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Abstract For the purpose of enhancing the search ability
of the cuckoo search (CS) algorithm, an improved robust
approach, called HS/CS, is put forward to address the opti-
mization problems. In HS/CS method, the pitch adjustment
operation in harmony search (HS) that can be considered as
a mutation operator is added to the process of the cuckoo
updating so as to speed up convergence. Several benchmarks
are applied to verify the proposed method and it is demon-
strated that, in most cases, HS/CS performs better than the
standard CS and other comparative methods. The parameters
used in HS/CS are also investigated by various simulations.
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1 Introduction

Optimization is the process of searching for a vector in a given
domain that makes the best solution among a large number of
possible feasible solutions. The traditional optimization tech-
niques hardly deal with modern complicated problems. Many
scholars turn to learn from nature and various nature-inspired
metaheuristic algorithms (Gandomi et al. 2013a) have been
put forward and can often be applied to solve NP-hard prob-
lems, such as flow shop scheduling problem (Rahimi-Vahed
and Mirzaei 2008; Li and Yin 2013a), parameter estima-
tion (Li and Yin 2014), constrained optimization (Li and Yin
2012b), train neural networks (Mirjalili et al. 2012, 2014b),
feature selection (Li and Yin 2013b) and frequency assign-
ment problem (Luna et al. 2011). Metaheuristic algorithms
are well capable to extract information from a set of solutions
and will often generate the best solutions in practice. Dur-
ing the 1960s,a novel kind of optimization methods, called
genetic algorithms (GAs) (Goldberg 1998; García-Martínez
and Lozano 2010) was put forward by idealizing the evo-
lution theory. Since then, many other metaheuristic algo-
rithms have emerged, such as grey wolf optimizer (GSO)
(Mirjalili et al. 2014a), particle swarm optimization (PSO)
(Kennedy and Eberhart 1995; Gandomi et al. 2013b; Mirjalili
and Lewis 2013), differential evolution (DE) (Storn and Price
1997; Gandomi et al. 2012; Li and Yin 2012a), interior search
algorithm (ISA) (Gandomi 2014), bat algorithm (BA) (Gan-
domi et al. 2013c; Yang 2010a; Mirjalili et al. 2013), ani-
mal migration optimization (AMO) (Li et al. 2013d), krill
herd (KH) (Gandomi and Alavi 2012; Wang et al. 2013a;
Guo et al. 2014), biogeography-based optimization (BBO)
(Simon 2008; Li et al. 2011; Wang et al. 2013b), and recently,
the cuckoo search (CS) algorithm (Yang 2009; Yang and Deb
2010; Gandomi et al. 2013d) that is inspired by smart incu-
bation behavior of cuckoos.
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Developed by Yang and Deb in 2009, CS is a metaheuris-
tic search technique (Yang 2009; Gandomi et al. 2013e), by
simplifying and idealizing the brood parasitism behavior of
certain kind of cuckoos. The aim of CS algorithm is to use the
new and possibly better solutions to take the place of a rel-
atively worse solution. When dealing with single-objective
problems, each nest is only corresponding to one egg. One
of the most important advantages of CS algorithm is its sim-
plicity, therefore, it is very easy to implement. In principle,
comparing with other metaheuristic algorithms such as PSO
(Kennedy and Eberhart 1995) and HS (Geem et al. 2001),
only discovery rate pa needs to fine tune in CS method. On
the other hand, by idealizing the musician’ improvisation
process, Geem et al. proposed harmony search (HS) (Geem
et al. 2001) for addressing the optimization problems.

CS performs global search well in general cases, but at
times it may still occasionally be trapped into some local
optima. For CS, Lévy flight can fully determine the search,
so it cannot always converge to the best solutions if the step
sizes are too large. In the present work, to forbid premature
convergence and increase the cuckoo population diversity,
pitch adjustment operation in HS that can be a mutation oper-
ator is introduced into the CS method. Pitch adjustment is a
banded local random walks, which focuses on a band or a
local region of the feasible solutions. This may also be rel-
evant in many practical applications because many design
problems may already be near some optimal solutions if
the designers can formulate the problem using their specific
knowledge. Also, due to stringent design codes, new designs
tend to be based on some existing designs by modifying some
parameters locally. That is to say, the good features of HS and
CS are fully exploited and combined into a new hybrid meta-
heuristic algorithm. Herein, an improved CS method is put
forward and applied to search the optimal objective function
value. The proposed approach is evaluated on 14 benchmark
functions. Experimental results demonstrate that the HS/CS
performs better than other nine methods for most benchmark
cases.

The structure of this paper is organized as follows. Sec-
tion 2 describes the HS algorithm, and basic CS in brief. The
HS/CS approach is presented in Sect. 3. Subsequently, our
method is evaluated through 14 benchmarks in Sect. 4 by
comparing with eight other methods. Finally, a summariza-
tion of our present work is given in Sect. 5.

2 Preliminary

2.1 Harmony search

By simplifying and idealizing the natural musical improvi-
sation processes, Geem et al. in 2001 put forward HS (Geem
et al. 2001; Wang et al. 2014b) that is a relatively new meta-

heuristic search technique (Yang 2011). The basic HS algo-
rithm includes the following operators: the harmony mem-
ory (HM) [see Eq. (1)], the harmony memory size (HMS),
the harmony memory consideration rate (HMCR), the pitch
adjustment rate (PAR) and the pitch adjustment bandwidth
(bw).

HM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
1 x1

2 . . . x1
D

x2
1 x2

2 . . . x2
D

...
... . . .

...

xHMS
1 xHMS

2 . . . xHMS
D
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f i tness(x1)

f i tness(x2)
...

f i tness(xHMS)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

In HS, there are three components: use of harmony mem-
ory, pitch adjusting, and randomization. In the HS optimiza-
tion process, the value of each decision variable in HM can
be determined by one of the above three rules. After the har-
mony updating, if the newly generated one has better fitness,
it will be used to take place of the worst one in HM.This
updating process is iterated until the satisfactory solution is
found.

Like the selection of the optimal fit individuals in GA, the
first part is significant in the whole HS process. This can guar-
antee that the best harmonies cannot be changed and make
the HM always stay the best status. HMCR ∈ [0, 1] should
be carefully adjusted with the aim of using this memory more
effectively. If it nears 1 (too high), almost all the harmonies
in HM can be fully exploited, but the HS algorithm cannot
search globally well, leading to potentially wrong solutions.
In contrast, if it is very small (even 0), HS only takes use
of few best harmonies, which may result in finding the best
solutions slowly. Herein, generally, HMCR = 0.7–0.95.

For the second part, though the pitch can be slightly
adjusted in the linear or nonlinear form theoretically, a linear
adjustment is chosen in most cases. The pitch is updated as
follows:

xnew = xold + bw(2δ − 1) (2)

where δ is a random number in [0,1], bw is the band width.
xold and xnew are the current and new pitch, respectively.

Pitch adjustment has the similarity with the mutation oper-
ator in evolutionary algorithms. Similarly, the PAR is also
carefully adjusted with the aim of HS implementing in the
best way. If PAR nears 1, the harmony in HM will sway even
at the end of HS process, and HS is therefore hard to con-
verge to the best solutions. Contrarily, if it is too low, then
little change will be made for harmonies in HM and HS may
converge prematurely. Therefore, we use PAR = 0.1–0.5 for
most cases.
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The third part is essentially a random process with the
aim of adding harmony diversity. The random process makes
the HS explore the whole search space well and this has a
higher probability of finding the final optimal solutions. Due
to its excellent performance, HS has been applied to deal
with various optimization problems including linear antenna
arrays, train neural network, flow shop scheduling, reliability
problem, economic load dispatch, and others.

The detailed description of HS method can be found in
Wang et al. (2013c).

2.2 Cuckoo search

By simplifying and idealizing the brood parasitic behavior of
cuckoo individuals in combination with the Lévy flight, CS
is put forward that is a novel metaheuristic search method
for solving optimization problems. In the case of CS, how a
cuckoo individual moves to next position is fully determined
by the Lévy flights. More details about Lévy flights can be
found in Yang (2010b).

To apply the cuckoo brood behavior for optimization prob-
lems, Yang and Deb idealized the brood parasitic behavior
of some cuckoos and the following three rules have been put
forward (Yang 2009).

1. In cuckoo population, each cuckoo puts one egg to a ran-
domly selected nest;

2. the high-quality nests will not be changed, and this can
guarantee the cuckoo population that includes the better
solutions, not worse than before at least;

3. the nest number is unchanged, and the egg laid by a cuckoo
is discovered by the host bird with a probability pa ∈
[0, 1].

In the simplest form, each nest is only responding to one
egg. Accordingly, the CS method can be easily extended to
deal with multi-objective optimization problems in which
each nest includes more than one eggs/solutions. In our
present study, we only consider that each nest has merely
an egg. Therefore, in our study, we do not distinguish the
difference among the nest, egg, and solution.

In HS method, the discovery rate pa is considered as a
switching parameter that is used to balance the random walk
locally and globally. The local one can be given as

xt+1
i = xt

i + βs ⊗ H(pa − ε) ⊗ (xt
j − xt

k) (3)

where xt
j and xt

k are two different randomly selected solu-
tions, H(u) is a Heaviside function, ε is a random number,
and s is the step size. While, the global one is performed
using Lévy flights

xt+1
i = xt

i + βL(s, λ),

L(s, λ) = λ�(λ) sin(πλ/2)

π

1

s1+λ
, (s, s0 > 0) (4)

Here β > 0 is the step size scaling factor related to the scales
of the problem of interest. More details about CS method can
be found in Li et al. (2013a).

3 HS/CS

Based on the introduction of HS and CS in previous section,
the detailed description of the proposed cuckoo search with
harmony search (HS/CS) will be provided in this section.

In general, the standard CS algorithm explores the search
space well and has a fast speed of finding the global optimal
value, but it exploits solutions poorly due to occasionally
large steps or moves. On the other hand, standard harmony
search is well capable of exploiting solutions by carefully
tuning HMCR and PAR. In the present work, by combina-
tion of CS and HS, a hybrid metaheuristic algorithm, so-
called harmony search/cuckoo search (HS/CS), is therefore
proposed for the purpose of optimizing the benchmark func-
tions. In HS/CS method, the improvisation of harmony in
HS is introduced into cuckoo search as mutation operator. In
this way, this method can explore the new search space by
the hybrid HS operator and exploit the population with CS,
and therefore can fully exploit the advantages of the CS and
HS.

The core idea of the HS/CS method is the introduction
of the hybrid HS mutation operator. In this way, firstly pre-
sented in the current work, a main improvement of adding
mutation operator is made to the CS including two minor
improvements.

The first improvement is to add pitch adjustment oper-
ation in HS that can be considered as a mutation operator
with the aim of adding increase population diversity. In the
exploitation stage, once an individual is chosen among the
current best individuals, a new cuckoo individual is gener-
ated globally using Lévy flights. And then, we fine tune every
element in xi using HS. When ξ is larger than HMCR, i.e.,
ξ1 ≥ HMCR, the element j is updated randomly; while when
ξ1 < HMCR, we update the element j in accordance with x*,
moreover, pitch adjustment operation in HS that can be con-
sidered as a mutation operator is applied to update the element
j when ξ2 < PAR in an attempt to add population diversity, as
shown in Eq. (2), where ξ1 and ξ2 are two uniformly distrib-
uted random numbers in [0,1], x* is the global best solution
in the current generation. Through various experiments in
Sect. 4.2, it was found that HMCR is set to 0.9 and PAR to
0.1 that can generate the optimal solutions.

The second improvement is the addition of elitism scheme
into the HS/CS. As with other optimization algorithms, an
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improved elitism scheme is incorporated into the HS/CS
method to retain the best individuals in the cuckoo popu-
lation. In the current work, we use a more focused elitism on
the best solutions, which can prevent the best solutions from
being corrupted by pitch adjustment operator. This can make
the whole population always proceed to the better solutions.

As per the above description, the harmony search/cuckoo
search (HS/CS) can be given in Algorithm 1 and its corre-
sponding flowchart is shown in Fig. 1.

4 Simulations

In this section, the proposed metaheuristic HS/CS was tested
through an array of experiments. To get a fair result, all

the methods are implemented under the same conditions as
shown in Wang et al. (2014a).

The benchmark functions described in Table 1 are standard
testing functions. Further information of all the benchmark
functions can be referred as Yao et al. (1999). In each table,
the last row is the total number of functions on which the
specified method performs the best under certain conditions.
The best value achieved for each test problem is shown in
bold.

4.1 General performance of HS/CS

For the purpose of verifying the benefits of HS/CS, we com-
pared its performance on global optimization problem with
nine other optimization methods, which are ACO (Dorigo
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Is termination 
condition met?

Get a cuckoo randomly and replace its 
solution by Lévy flights

Implement a hybrid HS mutation 
operator (see Algorithm 1)

Update the krill individual position

Initialization

Y

N

Save the KEEP best cuckoo individuals

Replace the KEEP worst cuckoo individuals 
with the KEEP best ones 

Fitness evaluation

Output the best solution

Start

End

Select the best offspring

Fig. 1 The flowchart of HS/CS algorithm

and Stutzle 2004), BBO (Simon 2008), CS (Yang 2009),
DE (Storn and Price 1995), ES (Beyer 2001), GA (Goldberg
1998), HS (Geem et al. 2001), PSO (Kennedy and Eber-
hart 1995; Gandomi et al. 2012, 2013b, c, d, e; Mirjalili and
Lewis 2013; Storn and Price 1997; Li and Yin 2012a; Gan-
domi 2014; Yang 2009, 2010a, b, 2011; Mirjalili et al. 2013;
Li et al. 2013a, d; Gandomi and Alavi 2012; Wang et al.
2013a, b, c; Guo et al. 2014; Simon 2008; Li et al. 2011;
Yang and Deb 2010; Geem et al. 2001; Wang et al. 2014a, b;
Yao et al. 1999; Dorigo and Stutzle 2004; Storn and Price
1995; Beyer 2001; Doǧan and Saka 2012), and SGA (Khatib
and Fleming 1998).

The proposed HS/CS method in the present work is imple-
mented by the authors in MATLAB. The ACO, BBO, DE,
ES, GA, PSO and SGA are implemented by Simon (2008)

(see http://academic.csuohio.edu/simond/bbo/). The CS and
HS are implemented by Yang (2010b).

In all experiments, the same parameters for HS, CS and
HS/CS are set to discovery rate pa = 0.25, HMCR = 0.9,
and PAR = 0.1. For ACO, BBO, DE, ES, GA, PSO and SGA,
we set the parameters as shown in Wang et al. (2014c). For
other parameters, population size NP, elitism number Keep,
function dimension and maximum generation Maxgen are
set 50, 2, 20 and 50, respectively. To decrease the influence
of the randomness, 100 implementations are done for each
algorithm on each benchmark function (see Tables 2, 3). To
clarify the difference of the ten methods, different scales have
been used to normalize the values in the tables.

From Table 2, we see that, on average, HS/CS has the
strongest search ability of finding the function minimum on
all the 14 benchmarks (F01–F14).

Table 3 shows that HS/CS performs the best on ten of the
14 benchmarks (F01–F03, F06–F09, F11, F13–F14). ACO
ranks two and performs the best on F04 and F05. CS and
SGA ranks three and performs the best on F10 and F12,
respectively.

In addition, the running time is another important factor
for the metaheuristic algorithms. The computational require-
ments are recorded in Table 2. BBO was the quickest method.
HS/CS was the ninth fastest of the ten methods. However, in
most practical applications, it is the fitness function evalu-
ation that is the most time-consuming part of a population-
based method.

Further, the most representative convergent curves are pro-
vided (see Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). The values in the
figures are the mean function optimum, which are the true
values.

From Fig. 2, HSCS is the fastest method at finding the
best solution, while BBO performs the second best for this
case. Here, all the algorithms start optimization process at
the beginning of almost same point, while HS/CS has a sta-
bly faster convergent speed than others. All methods clearly
outperform the standard HS algorithm.

For this case, HS/CS is the most efficient and fastest
method at finding the best global function values among ten
methods.

From Fig. 4, apparently, HS/CS is well capable of find-
ing the better solutions than all other methods. Here, PSO
converges sharply at the first search stage, however, soon it
gets trapped into the sub-minima and the global minimum
decreases slightly. As the figures show, BBO performs the
second best for this function. In addition, in this function
both SGA and HS/CS have moved to the best solutions ini-
tially, while later HS/CS converges to the better minimum
than SGA.

For this case, very similar to F04 (see Fig. 4), HS/CS sig-
nificantly outperforms all other methods. By carefully look-
ing at Fig. 5, in the beginning of the optimization process,
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Table 1 Benchmark functions No. Name Definition

F01 Ackley f (
−→x ) = 20 + e − 20 · e

−0.2·
√

1
n

n∑
i=1

x2
i − e

1
n

n∑
i=1

cos(2πxi )

F02 Fletcher–Powell

f (
−→x ) =

n∑
i=1

(Ai − Bi )
2, Ai =

n∑
j=1

(ai j sin α j + bi j cos α j )

Bi =
n∑

j=1
(ai j sin x j + bi j cos x j )

F03 Griewank f (
−→x ) =

n∑
i=1

x2
i

4000 −
n∏

i=1
cos( xi√

i
) + 1

F04 Penalty #1
f (

−→x ) = π
30

{
10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2 · [1 + 10 sin2(πyi+1)
]

+(yn − 1)2
}

+
n∑

i=1
u(xi , 10, 100, 4), yi = 1 + 0.25(xi + 1)

F05 Penalty #2
f (

−→x ) = 0.1

{
sin2(3πx1) +

n−1∑
i=1

(xi − 1)2 · [1 + sin2(3πxi+1)
]

+(xn − 1)2
[
1 + sin2(2πxn)

]} +
n∑

i=1
u(xi , 5, 100, 4)

F06 Quartic with noise f (
−→x ) =

n∑
i=1

(i · x4
i + U (0, 1))

F07 Rastrigin f (
−→x ) = 10 · n +

n∑
i=1

(x2
i − 10 · cos(2πxi ))

F08 Rosenbrock f (
−→x ) =

n−1∑
i=1

[
100(xi+1 − x2

i )2 + (xi − 1)2
]

F09 Schwefel 2.26 f (
−→x ) = 418.9829 × D −

D∑
i=1

xi sin(|xi |1/2)

F10 Schwefel 1.2 f (
−→x ) =

n∑
i=1

(
i∑

j=1
x j

)2

F11 Schwefel 2.22 f (
−→x ) =

n∑
i=1

|xi | +
n∏

i=1
|xi |

F12 Schwefel 2.21 f (
−→x ) = max

i
{|xi | , 1 ≤ i ≤ n}

F13 Sphere f (
−→x ) =

n∑
i=1

x2
i

F14 Step f (
−→x ) = 6 · n +

n∑
i=1

�xi 	

PSO converges faster than HS/CS, while HS/CS is well capa-
ble of improving its solution steadily for a long run.

Very clearly, for this case, HS/CS is the most efficient
and fastest method at finding the best global function values
among ten methods. BBO and SGA ranks two and three,
respectively.

From Fig. 7, very apparently, though HS/CS performs
equally with BBO between the generations 10 and 17. How-
ever, HS/CS converges in the much more stable state for this
case. This demonstrates that, the combination of HS and CS
can generate the good performance.

From Fig. 8, HS/CS performs far better than others for this
unimodal case. PSO has a better function value than HS/CS;
however, the function value obtained by HS/CS is better than
PSO at the 11th generation.

From Fig. 9, very clearly, though HS/CS is outperformed
by BBO between generation 6 and generation 26, it shows
a much more stable convergent curve than others for this
unimodal case. At last, HS/CS reaches the optimal solution
significantly superiorly to other algorithms. BBO is only infe-
rior to HS/CS, and can find the second best function value
for this case.

Very clearly, HS/CS has the fastest convergence rate at
finding the global minimum after 14 iterations. HS/CS is able
to find the optimal solution significantly superiorly to others.
BBO is only inferior to HS/CS, and can find the second best
function values for this case.

Apparently, HS/CS is able to find the best solution with
much more stable optimization process than others using
the least time. Looking carefully at Fig. 11, for BBO and
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Table 2 Mean optimization
results in 14 benchmark
functions

ACO BBO CS DE ES GA HS HSCS PSO SGA

F01 2.22 1.21 2.45 1.72 2.69 2.45 2.75 1.00 2.32 1.28

F02 14.23 1.43 9.55 5.35 13.37 5.25 12.87 1.00 10.65 1.66

F03 4.43 3.10 28.69 7.33 35.13 13.45 68.69 1.00 27.57 2.80

F04 1.1E7 5.3E3 7.8E5 4.1E4 5.9E6 6.6E4 9.6E6 1.00 9.7E5 1.70

F05 4.8E5 870.08 7.6E4 8.3E3 3.6E5 1.8E4 5.8E5 1.00 8.4E4 84.30

F06 218.45 20.13 588.25 86.62 2.9E3 234.36 3.0E3 1.00 679.08 8.00

F07 7.08 1.53 8.11 6.23 9.72 6.35 9.25 1.00 7.27 2.05

F08 24.16 1.57 7.06 3.67 32.66 6.33 21.80 1.00 7.52 1.52

F09 5.22 2.68 13.08 10.04 12.11 4.09 14.72 1.00 15.00 2.84

F10 2.15 1.25 1.31 2.84 3.33 2.48 3.06 1.00 2.21 1.84

F11 12.00 1.67 11.71 5.18 18.73 9.28 14.83 1.00 10.84 2.54

F12 1.66 1.73 1.87 2.04 2.48 2.09 2.53 1.00 2.09 1.51

F13 59.90 4.56 47.18 11.74 126.69 40.90 113.38 1.00 45.57 5.17

F14 7.81 3.74 33.09 8.78 58.35 18.14 85.79 1.00 34.44 2.89

Time 2.07 1.00 1.33 1.28 1.29 1.37 1.79 1.86 1.55 1.33

Table 3 Best optimization
results in 14 benchmark
functions

ACO BBO CS DE ES GA HS HSCS PSO SGA

F01 3.21 1.52 3.95 2.61 4.59 3.49 4.86 1.00 3.84 1.48

F02 34.38 2.35 16.08 13.38 25.15 7.47 27.70 1.00 23.22 2.69

F03 3.63 2.21 22.16 8.49 40.59 5.85 80.92 1.00 26.50 2.19

F04 1.00 3.1E32 2.4E36 3.4E35 5.638 3.7E32 1.1E39 6.1E31 4.2E36 9.9E31

F05 1.00 444.34 7.1E6 1.8E6 4.1E8 2.2E4 4.9E8 117.98 7.5E6 109.60

F06 825.75 34.65 1.8E3 274.10 2.4E4 350.89 3.0E4 1.00 4.5E3 4.73

F07 8.98 1.39 10.94 8.11 13.43 7.22 11.49 1.00 10.27 1.43

F08 91.75 3.09 14.08 14.66 120.72 13.37 56.02 1.00 18.21 2.97

F09 17.07 12.53 107.49 80.62 90.26 15.31 138.47 1.00 121.84 12.69

F10 1.89 1.72 1.00 4.85 4.53 2.31 4.81 1.33 3.02 1.46

F11 14.26 1.95 12.83 8.17 22.87 10.03 24.53 1.00 15.47 2.73

F12 1.24 1.91 2.03 2.85 3.45 1.87 3.43 1.12 2.17 1.00

F13 110.95 8.48 86.15 28.22 285.55 70.71 315.81 1.00 107.60 5.04

F14 10.67 3.21 70.83 23.87 118.67 20.19 267.54 1.00 104.87 2.33

SGA, they perform approximately equally and are inferior to
HS/CS.

From above analyses about the Figs. 2, 3, 4, 5, 6, 7, 8,
9, 10 and 11, we draw the conclusion that our proposed
HS/CS algorithm is able to find the best solutions among
ten methods. In general, BBO and SGA are only inferior to
the HS/CS. Further, benchmarks F04, F05, F06, F08, and F10
illustrate that PSO is well capable to find the best solutions
initially, while later it may easily trap into the local values
leading to fail to find the global function values. In addi-
tion, it should be noted that, in Simon (2008), BBO has been
compared with seven EAs over 14 benchmarks and an engi-
neering case. The results have shown the robustness of BBO
method. This also indirectly demonstrated that our HS/CS

method is a more powerful and efficient search technique than
others.

4.2 Influence of control parameter

Like other metaheuristic methods, the parameter setting has
an important factor on the performance of HS/CS. To com-
pare the different effects on the parameter of HMCR and
PAR, various simulations are conducted, and the results are
recorded in Tables 4, 5, 6, and 7. Note that, all other para-
meter settings are set to the above experiments if there is no
special notification. Tables 4, 6 and Tables 5, 7 have recorded
the best and average performance of HS/CS algorithm,
respectively.
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Fig. 2 Fitness curves of ten methods for the F01 function

Fig. 3 Fitness curves of ten methods for the F02 function

Fig. 4 Fitness curves of ten methods for the F04 function

Fig. 5 Fitness curves of ten methods for the F05 function

Fig. 6 Fitness curves of ten methods for the F07 function

Fig. 7 Fitness curves of ten methods for the F09 function

123



Hybridizing harmony search algorithm

Fig. 8 Fitness curves of ten methods for the F10 function

Fig. 9 Fitness curves of ten methods for the F11 function

Fig. 10 Fitness curves of ten methods for the F12 function

Fig. 11 Fitness curves of ten methods for the F14 function

4.2.1 HMCR

Firstly, the influence of HMCR is investigated through an
array of simulations with HMCR = 0, 0.1, 0.2, . . ., 0.9, 1.0
and PAR = 0.1 (see Tables 4, 5). From Tables 4, 5, obviously,
it can be seen that: (1) for the three benchmark functions
F02, F05 and F14, HS/CS performs slightly differently, that
is to say, these three benchmark functions are insensitive to
the parameter HMCR. (2) For F12, HS/CS performs better
on smaller HMCR (<0.5). (3) However, for other functions,
HS/CS performs better on bigger HMCR (>0.5). In sum,
HS/CS performs the best when HMCR is equal or very close
to 0.9. So, we set HMCR = 0.9 in other experiments.

4.2.2 PAR

Secondly, the influence of PAR is investigated through an
array of simulations with PAR = 0, 0.1, 0.2, · · · , 0.9, 1.0
and HMCR = 0.9 (see Tables 6, 7). From Table 6, we can
recognize that the function values for HS/CS vary little with
the increase of PAR, and HS/CS reaches optimum/minimum
in most benchmarks when PAR is equal or very close to 0.1.
Whereas, looking at numbers in Table 7, the numbers are very
complex and in disorder. Considering comprehensively, our
aim is to get the best performance, so we set PAR = 0.1 in
other experiments.

At last, we must point out that, the effects of the two
main parameters of the HS namely HMCR and HMS
were investigated by many researchers (Omran and Mah-
davi 2008). As per the previous research, a large value for
HMCR (i.e. approaching to 1.00) is generally used except
for problems with a very low dimensionality for which
a small value of HMCR is recommended. This conclu-
sion coincides with the experimental results conducted in
Sect. 4.2.
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Table 4 Best optimization
results with different HMCR

HMCR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 2.46 2.46 2.46 2.41 2.17 2.17 1.88 1.73 1.59 1.00 2.46

F02 1.50E4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F03 75.29 105.09 9.03 9.03 9.03 9.03 9.03 9.03 6.94 1.00 9.03

F04 4.73E6 3.04 4.56E4 2.98 2.98 2.98 2.98 2.98 2.95 1.00 2.98

F05 3.05E6 9.44 1.13 1.70E4 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F06 2.56E6 4.31E3 5.70E3 2.40E3 3.05E3 1.02E3 534.30 118.16 17.00 1.00 3.08E3

F07 11.69 13.56 10.88 1.30 1.30 8.86 1.00 1.00 1.00 1.00 1.00

F08 83.72 1.41 16.51 1.41 1.41 1.41 30.90 1.00 1.00 1.00 1.00

F09 361.80 391.00 1.54 12.86 1.54 1.54 1.54 189.91 1.00 1.00 1.00

F10 926.85 20.54 1.31E3 28.67 2.46 2.46 2.46 2.46 813.89 1.00 1.00

F11 10.10 1.29 3.76 3.76 8.17 3.76 3.76 3.76 1.68 1.00 3.76

F12 5.11 1.00 5.31 1.72 4.82 1.72 1.72 1.72 1.72 1.72 5.71

F13 168.46 221.09 165.85 146.03 66.16 84.06 39.90 26.77 14.45 1.00 66.16

F14 905.13 10.38 8.33 1.00 1.00 11.63 1.00 1.00 1.00 1.00 1.00

0 2 1 2 3 2 4 5 6 13 7

Table 5 Mean optimization results with different HMCR

HMCR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00

F02 1.52E3 14.75 13.04 15.24 6.98 8.19 6.48 5.27 1.00 1.14 6.72

F03 11.44 3.19E4 1.10 1.05 1.06 1.05 1.01 1.01 1.00 1.00 1.07

F04 4.1E6 3.9E4 4.5E4 1.3E4 3.1E3 2.9E3 286.03 143.04 1.01 1.00 4.7E3

F05 1.0E7 8.7E4 8.0E4 5.5E4 6.5E4 2.1E4 1.2E4 3.1E3 4.37 1.00 3.3E4

F06 1.00 3.77E4 326.92 369.77 3.8E4 1.19 1.19 1.19 1.19 1.19 1.19

F07 10.80 4.04E6 11.34 271.72 307.32 3.16E4 1.05 1.02 1.00 1.00 1.04

F08 90.13 3.79E4 3.0E4 307.45 263.18 297.48 3.0E4 1.06 1.04 1.00 1.47

F09 217.94 8.4E6 2.75 11.11 261.52 223.64 252.80 2.59E4 1.22 1.00 2.32

F10 280.93 4.25E4 1.96E6 1.52E4 73.27 155.81 134.02 149.84 1.5E4 1.00 3.22

F11 3.77 1.00 4.58E4 1.29 13.17 169.97 371.14 317.58 359.20 3.7E4 1.18

F12 3.19 2.9E4 4.1E4 1.00 2.9E4 160.05 136.29 297.59 254.64 288.02 2.9E4

F13 3.11 9.71 9.3E6 3.6E6 1.00 10.19 154.67 131.71 287.60 246.10 278.38

F14 151.36 4.7E5 1.0E4 4.6E3 1.00 3.7E3 16.62 20.65 17.45 38.03 33.84

1 1 0 1 2 0 0 0 3 8 1

5 Conclusions

We have improved the CS by combining cuckoo search with
harmony search algorithm, and we also have evaluated the
HS/CS on various benchmarks. A novel variant of CS algo-
rithm has been presented, and an improvement is applied to
the mutation between cuckoos using harmony search algo-
rithm during the process of cuckoos updating. Using the orig-
inal configuration of the cuckoo search algorithm, we have
generated the new harmonies as per the newly generated

cuckoo at each iteration after cuckoo’s position updating.
If a new harmony vector has the better finesse than before
and it will be used to replace a newly generated cuckoo. By
combination of HS and CS, the HS/CS is well capable to
exploit their good feature and this can avoid all individuals
getting trapped in inferior local optimal regions. As per var-
ious experiments in the present work, we have observed that
the proposed HS/CS is able to exploit the useful informa-
tion in population with the aim of generating better qual-
ity solutions when compared with the other search tech-
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Table 6 Best optimization results in 14 benchmark functions with different PAR

PAR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F02 4.3E3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F03 1.00 3.15 2.00 2.00 2.00 2.00 2.00 2.00 1.39 1.90 1.09

F04 1.00 3.84 243.63 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84

F05 4.46 1.00 2.00 8.7E3 2.00 2.00 2.00 2.00 2.00 2.00 2.00

F06 1.00 11.94 23.57 37.16 6.29 25.36 18.77 35.89 4.23 8.10 14.05

F07 13.90 1.00 1.91 3.84 3.84 32.85 3.84 3.84 3.84 3.84 3.84

F08 6.24 1.00 1.57 1.00 1.00 1.00 13.92 1.00 1.00 1.00 1.00

F09 123.88 4.46 2.00 1.00 2.00 2.00 2.00 372.21 2.00 2.00 2.00

F10 1.1E3 1.91 1.00 6.05 3.84 3.84 3.84 3.84 5.3E3 3.84 3.84

F11 3.1E3 1.00 4.5E3 4.5E3 2.2E3 4.5E3 4.5E3 4.5E3 4.5E3 2.6E3 4.5E3

F12 1.4E3 1.00 3.5E3 378.40 595.74 378.40 378.40 378.40 378.40 378.40 2.7E3

F13 1.11 7.86 3.88 3.46 5.56 5.42 4.83 3.49 2.10 1.31 1.00

F14 131.63 1.00 1.91 3.84 3.84 6.05 3.84 3.84 3.84 3.84 3.84

4 8 3 4 3 3 2 3 3 3 4

Table 7 Mean optimization results with different PAR

PAR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F02 436.42 2.79 4.71 5.18 4.40 9.82 6.22 2.98 1.12 2.04 1.00

F03 1.00 1.3E4 1.42 1.42 1.42 1.43 1.42 1.44 1.42 1.42 1.41

F04 2.30 58.17 9.0E3 1.02 1.00 1.01 1.03 1.02 1.00 1.00 1.00

F05 246.14 1.28 123.44 8.3E3 1.47 1.02 9.86 65.50 1.24 1.97 1.00

F06 1.00 5.1E6 5.6E4 3.3E4 5.2E6 572.00 571.99 572.01 571.98 571.98 571.99

F07 5.17 3.17 1.00 134.94 79.99 1.2E4 1.44 1.42 1.40 1.40 1.42

F08 11.63 56.16 8.75E3 105.22 95.67 56.70 8.8E3 1.09 1.04 1.00 1.13

F09 62.60 169.23 1.53 1.36 69.19 62.90 37.29 5.7E3 1.30 1.35 1.00

F10 122.02 1.05 2.34 1.8E3 19.25 23.58 21.86 14.00 1.8E3 1.00 1.58

F11 98.30 1.00 7.1E3 122.82 86.05 1.1E4 1.3E4 1.2E4 7.1E3 1.1E6 127.69

F12 3.76 8.4E3 8.5E3 1.00 8.5E3 194.28 87.13 102.55 93.26 55.26 8.6E3

F13 1.00 22.99 1.6E3 14.09 6.09 4.27 1.2E3 564.97 664.98 604.71 358.27

F14 35.09 1.88 1.63 34.39 1.00 5.2E3 76.18 120.01 54.08 63.60 57.59

4 2 2 2 3 1 1 1 2 4 5

niques, such as ACO, BBO, CS, DE, ES, GA, HS, PSO and
SGA.

In optimization field, there are many issues that are worthy
of further study. Our future work will focus on the following
issues. Firstly, aiming to the disadvantages of the benchmark
evaluation, HS/CS will be further tested by comparing with
more published results and applied to solve practical engi-
neering optimization problems, and we believe it can be an
effective method for addressing real-world problems. Sec-

ondly, more methods will be used to investigate the perfor-
mance of HS/CS in various respects, such as fitness evalua-
tions, statistical analyses (T test or F test). Thirdly, to make
HS/CS method implement in the faster way, the research of
speeding up its convergence is also an interesting problem,
and this can be performed using nonlinear activation func-
tion to speed up convergence of dynamic neural networks (Li
and Li 2014; Li et al. 2012, 2013b, c) and accelerated algo-
rithm for data association (Li et al. 2014). Fourthly, for the
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purpose of making HS/CS method implement in the stable
way, some theoretical analyses will be implemented using
nonlinear dynamic system and Markov chain theory. Lastly,
some other optimization strategies, such as quantum theory,
orthogonal learning, incremental learning and opposition-
based learning, can be combined with HS or CS method to
develop new meta-hybrid approach to enhance the search
ability of the basic method.
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