANET Communication Scenario.
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reliable communication route to send road anomaly data from the
transmitting vehicle (node) to the destination infrastructure (V2I).

Observe in Table 5 that optimal Pc values of 0.2, 0.4 and 0.6
were obtained for IGAROT for the low, medium and high car den-
sity scenarios, respectively. These values are smaller compared to
the optimal values of 0.5, 0.6 and 0.7 obtained for the conventional
GA for the low, medium and high-density car density scenarios,
respectively. This may be attributed to the statistical nature of
these algorithms. Similarly, it is seen that the best Pm values for
Table 5
Tuned Optimal IGAROT/GA Parameters for each V2I Communication Scenario.

GA Parameter Low Density

IGAROT

Crossover Probability (Pc) 0.2
Mutation Probability (Pm) 0.01
Population Size (Popsize) 60
Number of Generation (Numgen) 600
Elitism Probability (Pe) 0.2
Poor Chromosome Selection Replacement Probability (Ps) 0.5
each of the communication scenario for IGAROT increases as the
number of vehicles increases. A constant value of Pm = 0.03 across
the three scenarios considered was obtained for GA. It can be
inferred that the denser the communication network, the higher
the mutation probability required by the proposed IGAROT. This
introduces diversity in the population to ensure better conver-
gence to optimal solutions. We note that a best Popsize of 60
was obtained for both the proposed IGAROT and GA for the low-
density scenario, which is lower compared to that of the medium
and high-density scenarios with 80 Popsize. A possible reason
may be that the smaller number of vehicles (10) in the low-
density scenario is sufficient to provide the appropriate search
space while the medium density and high-density scenarios are
higher due to the increased number of vehicles involved in the
V2I communication. Furthermore, 200 and 600 Numgen values
were obtained for the GA and IGAROT respectively for the low-
density scenario; this may be attributed to the smaller number
of vehicles involved in the communication process. However, we
note that the algorithms typically require higher Numgen values
in order to converge at global optimum values in the medium
and high-density communication scenarios. One reason may be
that the algorithms tend to lean towards exploring more of the
search space than exploiting. The elitism probability values
obtained to improve the performance of IGAROT are 0.2, 0.3 and
0.4 for the low, medium and high-density scenarios, respectively.
Observe that these values increase steadily as the communication
network becomes denser with more vehicles involved in the net-
work. A logical explanation may be the need to replace poorer sets
of chromosomes in the algorithm as the network becomes denser.
We evaluated both algorithms based on the parameters of this sec-
tion and we report our findings in the next section.
5. Results and discussion

In this section, we present and discuss results based on the
application of both GA and IGAROT for V2I route optimization
problems.
5.1. Application of GA for V2I route optimization

GA with optimal parameter settings as stated in Table 5 was
used to optimize the route metric communication model in (6),
towards determining the most reliable route. An initial solution
for each of the V2I communication scenarios is presented in
Figs. 12–14 for the low, medium and high-density scenarios,
respectively.

Obviously, the routes formed by GA in the initial solution for all
simulations carried out are not optimal. The total route metric after
the first iteration for the low density was 3.3754e�5, while that of
the medium density was 3.2598e�10. These are visualized in
Figs. 12 and 13, respectively. Similarly, after the first iteration for
the high-density scenario, the total route metric obtained using
Medium Density High Density

GA IGAROT GA IGAROT GA

0.5 0.4 O.6 0.6 0.7
0.03 0.02 0.03 0.04 0.03
60 80 80 80 80
200 900 900 1000 900
NR 0.3 NR 0.4 NR
NR 0.5 NR 0.5 NR



Fig. 13. Initial GA Solution for V2I Route Optimization Medium Density.

Fig. 12. Initial GA Solution for V2I Route Optimisation Low Density.

762 H. Bello-Salau et al. / Engineering Science and Technology, an International Journal 22 (2019) 754–766
the GA algorithm as the initial solution was 1.0967e�14 with the
suboptimal route shown in Fig. 14. It is generally observed that
the total route metric obtained using GA decreases as the
Fig. 14. Initial GA Solution for V2I Route Optimization High Density.
communication scenario becomes denser with higher number of
vehicles. It is noted that 100 different independent simulations
were conducted using the same GA optimal parameter settings
and the best, average and least fitness route metric obtained are
summarized in Table 6.

The best, average and the least fitness route metric values for
the low-density communication scenario obtained was
4.6944e�5, 4.3921e�5 and 4.2272e�5 respectively (See Table 6).
This high best fitness route metric compared to the medium den-
sity of 1.4246e�9 and 0.8209e�13 for high density may be attrib-
uted to the small number of vehicles (10 nodes) involved in the V2I
communication as compared to 20 and 30 vehicles involved in the
medium and high density V2I scenarios, respectively. A plot of the
optimal best reliable route formed by GA is shown in Fig. 15, while
Fig. 16 shows the least reliable communication route for the low-
density scenario. The best and least fitness route metric plots for
the medium scenario is shown in Figs. 17 and 18, respectively,
while the high-density scenario is shown in Figs. 19 and 20. Road
anomalies were communicated to the destination infrastructure
using either a single-hop or multi-hop route.
5.2. Application of IGAROT for V2I route optimization

We present in this section the results obtained for IGAROT using
the optimal parameter settings given in Table 5. Figs. 21–23 pre-
sent the initial solutions by IGAROT for the low, medium and
high-density scenarios, respectively. Observe generally that the
initial solution formed after the first iteration by IGAROT converges
to a suboptimal solution. The total route metric obtained after the
first iteration by the algorithm is 3.4156e�5 for low density in
Fig. 21, 3.4457e�10 for medium density in Fig. 22 and
6.9059e�14 for high density presented in Table 7.

The best route metric fitness values of 4.6944e�5, 4.5782e�5
and 4.2822e�5 were obtained for the low-density communication
scenario (See Table 7). Figs. 24 and 25 present the least and best
communication routes for the low-density scenario.

The initial solution formed by IGAROT has higher total route
metric with improved performance compared to the GA. We con-
ducted 100 different independent simulations using IGAROT with
the optimal parameter settings in Table 5. The best, average and
least route metric fitness values obtained for the low scenarios
are attributed to the small number of vehicles (10 nodes) involved
in the V2I communication as opposed the 20 and 30 vehicles
involved in medium and high-density V2I communication, respec-
tively. The best fitness value for the low density reflects the explo-
ration of the search space by IGAROT as compared to GA. We show
in Fig. 24 the least reliable result obtained with suboptimal solu-
tion by the IGAROT for the low-density case. The least and best fit-
ness route metric plots for the medium scenario is shown in
Figs. 26 and 27, respectively. While Figs. 28 and 29 present the
least and best reliable communication routes for the high-density
case. A close observation of the initial solution of Fig. 23 and the
best fitness reliable route for high density presented in Fig. 29
shows a tremendous improvement in the initial suboptimal solu-
tion. The routing protocol used the reliable communication route
to route the sensed road anomalies information from the transmit-
ting vehicle to the destination infrastructure via multihops.
Table 6
GA Best, Average and Least Fitness Reliability for Several Simulations.

Fitness Value Low Density Medium Density High Density

Best Fitness 4.6944e�5 1.4246e�9 1.1150e�13
Average Fitness 4.3921e�5 1.1797e�9 0.9757e�13
Least Fitness 4.2272e�5 1.0348e�9 0.8209e�13



Fig. 15. Best Fitness Reliable Communication Route Low Density (GA).

Fig. 16. Least Fitness Reliable Communication Route Low Density (GA).

Fig. 17. Best Fitness Reliable Communication Route Medium Density (GA).

Fig. 18. Least Fitness Reliable Communication Route Medium Density (GA).

Fig. 19. Best Fitness Reliable Communication Route High Density (GA).

Fig. 20. Least Fitness Reliable Communication Route High Density (GA).
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Fig. 21. Initial IGAROT Solution for V2I Route Optimisation under low car density
scenario.

Fig. 22. Initial IGAROT Solution for V2I Route Optimisation under medium car
density scenario.

Fig. 23. Initial IGAROT Solution for V2I Route Optimisation under high car density
scenario.

Table 7
IGAROT Best, Average, and Least Fitness Reliability for Several Simulations.

Fitness Value Low Density Medium Density High Density

Best Fitness 4.6944e�5 2.1714e�9 5.7750e�13
Average Fitness 4.5782e�5 2.0729e�9 5.0821e�13
Least Fitness 4.2822e�5 1.9818e�9 4.3167e�13

Fig. 24. Least Fitness Reliable Communication Route Low Density (IGAROT).

Fig. 25. Best Fitness Reliable Communication Route Low Density (IGAROT).
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5.3. Comparative performance analysis of the techniques for VANET
route optimization

We present here a comparative performance analysis of GA and
IGAROT based on the model in (6). The average of 100 different
independent simulations are reported in Table 8 using the optimal
parameter settings obtained for each algorithm in Table 5. We sub-
jected both algorithms to the same uniform distribution of nodes
(vehicles) in the physical network space. We recorded and
analyzed the performance of each algorithm based on the best,
average and least route metric fitness values. Table 8 summarizes
the performance of each algorithm.

Observe that both algorithms converged to the same best fit-
ness value of 4.6944e�5 for the low-density V2I communication
scenario (See Table 8). A logical explanation may be the small



Fig. 26. Least Fitness Reliable Communication Route Medium Density (IGAROT).

Fig. 27. Best Fitness Reliable Communication Route Medium Density (IGAROT).

Fig. 28. Least Fitness Reliable Communication Route High Density (IGAROT).

Fig. 29. Best Fitness Reliable Communication Route High Density (IGAROT).

Table 8
Comparative Performance Analysis of GA and the Proposed IGAROT for V2I Route
Optimisation.

Optimization Technique Least Fitness Average Fitness Best Fitness

Low Density Communication Scenario
GA 4.2272e�5 4.3921e�5 4.6944e�5
IGAROT 4.2822e�5 4.5782e�5 4.6944e�5

Medium Density Communication Scenario
GA 1.0348e�9 1.1797e�9 1.4246e�9
IGAROT 1.9818e�9 2.0729e�9 2.1714e�9

High Density Communication Scenario
GA 0.8209e�13 0.9757e�13 1.115e�13
IGAROT 4.3167e�13 5.0821e�13 5.775e�13
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number of nodes (10 vehicles) involved in the network. This
implies that both GA and the proposed IGAROT performed well
and are capable of handling data routing in low-density V2I com-
munication scenarios. However, on the average performance,
IGAROT with a 4.5782e�5 route metric value performed better
compared to GA having a fitness value of 4.3921e�5. Similarly,
IGAROT converged to a more reliable communication route with
a fitness value of 2.1714e�9 compared to the 1.4246e�9 of GA
for the medium density scenario. Also, on the average, IGAROT
with a fitness value of 2.0729e�9 performed better than GA with
a fitness of 1.1797e�9. Furthermore, IGAROT performed better in
terms of the least fitness value for both the low and medium den-
sity scenarios. Observed for the high-density scenario that IGAROT
performed better in terms of best, average and least fitness with
values 5.775e�13, 5.0821e�13 and 4.3167e�13 respectively, as
compared to GA with 1.115e�13, 0.9757e�13 and 0.8209e�13
best, average and least fitness value respectively. Essentially,
IGAROT exhibited an improved performance in routing informa-
tion based on the three different simulated V2I communication
scenarios considered.
6. Conclusion

This paper has presented a route metric model that incorpo-
rates in its design essential parameters such as the received signal
strength, path loss; transmit power and the frequency of commu-
nication. We have addressed the challenge of determining the most
reliable communication route in a V2I VANET. In addition, we have
developed an improved GA technique called IGAROT to ensure
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improved route selection in VANET. Our proposed IGAROT clusters
chromosomes into two non-overlapping groups using iterative K-
Means algorithm. The algorithm then updates the size of the good
chromosome cluster in the initial population size using an elitism
selection probability. We compared IGAROT to the conventional
GA route optimization algorithm based on the design of a robust
communication route metric. From our findings, IGAROT demon-
strated improved convergence performance over the conventional
GA. Based on the average route metric results obtained in Table 8,
IGAROT provided 4.24%, 75.7% and 420% increment over the con-
ventional GA in the low, medium and high car density scenarios,
respectively. In future works, we intend to analyze the design com-
plexities associated with our proposed scheme. In addition, we
shall look at other interesting issues concerning how to implement
IGAROT in real time VANET communication systems. IGAROT pre-
sents greater potentials for use across diverse fields including data
transmission in wireless sensor networks, information routing in
wide body area networks, data classification, robot route optimiza-
tion and other applications. These areas can be explored in future
works.
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