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Method to Correct Intensity Inhomogeneity in MR
Images for Atherosclerosis Characterization

Olivier Salvado, Claudia Hillenbrand, Shaoxiang Zhang, and David L. Wilson*, Member, IEEE

Abstract—We are developing methods to characterize athero-
sclerotic disease in human carotid arteries using multiple MR
images having different contrast mechanisms (T1W, T2W, PDW).
To enable the use of voxel gray values for interpretation of dis-
ease, we created a new method, local entropy minimization with
a bicubic spline model (LEMS), to correct the severe (=~80%)
intensity inhomogeneity that arises from the surface coil array.
This entropy-based method does not require classification and
robustly addresses some problems that are more severe than
those found in brain imaging, including noise, steep bias field,
sensitivity of artery wall voxels to edge artifacts, and signal voids
near the artery wall. Validation studies were performed on a
synthetic digital phantom with realistic intensity inhomogeneity,
a physical phantom roughly mimicking the neck, and patient
carotid artery images. We compared LEMS to a modified fuzzy
c-means segmentation based method (mAFCM), and a linear
filtering method (LINF). Following LEMS correction, skeletal
muscles in patient images were relatively isointense across the field
of view. In the physical phantom, LEMS reduced the variation
in the image to 1.9% and across the vessel wall region to 2.5%,
a value which should be sufficient to distinguish plaque tissue
types, based on literature measurements. In conclusion, we believe
that the correction method shows promise for aiding human and
computerized tissue classification from MR signal intensities.

Index Terms—Atherosclerosis, blood vessels, entropy, magnetic
resonance imaging, splines.

I. INTRODUCTION

AGNETIC resonance imaging (MRI) can be used to
diagnose and stage blood vessel disease by identifying
lumen narrowing in a stenosis, by measuring blood flow, and
by imaging plaque in the arterial wall [1]. At our institution,
we are focusing on the latter in a comprehensive program that
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includes new imaging technologies such as intravascular coils,
high field MRI, imaging agents, and advanced computer image
analysis. Several studies have shown the pertinence of using
MR imaging to characterize atherosclerosis lesions in vivo [2],
[3]. There is good evidence that experts can identify and quan-
tify plaque components such as lipid and fibrous tissue using
multiple MR images having different contrast mechanisms [1],
[4]. Our eventual goal is to create robust, accurate computer
algorithms to perform tissue typing. Our initial application is
the analysis of human carotid artery images.

A critical step for analysis methods relying on voxel gray
values is the correction of the signal intensities across the MR
image. The principal source of the degradation is the spatial
inhomogeneity of coil sensitivity of the specially designed
surface coils. A correction algorithm for carotid artery imaging
faces many challenges. First, the receive coils suffer from a
very steep sensitivity fall-off in the direction of increasing
tissue depth that is much more significant than the variation
across the brain when imaging with a head coil. If not well
corrected, this can confound the examination of the vessel wall
by experts and defeat automatic tissue classification algorithms.
Second, the noise present in the MRI carotid images can disrupt
algorithms. Third, there are many voxels close to the artery
walls that are void of signal, either from fat suppression or
from blood flow compensation. Such voxels do not provide
information about the bias field. Fourth, there are relatively
large skeletal muscle areas in the neck, near the carotid arteries,
that do not include sufficient high spatial frequency content to
separate the variations of the sensitivity inhomogeneity from
the anatomical structures.

Although the predominant cause of the “shading” artifact in
MR images is the sensitivity inhomogeneity of the RF receiver
coils, other sources have been described such as inappropriate
coil tuning, gradient eddy currents, RF standing wave effects,
and RF penetration effects [5]. Simmons ez al. [6] measured also
artifacts induced by different repetition times and echo times.

A widely used model is to lump all the sources in one mul-
tiplicative factor: the bias field. The observed MRI signal Y is
the product of the true signal X generated by the underlying
anatomy and spatially varying field factor B and an additive
noise N. At the pixel i, we get

yi = Tibi + n;. (1

Given the observed image Y, the problem is to estimate the
true image X . The solution is not trivial since the bias field B
is also unknown.
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When phased array coils are used, the shape of the bias field
can be complex and the fall off very steep, as compared to a head
cage coil. A low-order polynomial model for B does not de-
scribe accurately the intensity spatial inhomogeneity, and higher
order polynomial functions can exhibit undesirable behaviors.
A mechanical thin plate model can be used, but the optimiza-
tion becomes computationally heavy. More flexible models for
B increase the number of parameters to estimate, necessitating
assumptions on X . The most common assumption on X is that
there are piece-wise homogeneous regions in the image, and a
classification scheme is commonly used. When a steep spatial
dependence of the signal intensity and noise is present, classi-
fication methods can fail because the optimization is performed
across the whole image including areas with low sinal-to-noise
ratio (SNR). Most methods reported in the literature have been
designed for brain imaging where the intensity inhomogeneity
is relatively mild (typically around 20%, almost always <40%).
There are relatively few validation studies of methods to accu-
rately correct significant intensity inhomogeneity. Below, we re-
view existing methods, especially with regard to carotid artery
imaging and the special problems it presents.

Some correction techniques rely on measuring the coil sen-
sitivity function using a physical phantom [7], [8] or model it
using Biot and Savart’s law [9]. These sensitivity functions can
then be used to correct subsequent in vivo images. These ap-
proaches can correct for coil sensitivity but they do not cor-
rect for other sources of intensity inhomogeneity, as identified
above. Another approach is to obtain an additional MR image
from a body coil having a uniform sensitivity response. Dividing
the image from the phased array coils by this image obtained
with uniform sensitivity, one can obtain the bias field [10], [11].
Similar approximation is often used to estimate the sensitivity
matrix in parallel imaging [12]. In the context of vessel wall
imaging, the extra body coil images add significant imaging
time to acquire and/or are too noisy to be used without addi-
tional processing.

Many image processing methods have been proposed to es-
timate the bias field directly from the image Y. To separate the
underlying “true” image, X, from the bias field B, assumptions
can be made on X and/or on B. We shall now focus our discus-
sion on those assumptions and seek the most relevant ones for
vessel wall imaging.

A key observation is that the bias field is smooth compared
to a typical MR image and most, if not all, methods rely on this
fact. The smoothness of B can be constrained in the frequency
domain assuming that its spectrum contains low frequencies that
do not significantly overlap with the relatively “high frequency”
image spectrum. This method is very attractive since no other as-
sumption on X or B is necessary and well-known low-pass fil-
tering schemes can be implemented. One drawback is the edge
artifacts that can result, but algorithms have been proposed to
mitigate these effects [13]-[16]. For example, Vorkura et al. pro-
posed a scheme based on integrating well-chosen derivatives
of the image [16]. When phased array coils are used, the sen-
sitivity inhomogeneity gradient can be very steep, and the re-
quirement for nonoverlapping spectra may not be met. In addi-
tion, signal voids near the vessel wall challenge any method to
reduce edge artifacts. Nevertheless, we considered low pass fil-
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tering techniques in our research because of their simplicity and
robustness.

Attempts have been made to separate B and X in the image
domain by constraining B to be smooth using a model. Proposed
models, in order of increasing expressiveness, are: polynomial
functions [17]-[20], discrete cosine transform [21], splines
[22]-[25], thin plates like constrained membrane [26], [27], and
smoothed residual [28]-[32]. As more degrees of freedom are
added, the methods become more computationally demanding
and local minima in the optimization can become problematic.
Because the bias field obtained with phased array coils can vary
as much as 80% across the image (as measured by us and others
[33]) and are summed of multiple coils, its shape cannot be
accurately modeled with a low-order polynomial. Higher order
polynomial functions when fitted to strongly varying bias field
can lead to spurious artifacts. When a high-order polynomial
function is fitted to data that are not evenly spread across space,
the polynomial can fit well in regions of closely packed data
points but vary wildly in other regions where data are scarce.
Better models are a bicubic spline or thin plate membrane. We
used the latter in recent publications [27], [34], but to reduce
the computational burden while maintaining expressiveness,
we use bicubic spline in this paper.

Assumptions on X have also been used. Often one makes the
reasonable assumption that the image consists of a finite number
of tissue types and that piece-wise homogeneous regions are
present. Classifications schemes can then be used that embed
a model for B. Dawant et al. [20] manually segmented rec-
ognizable tissues; Wells [28] extended the framework of max-
imum likelihood classification to include a bias field, and this
innovation led to many refinements [21], [23] [29]-[32]. Fuzzy
c-means has also been modified to include a bias field [26],
[35]; other tissue classification techniques have also been ap-
plied [18]-[20], [22]. All of these techniques determine clusters
in feature space. Due to the very high intensity inhomogeneity
present with phased array coils, clusters are spread over large
regions in feature space, thus increasing the sensitivity to ini-
tial conditions and local minima. We have recently published a
modification of the fuzzy c-means algorithm proposed by Pham
et Prince [26], that circumvent these problems [27], [34]. We
achieved good results, but some difficult cases lead us to de-
velop the new method that will be quantitatively compared to
fuzzy c-means.

Some researchers do not segment the image into classes; in-
stead, they maximize the information content in X. Sled et al.
[36] describe a deconvolution algorithm whereas Likar et al.
[37] and Mangin et al. [25] propose an entropy minimization
technique. The first method has become popular since minimal
assumptions are required, and it achieves good results. How-
ever, the bias field is assumed to be normally distributed which
is not the case when phased array coils are used. The two latter
methods are also very attractive since no classification of the
image is necessary. Likar et al. model the bias field with a poly-
nomial function, which is insufficiently expressive for phased
array coil imaging. Mangin et al. use a spline model for the bias
field and the optimization is done with a stochastic annealing
algorithm. In all three methods, optimization is performed over
the entire dataset, regardless of SNR variation.
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It is our experience that carotid artery images obtained with
surface array coils challenge existing methods. Linear filtering
methods gave significant edge artifacts in the vessel wall be-
cause of the step edge created by a lumen void of signal. With
methods based on histogram modeling, such as Fuzzy c-means,
we experienced convergence problems, especially in noisy im-
ages, and very long computation times. In the case of the method
by Likar et al., with our implementation we experienced conver-
gence issues, and the corrected images often had visible inho-
mogeneity, probably because the optimization was trapped in a
local minimum.

We propose a method that builds upon work in the literature
and addresses issues with the carotid artery images. To avoid
the drawbacks of classification schemes, we minimize entropy.
To avoid the corruption from low SNR regions, we optimize en-
tropy locally, starting with high SNR areas and merging areas
with lower SNR in a sequential fashion. So as to be able to
control expressiveness and account for the steep signal inho-
mogeneity, we use a bicubic spline model for B, which enables
one to control smoothness with proper knot spacing. We care-
fully evaluate algorithms using synthetic, phantom, and patient
images, and experimental methods and results are given in Sec-
tions III and IV. We next describe the new algorithm.

II. ALGORITHMS

Below, we first give an overview of the algorithm. This is fol-
lowed by an illustrative, one-dimensional (1-D) example in Sec-
tion II-B. This is followed by many details of the implementa-
tion (Section II-C). We then describe how we choose algorithm
parameters in Section II-D. In the last subsection, we briefly de-
scribe some other algorithms to which we will compare results.

A. Overview

We first identify all tissue voxels and filter the image to re-
duce noise. We fit a fourth-order polynomial function to the
tissue voxels so as to provide a rough initial estimate of the bias
field, BO. Air voxels in the background are excluded because
they are void of signal. For the refined description, we model
the bias field, B, as a bicubic spline with a rectangular grid of
knots evenly spaced across the image. The spacing of knots is
important: knots should be sufficiently close to ensure that the
bias field can be adequately expressed and far enough apart that
the estimated surface will not contain anatomical structures in
the images. Spacing is related to the receiver coil geometry and
is optimized in experiments described later. We use the values
of the initial polynomial estimate of the bias field at the knot lo-
cations to initialize the bicubic spline bias field.

We now describe the piecewise optimization process which
makes the use of a bicubic spline model tractable. We iden-
tify the knot k1 having the highest corresponding B0 value and
begin optimization there. The signal from the coil at this loca-
tion is high and the high local SNR ensures that we will get a
good local estimate of B. For simplicity, we describe this knot
as having the highest SNR, although this is not strictly true from
(1), which gives SNR = BX/N. The neighborhood of this
knot, {21, is bordered by its eight neighboring knots in such
a way that neighborhoods overlap. We optimize a single param-
eter, the amplitude at the knot location so as to minimize the
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Fig. 1. One-dimensional example. The original signal X with five classes is
shown in (a) and its histogram in the bottom of (c). A Gaussian bias field mul-
tiplies X to simulate the effect of the intensity inhomogeneity B of a RF coil
located on the left of the data, and normal centered Gaussian noise with standard
deviation 1 (SNR ranges from 40/1 on the left to 5/1 on the right) is added. The
resulting signal Y = BX + N is shown in (b) with its histogram in (c) top.
(d) Corrected data, (e) initial bias field B0 with its knots marked as “+,” the es-
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timated bias field after two passes with its knots marked with “o”, and the true
bias in dashed line. (f) Represents the histogram of the corrected data showing
the strong overlapping of the classes under noisy condition.

entropy of the corrected image, X = Y/B, within (2. The
knot k2 having the next highest SNR in its neighborhood, (22,
is now identified. The entropy of X in the region (21 U {25 is
now optimized by adjusting the amplitude at k2. Next, the re-
gion with the third highest SNR region is determined, and again
the knot amplitude is optimized so as to minimize the entropy
within the three merged regions. The process continues until all
knots have been optimized. Additional passes are performed,
starting again with the region having the highest SNR and pro-
ceeding in the same piecewise manner. The process stops when
either the knots or the image entropy do not change significantly,
or the maximum number of passes is reached. Note that since
the bias field is a relatively smooth function, there are typically
no “holes” in the merged regions. We call this method LEMS
for Local Entropy Minimization with bicubic Spline model.

B. One-Dimensional Example

A 1-Dillustrative example is shown in Fig. 1. The data X have
been generated by digitizing a sine wave such that five classes are
evenly spread across the y-axis. A Gaussian bias multiplies X to
simulate the effect of the sensitivity inhomogeneity B of a RF
coil located on the left of the data. Gaussian noise is added. Fig. 1
shows the result after two passes of the bias field correction al-
gorithm. The corrected data [Fig. 1(d)] are very close to the true
data[Fig. 1(a)] while the bias field estimated matches almost per-
fectly the true bias [Fig. 1(e)]. The five original classes are clearly
seen as five peaks in the final histogram even when the classes
overlap in the presence of noise. In this simple example the knots
are optimized from left to right, since assuming an additive noise
to the data (1), the SNR is higher where the RF coil sensitivity
is higher, i.e., on the left of the graphs. This simulation exempli-
fied the good behavior of the algorithm under noisy conditions.
InFig. 1(e), the estimated bias field is closer (as measured by per-
cent error) to the true one at the left of the graph where the signal
amplitude, and SNR, is highest. This property is exploited in our
algorithm, as described previously.
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C. Implementation Details

1) Tissue Segmentation: Image processing is used to auto-
matically identify all the tissue voxels in the neck. First, we iden-
tify all the air voxels outside the neck. We use region growing
with “regional” seeds at the top corners of the image, where air
is always present. From the seed regions, we estimate the mean,
1y, and the standard deviation, o}, of the air background. Con-
nected pixels are included in the background if their value is less
than p1, + 3o0p,. The algorithm stops when no more pixels fulfill
this criterion.

Second, a fuzzy membership mask image, M, is created
with a label of one for tissue voxels, zero for signal voids (e.g.,
air or flow suppressed voxels), and a value between zero and
one for partial volume voxels. Criteria for these selections are
listed below, where o}, is an updated estimate following region
growing

yi < py + aoy, m; = 0, background voxels

py + aoy <y < pp +boy, ™My = %
wy + boy < i, m; = 1, tissue voxels

2)

The parameters a and b, are manually adjusted depending on
the level of noise in the image. For most of the images that we
tested, we used a« = 2 and b = 4. For very noisy images we
used e = land b = 2.

Third, the fuzzy membership mask M is cleaned so as to
remove incorrectly identified background voxels. M is thresh-
olded to yield a binary mask for M > 0. The resulting bi-
nary image is processed using opening to remove small islands
of pixels and closing to remove small holes. The largest con-
nected component (tissue voxels in the neck) forms a binary
mask. By multiplying M with this binary mask, the background
is cleaned.

We use M in subsequent processing. We use only tissue
voxels (M = 1) in the calculation of the entropy for estimating
the bias field. Signal void voxels are not used because there is
no information about the bias field. When correcting the image
with the estimated bias field, the signal at each voxel x; will be
corrected using

m;y;

b;

which accounts for the partial volume effect

The noise standard deviation in the image is estimated from
the noise in the external air background as obtained with region
growing. When no signal is present, the noise has a Rayleigh
probability distribution function [38], and the standard deviation
of the background voxels oy, is related to the standard deviation
of the noise o, as o, = o0, X 0.655. Hereafter, we use this
estimate for o,,.

2) Noise Reduction Filtering: Noise reduction filtering is
done using anisotropic diffusion [39], as modified by Black et al.
[40]. The equations we use for filtering are given below where
B0 is the initial bias field estimate

+ (1 = m;)y; 3)

Tr; =

oy

5 =~ VUlIVY =VBO|)(VY — VB0)) )
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where g(z)=qL "1

5 |X| S OAD - (5)
0, otherwise
We use o4p = 20,v2 and nine iterations; other details

are described in previous publications [27], [34]. We used the
method by Black et al. which includes the bias field gradient
because it reduces artifacts in the filtered data. And, as com-
pared to the original method, it had no measurable effect on the
bias field estimation.

3) Bias Field Model: A two-dimensional (2-D) polynomial
function of order Np is used to provide an initial estimate of the
bias field, BO

N
BO:Z

p
n=0

Np—n
Y ™y ©)
m=0

The polynomial function is fitted in a least square sense to the
tissue pixels using a classic regression technique.

To improve upon the description of the bias field, we use a
bicubic spline model [41] as implemented in the Matlab spline
toolbox (The MathWorks, Natick, MA). To initialize this esti-
mate, we take the value of B0 at the knot locations. After each
optimization step, we divide the bias field B by a constant so
as to ensure that its mean over the tissue voxels is 0.5. This en-
sures that the brightness and histogram of the corrected image
is stable.

4) Entropy Optimization: The bicubic spline estimate of the
bias field is optimized so as to minimize the entropy of the image
using the piecewise, optimize and merge algorithm described
previously. Entropy is given below where P D F'x (1) is the prob-
ability density function of X, which is approximated by the his-
togram of the voxels in the area being optimized, divided by the
number of voxels

H=-—

>

le{gray levels}

PDF () log[PDFx(D)].  (7)

Optimization is done using a golden section search and par-
abolic interpolation [42], as implemented in the Matlab opti-
mization toolbox (The MathWorks Inc, Natick, MA). The prob-
ability density function in (7) is approximated at each step in the
process from the gray value histogram from the corrected image,
X, using a binning resolution of half a gray level value. The op-
timization of some knots requires special attention. If the knot
region does not include at least 300 tissue voxels, the knot is left
unchanged. This can occur at the border of an image as well as
in large regions of air such as in the trachea. The value of 300
was experimentally determined to give a reasonable number of
knots that can be modified while providing a statistically signif-
icant entropy measure. Very little difference was obtained with
a value of 200, indicating that the algorithm is not overly sensi-
tive to this parameter.

5) Algorithm Parameters: There are relatively few free pa-
rameters in the algorithm. A principal one is the knot spacing.
On the one hand, knot spacing should be small so as to describe
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the shape of the bias field. On the other hand, the distance be-
tween the knots should be greater than the size of anatomical
structures. Else, when entropy is minimized, the estimated bias
field will inappropriately contain anatomical structure. In addi-
tion, as one decreases knot spacing, the computational load in-
creases. The relative position and geometry of each receiver coil
affects the shape of the bias field; hence, it is more appropriate to
measure the knot spacing in millimeters than voxels. We exper-
imentally determined that bias field estimation was not overly
sensitive to knot spacing; a value of 21 mm worked well in all
cases for the receiver coils that we use. For tissue segmentation,
we set (a,b) = (2,4) when the SNR was high (typically PDW
and T1W data) and (a,b) = (1,2) for low SNR datasets (typ-
ically T2W). For filtering, we used o 4p = 20,2 and nine
iterations. For the initial estimate of the bias field, we used a 4th
order, 2-D polynomial function. We used a stopping criterion of
<0.1% entropy changes for optimization, in most of the cases
the optimization stops upon reaching a fixed maximum number
of iteration, typically four. For actual patient data, images were
cropped to remove aliasing artifact and air region. For a typical
patient dataset with a knot spacing of 21 mm and an in-plane
resolution of 0.51 mm x 0.51 mm, the final number of knots
was 4 rows by 8 columns, or 32 knots. To compute the bias field
with the cubic spline, we used the variational or natural bicubic
spline interpolant where the second derivatives at border knots
are set to zero [43].

6) Other Algorithms: We compared the LEMS method to
other algorithms in the literature. One was a modified version
of the adaptive fuzzy c-means originally proposed by Pham and
Prince [26] that we recently described [27], [34]. Briefly, the
method models the bias field as an elastic thin plate membrane,
which is closely related to our bicubic spline model. The method
seeks to identify tissue types (typically four or five in our data
set), defined by their mean intensities. It is an iterative algorithm
that minimizes the functional

Enarcom
N,
= (ugz,nyj—un||2+2u§k||yj—ijk||2 + uo]ﬁ?)
JEQ k=1
M M M
+aY D (De@b)j+AY D D (D,eD®b); ()
JEQ r=1 JEQ r=1s5=1

where y is the signal measured, u;;, is the membership func-
tion for the voxel j to the class &, IV, is the number of classes,
b is the bias field, and vy is the gray-scale center of cluster
k. The first term of the LHS is the background class identi-
fied by thresholding. To make the original algorithm more ro-
bust to noise and voxels subject to partial volume effect, we
have added an outlier class in the form of the third term of the
LHS. The second line of the LHS describes an elastic mem-
brane and a thin plate membrane terms that constrain the bias
to be smooth. D, and D are convolution kernels to compute
the first and the second derivative. Unknowns u, v and b are op-
timized sequentially using zero-gradient conditions until class
centers converge to stable values [34]. Hereafter, we call this
method the modified fuzzy c-means segmentation based method

(mAFCM). Parameters were chosen so as to give the best perfor-
mances across the testing sets. When the maximum number of
iterations (300) was reached, most often a bad solution was ob-
tained with obvious misclassifications. Typically, the algorithm
converged within 100 iterations to a good solution. The rela-
tively stringent criterion for convergence was that the Euclidian
distance between consecutive class centers did not change more
than 0.01%. Parameters o and 3 were set to 5 x 10° and 5 x 10*
respectively; p was set to 2; and initial class centers were spread
linearly between the background and the maximal intensity.

A second method is a widely used linear filtering method
described by Murakami et al. [11]. This method separates the
signal X from the bias field on the frequency domain using
linear filtering, and it will be called LINF. The method divides
an image without bias field Ipc acquired with a body coil, by
the same image acquired by the phased array coil Ipy . Prior to
division only the low frequencies are kept: B = LPF(Ips)/
LPF(Ipc), where LPF(-) is a low-pass filter implemented by
convolving with a Gaussian kernel with a standard deviation of
13.5 mm, which was manually determined as giving the best
performance. Ipc is approximated by a binary image from the
tissue segmentation step, and Ipy is the observed data Y.

III. EXPERIMENTAL METHODS

A. Two-Dimensional Synthetic Phantom

A 256 x 256 image was generated with three tissue classes
having gray values of 50, 100 and 150. Features in the image
were created to mimic tissues distributed throughout a human
neck. This image was the ground truth, X, ... MR scans were
obtained of a homogeneous, saline-filled, cylindrical phantom
about the size of a human neck. These images were acquired
using the phased array surface coils and the resulting image,
after normalizing the maximum value to one, gave the true
bias field (Biue). The final synthetic image was obtained by
multiplying Xiue by Birue. Voxels were set to a low value
of 20 to simulate air at four disks inside and in the region
outside the pseudo neck. To add noise, the synthetic image
was Fourier transformed, summed with a normally distributed
noise on both real and imaginary parts, and inverse Fourier
transformed. SNR was measured as the ratio of the image
noise standard deviation to the highest class intensity (150)
in the image domain. For every test case, ten noise realiza-
tions were generated, and results were displayed with means
and standard deviation error bars. The corrected image and
the estimated bias field were compared to Xy ye and Bipye,
respectively. Since we were most interested in the correction
of the vessel wall, we quantified the correction by measuring
the maximal signal variation in the corrected image, X, within
a five pixel annulus surrounding each of the four lumens. This
vessel wall error was expressed as a percentage of Xiue
100[max((X — Xirue)/Xtrue)— min((X — Xirue)/Xtrue)]-
We also computed the global error across the entire image using
the formula 100 x STD(X — X¢rue)/MEAN(X¢yye ), Where
STD(-) and MEAN(+) are the standard deviation and mean, re-
spectively. The vessel wall error measures the maximum signal
variation in a small area, whereas the global error measures the
average variation across the corrected image.
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B. Physical Phantom

We created a physical phantom so as to test the entire process
of imaging and bias field correction. Four aqueous solutions
with different concentrations of agar (0.5%, 1.0% 2.0% and
4.0%) and 10 mM of CuSO4 were used to simulate physiolog-
ical T1 and T2 values. Next, 15-mm plastic tubes were filled
with the gel solution and placed into a cylindrical plastic con-
tainer about the size of the human neck, which was then filled
with a 10 mM CuSO, aqueous solution. Small empty plastic
tubes (8 mm diameter) were added to simulate artery lumens.
A tube filled with sesame oil was used to evaluate the fat sup-
pression technique. The phantom was imaged with the same
T2W sequence used for human imaging, as described in the next
subsection.

The physical phantom lends itself to quantitative evaluation.
After bias field correction, one expects to find the same MR
signal value for each tube containing the same solution. To eval-
uate this, we manually segmented the tubes and computed for
each tube the mean and standard deviation of its gray values.
Statistical t-tests were subsequently performed to test the null
hypothesis that the signal intensity of each tube was equal to
the mean intensity of all the tubes of the same type, at the confi-
dence level of 0.01. Since the ground truth image is not known,
a global region of interest (ROI) error was computed by mea-
suring the signal variations of each solution’s ROIs across the
image: 100 x [max(ROIs) — min(ROIs)]/mean(ROIs). We
excluded some outlier ROIs, which had very low signal inten-
sity before correction and which are identified in the legend of
Fig. 6.

C. Actual Patient Data Images

Sixteen patients with carotid artery stenosis, as docu-
mented by duplex ultrasound, were recruited for the study.
Informed consent was obtained from all subjects under
a protocol approved by the institutional review board for
human investigation. All MR scans were conducted on a
1.5 T system (Magnetom Sonata; Siemens, Erlangen, Ger-
many) with a custom-built phased array coil. Dark blood
images were obtained using ECG-triggered double inver-
sion recovery (DIR) turbo spin echo sequences. Imaging
parameters (TR/TE/TI/NSA/thickness/FOV) were as fol-
lows: TIW: 1R-R/7.1 ms/500 ms/2/3 mm/13 cm; PDW:
2R-R/7.1 ms/600 ms/2/ 3 mm/13 cm; T2W: 2R-R/68 ms/
600 ms/2/3 mm/13 cm. Fat saturation was applied. The in plane
resolution was 0.51 x 0.51 mm?2. Two phase array receiver coils
were used. Each one is made of two overlapping rectangular
loops (53 mm x 60 mm). The overall dimensions of each array
are 60 mm x 103 mm. The two coil arrays are positioned on
each side of the patient’s neck and held in place with Velcro
straps. Images were the magnitude of the sum of the squares
of the four receiver coils. Images were cropped by removing
the bottom 25% of the image corresponding to the posterior
of the neck where low SNR and aliasing artifacts from the
anterior portion of the image are found. Image quality was
rated as poor, average, or good by an experienced reader. Poor
quality image volumes with motion artifacts or very low SNR
were removed from the study. This left 11 patient studies with
a total of 288 images. Grouping images by SNR, there were
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32%, 36%, 21%, and 11%, of images with SNRs near 10, 20,
30, and 40, respectively. SNR was computed as the ratio of
the average sternocleidomastoid muscles signal to the noise
standard deviation as estimated from air.

To quantify our ability to correct patient images, we assumed
that skeletal muscle should have constant signal values across
the neck. We manually created ROIs around the left and right
sternocleidomastoid muscles as well as the left and right deep
neck muscles. For each correction algorithm, mean and standard
deviations were determined and used to compute a global ROI
error in a manner similar to that for the physical phantom. We
also measured the corrected signal percent difference between
the left and right sternocleidomastoid muscles by computing the
absolute difference between ROI means and dividing by the av-
erage. Box and whisker plot are used, where the box has lines at
the lower quartile, median, and upper quartile values. Whiskers
are lines extending from each end of the box to show the ex-
tent of the data +/—150% from the box. Outliers are data with
values beyond the ends of the whiskers.

To further demonstrate the quality of the method, multiple
corrected patient images (T1W, T2W, and PDW) were seg-
mented using a maximum-likelihood classification technique.
Both PDW and T1W histograms were modeled as a sum
of three Gaussian distributions to represent the main tissues
found in the neck (skeletal muscles, fat suppressed tissues, and
connective tissue and bones); a Rayleigh distribution to model
the background containing noise; and an uniformly distributed
outliers class to encompass pixels subject to partial voluming,
sparse high intensity normal tissues, and pathological tissues.
This combination was found to fit the histograms. For T2W
images, only two Gaussian tissue classes were used. Parameters
for the distributions were estimated using the expectation-max-
imization algorithm [44]. Crisp segmentation was performed by
labeling each pixel with its most likely tissue class. Resulting
segmented image were visually checked for isointense skeletal
muscles.

IV. RESULTS

A. Results From the Synthetic Phantom Experiments

Fig. 2 shows the LEMS method applied to the synthetic
phantom. To illustrate the algorithm, Fig. 2(a)—(f) are displayed
following the optimization of the second knot in the second
pass of optimization. The histogram clearly shows three tissue
classes. The profile has been flattened, and there is no visible
shading artifact on the corrected image in Fig. 2(b). Typically,
we would run two more optimization passes before getting the
final result.

Fig. 3 shows how algorithm parameters were optimized for
LEMS. Fig. 3(a) shows vessel wall error as a function of the
order of the 2-D polynomial function when it is fit to the bias
field measured on a homogeneous physical phantom and not pa-
tient data. Error decreases with increasing order. A fourth order,
2-D polynomial function with 15 parameters gave an error of
3.2%, showing that a relatively high-order is needed to well de-
scribe the bias surface. In Fig. 3(b), vessel wall error following
LEMS correction of the synthetic image data is plotted as a func-
tion of knot spacing. Results begin to deteriorate with a knot
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Fig. 2. Application of the LEMS correction method to the synthetic phantom. All results are shown at the beginning of the second pass so as to better illustrate
the algorithm. The original image Y, in (e), is corrected by the current bias estimate in (c), which also includes a graphic overlay showing knot locations marked
with an “o” and the current knot being optimized marked with a “4”. The current corrected image X is shown in (b). (f) Shows the areas where the entropy is
computed at this time step; the new area corresponds to the current knot being optimized in white while the gray area shows the optimized area from the previous
knot optimization. Both areas are merged to compute the entropy of the corrected image X in (b). The histogram in (d) shows the distinct peaks for the three classes,
and these will continue to “sharpen” with subsequent iterations giving improved entropy, whereas the profiles (a) show the refinement of the original bias estimates
(B0). The SNR for this simulation was 15 for the class having the highest gray value.
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Fig. 3. Optimization of parameters in the LEMS algorithm. In (a), vessel wall
error (in %), as defined in Section III, is plotted as a function of the order of the
polynomial for the initial estimation of the bias field when fitted to the true bias
field. This represents the best achievable bias modeling by a polynomial func-
tion. Error computed over the entire image reduces in a similar fashion with
increasing order of the polynomial. In (b), lumen error (left axis in %) and com-
putation time (right axis in seconds) are plotted for the LEMS method as a func-
tion of knot spacing. The image had a size of 192 X 256 voxels; the left most
case of 15-mm knot spacing represents 63 knots, whereas the right most case
with a knot spacing of 33 mm had 12 knots. Knot spacing has relatively little
effect on error over a range from 13 mm to 24 mm. Computation time is for four
passes of the optimization algorithm. Code is written in nonoptimized Matlab
code and run on a 2.4-GHz Pentium IV; hence, absolute times are less important
than the trends observed as one increases the number of knots.

spacing >25 mm. There is little difference over the range of
15 to 25 mm, indicating the relative insensitivity of the algo-
rithm. Other tests on the physical phantom (not shown) lead us

to consider a knot spacing of about 21 mm for the phased array
coils used in the neck images. Computation time decreases as
the number of knots decrease, as shown in Fig. 3. Code is written
in nonoptimized Matlab code and run on a 2.4-GHz Pentium I'V;
hence, absolute times are less important than the trends observed
as one increases the number of knots. Experiments in Fig. 3(a)
and (b) were done on the same data, allowing us to compare
a polynomial function to that of a bicubic spline. The bicubic
spline optimized with LEMS achieves an error comparable to
a fifth-order 2-D polynomial function having 21 parameters. In
this experiment, the 2-D polynomial is fitted to a homogeneous
phantom. When it is used on an anatomical MR image, its be-
havior is significantly degraded.

In Fig. 4(a), vessel wall errors are presented for corrections of
the synthetic phantom with LEMS, LINF, and mAFCM, as well
as correction with B0. Image SNR values vary across the hori-
zontal axis of the graph. LEMS outperforms the other methods
in every case, giving a vessel wall error of 4.13% or less for
SNRs exceeding 10. This value after correction compares very
favorably with the 40% vessel wall error before correction. For
reference, the worst case SNR for the T2W patient images is
about 10, whereas a worst case of 20 is more typical for TIW
and PDW datasets. Across the entire field of view, LEMS out-
performed the other methods and gave 2% global error, or better,
for SNRs exceeding 10 [Fig. 4(b)]. Again, this is a remarkable
improvement to the 44% before correction. Note that the global
and vessel wall errors are not comparable because they are com-
puted in different ways. Fig. 4 also shows the influence of the
filtering step: errors are significantly decreased when image data
are prefiltered, especially at low SNR. This improvement is true
for LEMS but also for mAFCM. Typical processing times for
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Fig. 4. Comparison of bias correction methods applied to the synthetic
phantom. Vessel wall error (a) and Global error (b) are plotted on a logarithm
scale for the three different bias correction methods, as well as for the initial
bias B0. Errors are also reported for mAFCM and LEMS with no prefiltering.
Values are obtained as a function of decreasing SNR for the class 150. The
right most value, labeled N/A is the noise free case.

LINFIL, mAFCM and LEMS were 0.2 s, 130 s, and 70 s respec-
tively for the 256 X 256 synthetic phantom. Our implementation
of LINFIL uses optimized executable filtering functions from
Matlab, whereas the two others are written with much slower
Matlab scripts.

B. Validation Results With the Physical Phantom

We evaluated the imaging and correction algorithms using
the physical phantom consisting of vials containing four dif-
ferent solutions providing four different “tissue” classes spread
throughout the phantom. Fig. 5 shows the result of the LEMS
correction. All the tubes filled with the same solution are
isointense across the image as seen in the images as well as the
horizontal profiles [Fig. 5(h)]. Distinct peaks arising from the
different solutions are clearly seen on the histogram of the cor-
rected image [Fig. 5(e)]. The peak with the highest intensity on
the histogram corresponds to the doped water filling between
the tubes. Two peaks overlap significantly around intensity
level 600/650. The LEMS method achieved close to optimal
performance in this experiment. The bottom of the corrected
image shows a residual intensity shading artifact, where the
measured signal intensity was the weakest. Thanks to the
ordered, piecewise, merged region optimization method, these
problematic areas do not significantly impact other high SNR
regions. In our experience, other global optimization methods,
such as mAFCM, can suffer from the problem areas.
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Fig. 5. Correction of physical phantom using the LEMS algorithm. Shown are
(a), (b), and (c) images, (d), (), and (f) histograms, and (g), (h), and (i) horizontal
profiles from the middle of the images, for the original phantom [(a), (d), and
()], the corrected image [(b), (e), and (h)], and the estimated bias field [(c), (f),
and (i)]. After correction, (h) the profile is clearly leveled, and the four class
values for the tubes as well as the class corresponding to the doped water filling
are clearly seen on, despite the fact that two solutions overlap significantly in (e)
the histogram. The faint curves surrounding the vials in the phantom are from
pieces of tape used to construct the phantom. Algorithm parameters are given
in Section II-D.

The performance of the three bias correction methods on
the physical phantom images are compared in Fig. 6. LEMS
is clearly superior to LINF and mAFCM, even in this case
where the phantom consists of piecewise homogeneous areas
from a known number of classes, a situation which should
favor mAFCM. Global ROI errors for LEMS were 6.7%, 2.4%,
1.8%, and 3.5% for the 0.5%, 1.0%, 2.0%, and 4.0% solutions,
respectively. Comparing the three method LEMS, mAFCM,
and LINF, the global ROI error averaged over the four solutions
were 3.6%, 18%, and 12.5%, respectively.

C. Patient Carotid Artery Images

PDW MR images before and after LEMS correction are
shown for a healthy volunteer in Fig. 7. The corrected image
is visually free of intensity inhomogeneity artifacts. Skeletal
muscles are isointense across the neck and the carotid arteries
are much more visible than in the original scan. Arteries are
also isointense with respect to the skeletal muscles as expected
from previous study [45].

The method was applied to PDW, T1W, and T2W MR pa-
tient images (Figs. 8—11). The LEMS method works well on the
T1W and PDW images, but it works less well on very noisy data
typical of T2W image. In Fig. 8, we determined that the bias
field estimated from the PDW image can be used to correct the
T2W image. Results are visually and quantitatively improved
using this correction scheme. The average on the 10 slices of the
signal variation between the two muscles reduces to 3% using
the PDW estimate, from 5.71% using the T2W data.

We quantitatively evaluated correction methods by measuring
their ability to make the skeletal muscles isointense across the
patient images (Fig. 9). For all 288 patient images, the signal
intensity variations between left and right sternocleidomastoid
muscles are plotted as a function of the image SNR. The LEMS
method performs best, and it is the only method improving upon
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Fig. 6. Quantitative comparison of the three bias correction methods (LEMS, mAFCM, and LINF) applied to images of the physical phantom. The three methods
are shown in the left, middle, and right columns, respectively. Bar graphs along the bottom row are plots of the means and standard deviations of gray values
for ROIs within the vials. LEMS clearly creates the flattest image and bar graph values having the least variation within each of the four classes. (The class
corresponding to water and the background are not shown.) To test the ability to discriminate classes, we applied a t-test to the data values in the bar graphs. Stars
indicate ROIs for which the null hypothesis (ROI equals to mean of ROIs) cannot be rejected at the 0.01 significance level. LEMS has the most stars indicating
good identification of the classes. Even in the case of LEMS, the correction at the bottom of the image is degraded because the original signal level is low here.
This sub-optimal correction gives rise to outlier measurements in the graph which are omitted in the calculation of the global ROI error.
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Fig. 7. Correction of a PDW MR scan of patient B003 with the LEMS method. Shown are images [(a), (b), and (c)], histograms [(d), (e), (f)], and horizontal
profiles [(g), (h), and (i)] from the middle of the image, for the original image [(a), (d), and (g)], the corrected image [(b), (e), and (h)], and the estimated bias
field [(c), (f), and (i)] after four passes of the algorithm. After correction, skeletal muscles are isointense across the image. The profile has been chosen to cross the
carotid arteries on both sides. On this healthy volunteer the signal of the artery walls is isointense with the skeletal muscles as described in the literature.

the B0 estimate at the lowest SNR of 10. The LEMS method
also gives fewer outliers at SNR values of 30 and 40.

We segmented tissues in the neck using a standard max-
imum-likelihood tissue classification algorithm, as described
in Methods. Since we were interested in studying the influ-
ence of SNR and sequence type we did not use multi-spectral
classification but classified images independently, moreover
registration problems would have added another source of
variability. Classification was applied to all images (288) for

each of the correction methods (B0, LINFIL, mAFCM, and
LINFIL). We visually checked crisp segmentation results as
well as the quality of histogram fitting. Best results were found
following LEMS preprocessing. A typical example is shown
in Fig. 10, where all skeletal muscles belong to the same class
(the highest intensity class of the three tissue classes). In almost
all images, pathological tissues, probably corresponding to
atheromateous lesions, were classified as outliers since they
are hyperintense compared to skeletal muscles in PDW images
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(i) is different, probably because of the low SNR in this T2W data. The corrected image for T2W (h) shows intensity artifact in the top right corner of the image.

(j) Original T2W image (g) corrected with the bias field estimated from the PDW

data (c). Intensity inhomogeneity is visually reduced and quantitative evaluation

shows improved correction: means and standard deviations of ROI on the sternocleidomastoid muscles on each side of the patient neck are plotted for the ten slices
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Fig. 9. Performance comparison on patient images. Shown are global errors after correction with B0 (a), LINFIL (b), mAFCM (c), and LEMS (d) as well as the
global errors from the original data (e). Each boxplot represents the global errors measured by computing the signal variation between the right and left sternoclei-
domastoid muscles versus SNR. The total number of images is 288 from 10 patients and includes PDW, T1W and PDW in about equal proportion.

[46]. When intensity inhomogeneity was not corrected, classi-
fication yielded irregular results as shown in Fig. 10(c). Finally,
Fig. 11 shows a typical example of patient images presenting
atherosclerotic lesions.

V. DISCUSSION

The new LEMS method outperformed the other methods
that we tested for human carotid artery studies. For SNR of 20
global errors of 44% before correction were reduced to 1.9%,
2.7%, and 7.8%, for LEMS, mAFCM, and LINF, respectively,
for the synthetic phantom. LEMS was relatively insensitive to
noise, giving very good results (global error of 5.1%) with an
SNR of 10, a comparable value than the noisy patient T2W

images. Global ROI errors in the patient images, as measured
from skeletal muscle ROIs, were also vastly improved fol-
lowing LEMS correction, having a value of less than 10% for
most of the images when the error before correction could be as
high as 95%. Of course our primary concern is that the vessel
wall is well corrected, and the synthetic phantom provides a
means for measuring this. Vessel wall errors for an SNR of 10
were improved from the 40% before correction to 3.9%, 6.9%,
and 22.8%, for LEMS, mAFCM, and LINF, respectively.
There is evidence that the LEMS algorithm performs suffi-
ciently well to enable the discrimination of atherosclerotic tissue
types. For example, Clarke et al. [47] showed that about 25%
signal intensity variation can be expected between fibrous tissue
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Fig. 10. Example of tissue classification. The original PDW image (a) was corrected with LEMS (b) and segmented by fitting the histogram (e) with three Gaussian
distributions to model three tissues, a Rayleigh distribution to model the noise in the background, and a uniform distribution to identify the outliers (see text for
details). A crisp classification is shown in (d) were the three tissue classes are displayed with three shades of gray, the background in black, and the outliers in
white. Note that all the skeleton muscles belong to the same class across the image. The arrow shows a lesion in the right internal carotid artery of this patient that
is much more visible in the corrected image. Note how outliers identify hyperintense pixels relative to muscular tissue in the lesion as well as in the left cervical
artery that could have been missed in the original data (arrowhead). (c) Shows the classification result from the original image without correction: the segmentation

is meaningless because of the strong intensity inhomogeneity.

and necrotic core in PDW images. Others studies measured sim-
ilar variations in PDW images and also TIW and T2W images
[4], [48]. It is encouraging that these values exceed the residual
“vessel wall” error of 2.6% following correction of the syn-
thetic phantom images. Moreover, our ultimate goal is to per-
form vector-based classification for tissue typing. Since we will
use prior probabilities and multiple measurements simultane-
ously, discrimination of tissue types, in the presence of noise and
residual inhomogeneity errors, should be improved. We have al-
ready shown that simple tissue classification algorithms can seg-
ment corrected images into meaningful tissue classes. In sum-
mary, we believe that corrections with the LEMS method are
sufficient to proceed with evaluation of vector based classifica-
tion studies.

The LEMS method was inspired by two algorithms in the lit-
erature. First, Likar et al. [37] used second- and fourth-degree
polynomial functions having 18 and 34 free parameters, respec-
tively, in three-dimension, and minimized the entropy over the
entire image at once. Because of the severity of the signal in-
homogeneity obtained with our phased array coils, a high-order
(>4) polynomial function is required to describe the bias field.
In our experience, high-order polynomial functions can give
spurious artifacts when fitted to a strongly varying bias field.
So instead of a polynomial function, we used a bicubic spline
that can control such artifacts. Another great advantage of the
spline is that expressiveness of the surface can be easily adjusted
by varying the knot spacing. Second, Shattuck et al. [22] pro-
posed a method to locally optimize a bias field described by a
tricubic B-spline model that smoothes the residual of the differ-
ence between the classified and the original image. They used
a parametric model of the histogram, with the limitations re-
viewed in Section I, rather than the minimum entropy used in
LEMS. Since optimizing all knot values at once is computation-

ally intensive, prone to local minima, and sensitive to regions of
low signal intensity, we used a piecewise optimization approach
similar to that of Shattuck et al. However, our method starts with
regions having high SNR and proceeds by merging lower SNR
areas.

We found that an edge-preserving prefiltering step increases
the accuracy of the bias field estimation for LEMS and mAFCM.
Since edge sharpening filtering like anisotropic diffusion acts
to sharpen the histogram by reducing the number of outliers
due to noise and partial volume effect, it is reasonable to ex-
pect that any method relying on histogram modeling (such as
mAFCM) or histogram-based entropy measurement (such as
LEMS) would benefit.

LEMS has noteworthy features making it suitable for carotid
artery imaging. Because we use entropy rather than a classi-
fication technique, we avoid the need to specify the number
of classes, and circumvent the problem of classification errors.
The bicubic spline enables the modeling of the severe inho-
mogeneity from the neck surface coils. To keep optimization
tractable, we locally optimize, starting with the area having the
highest SNR. By progressively merging regions having lower
SNR values, the bias field estimate in the high SNR areas is
minimally affected by the noise in low signal areas. In prelim-
inary experiments where this merging strategy was not used
and entropy was independently minimized for each region sur-
rounding a knot, local minima were a problem and poor results
were achieved. This problem was acute when a strong intensity
fall-off was present. For brain data with less than a 10% inho-
mogeneity, the merging process was unnecessary.

Significant differences in performance were obtained be-
tween the methods that we compared. We found that our
method gave better results and was more robust than Likar’s on
our images that suffer from very steep intensity inhomogeneity
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Fig. 11. Example patient images from four different patients. Original images on the left [(a)—(d]) are compared with respective images corrected with LEMS on
the right [(e)—(h)]. These cases are illustrative of atheroma (arrows) as seen with PDW [(a), (e), (d), (h)], T1 [(b) and (f)], and T2W [(c) and (g)]. The corrected
images contain much reduced intensity inhomogeneity, which should facilitate both visual diagnosis and automatic intensity-based segmentation.

and severe noise. From our experiments we think that local
minima are exacerbated in the presence of noise and that low
SNR areas corrupt the optimization: the performances degraded
with increasing noise level. However, it should be noted that
our data content (neck) differ markedly from the data corrected
in Likar ef al. (brain). Another difference is the optimization
method: we used Matlab optimization algorithms that might not
be optimally tuned to the problem at hand. These issues prob-
ably explain the difficulties that we experienced using Likar’s
method; convergence was often an issue, and inhomogeneity
was still noticeable after correction.

Noise sensitivity was also a problem with the AFCM method,
leading us to modify it to include a background and outlier
classes to make it more robust, and address the problems at in-
terface between tissue and pixels void of signal (the background
class was not subject to bias field). Nonetheless, we experienced
convergence issues on many images (more outliers in our re-
sults on patient images), and the method requires long compu-
tation time, although Pham and Prince use a multi-resolution
approach that speeds up greatly the convergence [49]. More im-
portantly, we obtained better quantitative performance with the
LEMS method than the other methods including LINFIL, which

is widely used because of its simple and fast implementation. A
major drawback of the methods based on linear filtering is the
presence of edge artifacts that hinders their ability to correct data
at interfaces between tissue and air or, as in our case, voxels
void of signal from fat or flow suppression. Another problem
with this last class of methods is the assumption that data spec-
trum and the bias field spectrum do not overlap. This assump-
tion does not hold when surface array coils are used because the
signal drop-off can be very steep, generating relatively high fre-
quencies comparable to the low frequencies generated by large
homogeneous tissue areas such as the sternocleidomastoid mus-
cles in the neck.

Extension to three dimensions could be implemented.
However, we are interested in vascular imaging where data
are acquired slice by slice. Some datasets have slices with
varying quality; images can have ghosting artifacts inherent to
sequences where k-space is filled in an interleaved way and mo-
tion artifacts from swallowing and head motion. Acquisitions
are ECG gated, inducing different repetition times between
slices, ensuing that the same tissue can have different signal
levels at different slice. As a result of these issues, image slices
have different histograms and the optimization of the histogram
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for an entire volume might be problematic. Further, the phased
array coils can be positioned at an oblique angle increasing the
magnitude of bias field variations in the longitudinal direction,
a potential problem with thick image slices. A three-dimen-
sional (3-D) tricubic spline model would be more appropriate
for correcting brain datasets where a head cage coil and 3-D
acquisition MR sequences are used.

In the case of noisy images, such as those found in some T2W
images, the LEMS algorithm, like other correction algorithms,
sometimes fails (Fig. 8). One potential solution is to use the
bias field estimated in another scan, such as a PDW scan, to
correct the T2W image (Fig. 8). We did not observe the artifacts
reported by others when this was done [6]. We are examining
some potential algorithms that would automatically test for the
suitability of a correction by comparing bias fields estimated
from different image types. Very possibly, algorithms can also
be created that would substitute a bias field from another scan
type, use another bias field as an initialization, or compute a bias
field from multiple MR scans.

LEMS is computationally demanding. On a Pentium 4 class
desktop computer, correction of a 2-D MR image requires about
60 s, assuming four passes of the algorithm. With ten slices and
three image types per patient, this gives about 30 minutes of
computation time. However, this should be considered a worst-
case scenario for multiple reasons. First, the bias estimated from
one dataset could be used to correct another (Fig. 10) or at least
provide an initial field for subsequent optimization. Second,
the method has been implemented with Matlab’s interpreted
code and significant speed up should be expected upon compi-
lation and code optimization. Third, a 3-D implementation for
some applications where the intensity inhomogeneity changes
smoothly in all three spatial directions would almost certainly
reduce the number of knots, and the computation time. Simpler
algorithms such as LINFIL require much less computation and
can correct images in less than a second. However, this comes
at the detriment of accuracy.

VI. CONCLUSION

We have presented a new method to correct intensity inho-
mogeneity in MR images subject to the strong shading artifact
present when phased array reception coils are used to perform
imaging of carotid arteries. Many methods exist to correct in-
tensity inhomogeneity, each one providing trade off between
computation burden and correction performance for a given ap-
plication. Most of them have been designed for brain imaging.
The method that we propose gives excellent results for surface
coils imaging of atherosclerosis. After the intensity inhomo-
geneity is removed, it is easier to visually evaluate lesions by
comparing gray scale values to those of skeletal muscle, as is
often done by researchers in the field. Despite its relatively long
processing time that we hope to reduce in the future, we believe
that it will facilitate visual and/or computer diagnosis. Because
entropy and not classification is used, this technique should be
easily applied to a variety of medical imaging applications. The
only parameter that might have to be adjusted for various ap-
plications is the knot spacing, and that should be related to the
coil geometry. Future work includes the possible extension to
3-D, the normalization of intra- and inter-patient images, the

optimization of code to reduce the computation time, and post-
processing tissue classification of the arterial walls for athero-
sclerosis lesion assessment.
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