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Abstract—This work presents a low-power, embedded ECG
pattern recognition system for the purpose of biometric au-
thentication. We believe that ECG coupled with a secondary
biometric marker such as fingerprint will play a key role in
wearable security as wearables’ popularity continues to grow.
The key objective of this work is to implement a system that
is reliable, robust, and fast while maintaining a low area and
power footprint. A streamlined approach was devised that utilized
neural networks to both identify QRS complex segments of
the ECG signal and then perform user authentication on these
segments. When tested on 90 individuals, the system is able to
achieve 99.54% accuracy for QRS complex identification, and,
on average, 99.85% sensitivity, 99.96% specificity, and 0.0582%
EER for user identification. When implemented on an Artix-7
FPGA, the entire design occupies 1,712 slices (5%) and 978.7 KB
of memory and dissipates 31.75 mW of total chip dynamic power
when running at 12.5 MHz.

I. Introduction
The massive influx in smart, wearable devices has sparked

a new chapter in how we perceive and interact with the world.
These smart devices coupled with the internet of things (IOT)
infrastructure enables countless new capabilities, i.e., the abil-
ity to monitor your heart-rate, start your car, and set a reminder
all from your watch in real-time is astounding. As ubiquitous
computing grows, it is critical to further security measures that
pair well with these personal devices. Biometric authentication
is a clear choice and much success has already been made in
the form of fingerprint, face, voice, and iris recognition [1].
Each technique has inherent trade-offs, from the ability to be
compromised, ease of use, obtrusiveness, and implementation
complexity. For instance, face and iris require the user’s direct
attention in addition to needing to perform complex video
processing. Furthermore, as has become standard, two-factor
authentication (2FA) may also be required. This work explores
the use of ECG as another form of biometric authentication.
Initial work by [2]–[9], have already demonstrated the ability
for ECG to be used for user authentication. We envision a
system such as a watch that can confirm user-identification
by both fingerprint and ECG biomarkers. The remainder of
the paper is divided into three main sections. The first briefly
discusses related work on ECG pattern recognition. The second
describes and evaluates the proposed system. Finally, the last
section describes and evaluates the hardware implementation
of the system.

II. RelatedWork
There has been a plethora of research done on using

ECG data for a variety of classification tasks. Many of these
classification tasks, however, are for the purpose of identifying
diseases and conditions, such as heart arrhythmia. Some work

has been done successfully on using ECG data for the purpose
of user authentication. This is primarily done using either
fiducial or non-fiducial feature extraction followed by simple
statistical analysis and/or machine learning algorithms. These
options often present trade-offs between accuracy and compu-
tational complexity. Table I presents the results from related
works that perform user authentication. [2] is one of the earliest
works that used 12-lead ECG features to identify 20 users.
Using proprietary equipment to extract 30 different fiducial
features per lead, they obtained 100% accuracy. [9] uses the
same ECG-ID database as used in this work. They employed
a large variety of preprocessing techniques in addition to
machine learning for classification.

Reference Method Subjects Accuracy
Beil [2] PCA 20 100%
Shen [3] Template+DBNN 20 100%
Israel [4] LDA 29 98%
Wang [5] KNN+LDA 13 96%
Chiu [6] Wavelet+LDA 35 100%
Chan [7] Wavelet DM 50 89%
Sriram [8] Wavelet+LDA 17 88%
Lugovaya [9] Wavelet+LDA 90 96%
This Work DNN 90 99.96%

TABLE I: Results from related work for user authentication.
Direct comparison is challenging due to different datasets,
ECG setup, approaches, and design goals.

For a more in-depth comparison of the most recent ECG
authentication systems, we refer the reader to [10]. [10]
evaluates 20 systems on an in-house database consisting of
265 volunteers recorded while resting during 3 sessions with 1-
week to 6-month span between sessions. For multi-day training
experiments, two systems performed far superior. The best
system, developed by [10] on the same database, achieved an
equal error rate (EER) of 5.47%, the second best system by
[11] achieved an EER of 6.38%, while the average EER of
the rest was 24.04%. There are two observations we would
like to highlight. First, the version of [10] that achieved the
best EER requires dataset-specific feature reduction. Their
similar non-feature reduction version is only able to achieve an
EER of 14.73%. Second, the original version of [11] utilized
wavelet transform followed by a 2 hidden layer neural network.
However, in [10] the wavelet transform was substituted with a
1-40 Hz band-pass filter. In the proposed system, we achieve
an EER of 0.0582% on the public ECG-ID database consisting
of 90 volunteers recorded while resting during 2-20 sessions
over a 1-day to 6-month time-span.

III. System Overview
The high-level system diagram is presented in Fig. 1. 1-

lead ECG data is fed into the system and sampled at a rate of
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500 Hz. This data is buffered and passed to the main processing
block in 250-sample segments. The main processing block
consists of three major stages: 1. Preprocessing, 2. QRS
Identification, and 3. User Identification.
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Fig. 1: High-level diagram of the ECG authentication system.
The system consists of three main processing blocks: Prepro-
cessing, QRS Identification, and User Identification.

1) Preprocessing Stage: The first stage consists of filtering
and normalizing the input segment. The filter used is an FIR
band-pass filter with a pass-band of 1-40 Hz and 60 dB
attenuation in the lower and upper stop-bands. The filtering
is done to help remove artifacts and noise such as power-
line interference. Normalization is done by subtracting the
mean and dividing by the standard deviation, in order to have
segments with zero mean and unit variance.

2) QRS Identification Stage: In this stage, a neural network
is used to identify segments that contain a QRS complex.
Specifically, the segment must contain an R peak aligned
approximately at the 80th sample. The reason for only per-
forming user identification on QRS segments is because they
provide the most relevant and unique information for a user.
The alignment of the R peak around the 80th sample is also
done to ensure the majority of the complex is captured in the
segment to help improve user classification.

3) User Identification Stage: The last stage also uses a neu-
ral network to perform user authentication. Neural networks
have shown great promise in biomedical signal classification
and detection tasks [12]. Additionally, unlike other related
biomedical signal processing works that require several pre-
processing techniques and the use of feature engineering [13]–
[15], the neural networks in this work are supplied only filtered
raw ECG data for classification. The idea is to allow each
layer in the neural network to abstract high-order features that
perform better than hand-crafted features.

IV. System Evaluation
The efficacy of the system is measured by its ability to

securely identify a user with minimal effort and obtrusiveness.
The most crucial goal is that the system is infallible at
producing false matches. A longer processing time (allowing
more false rejections) is acceptable if it enables the system to
be more robust against false matches. Therefore, we want a
system with a near perfect specificity while still maintaining
an acceptable sensitivity. The second and third stages use
neural networks to perform binary classification such that the
output is the probability of a match. Typically, a threshold of
50% is used to obtain equal performance for both classes. By
increasing the threshold, we can reduce the possibility of false
matches at the expense of false rejections.

A. Dataset
Data from the ECG-ID database is used in this study

for both training and validation purposes [9]. The database
consists of 310 1-lead ECG recording sessions obtained from

90 volunteers during a resting state. Each session produced
20 seconds of recorded data sampled at 500 Hz with 12-bit
resolution. The number of sessions for each volunteer varied
from 2 to 20 with a time span of 1-day to 6-months between
the initial and last recordings. The specific time lapse between
each session is not provided. There were 2 subjects with over
20 sessions, 20 subjects with at least 5 sessions, 41 subjects
with at least 3 sessions, and 49 subjects with only 2 sessions.

B. QRS Identification
Setup: To train and validate the neural network for gener-

alized QRS complex identification all subjects were utilized.
The users were divided into training, validation, and testing
sets using a 70/15/15% split. This method of splitting by user
should better approximate real world results by testing on
individuals that were not part of the training process. For each
ECG record, 250-sample segments were selected in two steps.
In the first step, positive-labeled segments were strategically
drawn that contained an R peak within 1-sample of the 80th
index, which had been supplied with the database. In the
second step, negative segments were drawn at random using
an inverse-distance weighting based on R peak locations. This
led to having more negative segments that coincided closely
to QRS complexes. A 1:4 positive to negative instance ratio
was also employed in order to reduce the large skew towards
the negative class.

Fig. 2: DET curves for the 10 best neural network models
used for QRS identification. Dashed and ’+’ lines correspond
to false acceptance (FAR) and false rejection rate (FRR),
respectively. The best model achieved a low EER of 0.4487%
at threshold 71.8%.

Results: A hyper-parameter optimization was used to help
discover the best neural network model. 1,000 experiments
were performed in which hyper-parameters were selected
at random. These hyper-parameters included the number of
hidden layers (1-4), the number of nodes per layer (250-
1,000), the dropout rate per layer (40-80%), and the activation
function (sigmoid, tanh, relu). The best network model, based
on test results, required a single hidden layer with 307 nodes,
60% dropout, and a tanh activation function. From analyzing
the results, it was found that deeper networks suffered from
overfitting even when higher dropout rates were utilized. The
best model obtained an overall accuracy of 99.54% with
99.49% sensitivity and 99.55% specificity. Figure 2 depicts the
detection error trade-off (DET) with linear scales for the 10
best neural network models. The equal error rate (EER) of the
best model is 0.4487% for a threshold of 71.8%. Figure 3 pro-
vides the histograms of the best model’s predictions for non-
QRS and QRS segments of the test set. This plot demonstrates
the network’s ability to separate the classes effectively. Using
a threshold over 70% helps to remove the few occurrences of
false matches.
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Fig. 3: Histograms of the probabilities produced by the best
model for non-QRS (blue) and QRS (red) test segments.

C. User Identification
Setup: The process of training and validating the models

for user authentication was done using cross validation with
a one-hot subject encoding technique. This means that for
each cross validation iteration only one subject’s QRS complex
segments are given positive labels while all other subjects’
QRS segments are given negative labels. This differs from
other works that assign a unique label for each individual
[9]. Assigning a unique label often leads to more complex
classification models as it must learn to discern all subjects.
Furthermore, the approach is more difficult to scale to larger
databases containing more individuals. For the target subject,
their recorded sessions were divided into training, validation,
and test sets using a 70/15/15% split. For target subjects with
only 2 records, one record was split between training and
validation. For the non-target individuals, they were split into
training, validation, and test sets using a 70/15/15% split. This
means that the test and validation contain individuals not seen
during training.

Fig. 4: DET curves of the best neural net model for user
authentication for all 90 subjects. Dashed and ’+’ lines corre-
spond to false acceptance (FAR) and false rejection rate (FRR),
respectively. Utilizing all results, the model achieved a low
EER of 0.0582% at 50.31% threshold.

Results: Similar to QRS identification, 1,000 experiments
were performed using a hyper-parameter optimization. The
same parameters and ranges were used in these experiments.
For each experiment, 90 iterations were performed for cross
validation across all subjects. The best neural network model,
based on the test sets, required 2 hidden layers with 577 and
380 nodes, 76% and 78% dropout rates, and a tanh activation
function. The model obtained an average accuracy of 99.93%
with 99.85% sensitivity and 99.96% specificity. The DET
curves for each subject using the best model are provided in
Fig. 4. The model achieves an EER of 0.0582% at a threshold
of 50.31%. Figure 5 demonstrates the model’s effectiveness
at performing user identification using only raw ECG data.
Figure 6 provides box-plots of the ROCs area under the curve
(AUC), accuracy, sensitivity, and specificity for the test sets.
All metrics perform well with little variance. Specificity, the
most important metric, has both the highest average and the
lowest variance.
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Fig. 5: Histograms of the probabilities produced by the best
model for all subjects combined. The target (red) refers to the
target subject, while impostor (blue) refers to all others.
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Fig. 6: AUC, accuracy, sensitivity, and specificity metrics for
the best user identification model using all users’ test sets.

V. Implementation Overview
After demonstrating the system’s ability to perform au-

thentication, the next step is to implement the design in
hardware. The main objective of the hardware implementation
is to minimize the area and power footprint while meeting
processing deadline and maintaining system accuracy. The two
main hardware blocks required consist of the FIR filter (FIR)
and the neural network (NN) classifier. These blocks along
with the entire system block were implemented using Xilinx’s
Vivado HLS. The software not only allowed fast implemen-
tation but also enabled fixed-point precision experimentation,
resource utilization management, and system verification of
the RTL using C/C++ test-benches. The high-level system was
evaluated using 32-bit floating-point precision. Due to the large
amount of resources required for floating-point operations, the
system was translated into fixed-point. 6.12 fixed-point format
was selected as it maintained the same accuracy and fit nicely
into 18-bit wide block RAMs (BRAM).
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Fig. 7: Block-diagrams of the filter (FIR), neural network
classifier (NN), and system block.

1) FIR Block: The FIR filter is implemented in a serial
manner using a single MAC operator as depicted in Fig. 7a.
The filter coefficients are stored externally with I/O ports added
to allow the block to load the coefficients as needed. The band-
pass filter required for this design consisted of 500 symmetric
coefficients. The input, output, and coefficients were all stored
in 6.12 format with saturation and truncation employed.

2) NN Block: The neural network classifier (NN) block
is implemented in a partially-parallel configuration. At RTL-



synthesis time, the number of parallel MAC operations can
be specified. The network topology, weights, and biases are
stored externally to enable run-time configuration.

3) SYSTEM Block: The high-level hardware design is de-
picted in Fig. 7c. The Preprocessing Stage consists of the FIR
block and additional logic to perform normalization. This stage
receives and produces 256-sample segments serially. The QRS
Identify and User Identify stages are implemented using the NN
blocks. Both stages are fed the same input from Preprocessing
and produce a single classification output. User Identify Stage
is only enabled when the QRS Identify Stage detects a QRS
complex. For each of the three stages, there is a corresponding
memory to store required configurations.

VI. Implementation Results
The design is synthesized and implemented on an Artix-7

FPGA (xc7a200tlffq1156-2L). The resource utilization of the
design is summarized in Table II. The full design occupies
1,712 slices of the total 33,650 available (5%). The total mem-
ory required by the system is just under 1 MB. When operating
at 50 MHz, the FPGA consumes 256 mW of power. The
authentication latency is dictated chiefly by the user’s heart rate
and false rejections. For instance, a user with a heart rate of 40
BPM could require 3 seconds if the first beat is misclassified.
The minimum and maximum computational latency to process
a segment takes 17.1 and 97.3 ms, respectively. The minimum
consists of just the first two stages. Dynamic overlap of the
segments is employed using a simple algorithm based on the
probability output of the QRS Identification Stage. The higher
the probability, the more overlap is used to ensure a peak is not
missed. Conservatively, minimum and maximum processing
must occur for every 50 and 200 samples received. This means
that the minimum and maximum processing must occur within
100 ms and 400 ms deadlines given a sampling frequency
of 500 Hz. The total chip dynamic power consumption is
31.75 mW when scaling the frequency to 12.5 MHz to meet
the worst-case 400 ms deadline. A major contributor to the
power is the use of the majority of the BRAMs available
to store the network weights. Some possible ways to reduce
this power include pruning the network, storing weights off-
chip and locally caching, or translating into an ASIC [13].
Regardless, we envision that such a system will only need to
be active for brief moments periodically throughout a given
day. Shutting off the system while inactive will significantly
reduce the effective power consumption.

Area
Slice 1,712 (5%)

Clock
Freq (MHz) 50

FF 4,335 (2%) Min Latency (ms) 17.1

LUT 3,734 (3%) Max Latency (ms) 97.3

Memory
FIR (KB) 1.1

Power
Static (mW) 129

QRS NN (KB) 172 Dynamic (mW) 127

PT NN (KB) 806 Total (mW) 256

TABLE II: Resource utilization breakdown of the hardware
implementation on an Artix-7 FPGA. The minimum latency
consists of Preprocessing and QRS Identification stages while
maximum also includes User Identification Stage

VII. Conclusion
This paper presented a low-power, embedded system for

the purpose of performing biometric authentication using ECG

data. To streamline the design, the system used neural networks
for both detecting QRS complex segments and performing
user identification on these raw QRS segments. The only
preprocessing performed is filtering and normalization. The
QRS complex identification achieved 99.54% accuracy using a
neural network model consisting of a single 307-node hidden
layer with 60% dropout and a tanh activation function. The
best model for user identification achieved, on average, 99.93%
accuracy, 99.85% sensitivity, 99.96% specificity, and an EER
of 0.0582%. The model required 2 hidden layers with sizes
577 and 380, dropout rates 76% and 78% and a tanh activation
function. When implemented on an Artix-7 FPGA, the entire
design occupied 1,712 slices (5%), ∼1 MB of memory, and
dissipates 31.75 mW of total chip dynamic power when
operating at 12.5 MHz.

References
[1] V. Bharadi, B. Pandya, and B. Nemade, “Multimodal biometric recog-

nition using iris amp; fingerprint: By texture feature extraction using
hybrid wavelets,” in Confluence The Next Generation Information
Technology Summit, 2014 5th, Sept 2014, pp. 697–702.

[2] L. Biel, O. Pettersson, L. Philipson, and P. Wide, “ECG analysis: a new
approach in human identification,” Instrumentation and Measurement,
IEEE Transactions on, vol. 50, no. 3, pp. 808–812, 2001.

[3] T.-W. Shen, W. Tompkins, and Y. Hu, “One-lead ECG for identity
verification,” in Engineering in Medicine and Biology, 2002. 24th
Annual Conference and the Annual Fall Meeting of the Biomedical
Engineering Society EMBS/BMES Conference, 2002. Proceedings of the
Second Joint, vol. 1. IEEE, 2002, pp. 62–63.

[4] S. A. Israel et al., “ECG to identify individuals,” Pattern recognition,
vol. 38, no. 1, pp. 133–142, 2005.

[5] Y. Wang, F. Agrafioti, D. Hatzinakos, and K. N. Plataniotis, “Analysis of
human electrocardiogram for biometric recognition,” EURASIP journal
on Advances in Signal Processing, vol. 2008, p. 19, 2008.

[6] C.-C. Chiu, C.-M. Chuang, and C.-Y. Hsu, “A novel personal identity
verification approach using a discrete wavelet transform of the ecg
signal,” in Multimedia and Ubiquitous Engineering, 2008. MUE 2008.
International Conference on. IEEE, 2008, pp. 201–206.

[7] A. D. Chan, M. M. Hamdy et al., “Wavelet distance measure for
person identification using electrocardiograms,” Instrumentation and
Measurement, IEEE Transactions on, vol. 57, no. 2, pp. 248–253, 2008.

[8] J. C. Sriram et al., “Activity-aware ECG-based patient authentication
for remote health monitoring,” in Proceedings of the 2009 international
conference on Multimodal interfaces. ACM, 2009, pp. 297–304.

[9] L. T.S., “Biometric human identification based on electrocardiogram,”
June 2005.

[10] I. Odinaka, P.-H. Lai et al., “Ecg biometric recognition: A comparative
analysis,” Information Forensics and Security, IEEE Transactions on,
vol. 7, no. 6, pp. 1812–1824, Dec 2012.

[11] Y. Wan, J. Yao et al., “A neural network to identify human subjects
with electrocardiogram signals,” in Proceedings of the world congress
on engineering and computer science. Citeseer, 2008, pp. 1–4.

[12] A. Page, J. Turner, T. Mohsenin, and T. Oates, “Comparing raw data and
feature extraction for seizure detection with deep learning methods,” in
The 27th International Conference of the Florida Artificial Intelligence
Society (FLAIRS’27), 2014.

[13] S. Viseh, M. Ghovanloo, and T. Mohsenin, “Toward an ultra low-power
onboard processor for tongue drive system,” Circuits and Systems II:
Express Briefs, IEEE Transactions on, vol. 62, no. 2, pp. 174–178, Feb
2015.

[14] A. Page, C. Sagedy, E. Smith, N. Attaran, T. Oates, and T. Mohsenin,
“A flexible multichannel EEG feature extractor and classifier for seizure
detection,” Circuits and Systems II: Express Briefs, IEEE Transactions
on, vol. 62, no. 2, pp. 109–113, Feb 2015.

[15] A. Page, S. Pramod, T. Oates, and T. Mohsenin, “An ultra low
power feature extraction and classification system for wearable seizure
detection,” in Engineering in Medicine and Biology Society (EMBC),
2015 37th Annual International Conference of the IEEE, Oct 2015.


