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Abstract. To reduce the cost of ICs and to meet the market’s demand,
a considerable portion of manufacturing supply chain, including silicon
fabrication, packaging and testing may be pushed offshore. Utilizing a
global IC manufacturing supply chain, and inclusion of non-trusted par-
ties in the supply chain has raised concerns over security and trust related
challenges including those of overproduction, counterfeiting, IP piracy,
and Hardware Trojans to name a few. To reduce the risk of IC man-
ufacturing in an untrusted and globally distributed supply chain, the
researchers have proposed various locking and obfuscation mechanisms
for hiding the functionality of the ICs during the manufacturing, that
requires the activation of the IP after fabrication using the key value(s)
that is only known to the IP/IC owner. At the same time, many such pro-
posed obfuscation and locking mechanisms are broken with attacks that
exploit the inherent vulnerabilities in such solutions. The past decade
of research in this area, has resulted in many such defense and attack
solutions. In this paper, we review a decade of research on hardware ob-
fuscation from an attacker perspective, elaborate on attack and defense
lessons learned, and discuss future directions that could be exploited for
building stronger defenses.
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1 Introduction

The increasing cost of IC manufacturing has pushed several stages of the semi-
conductor device’s manufacturing supply chain offshore [3]. However, many of
these offshore facilities are identified as untrusted entities. Processing and fabri-
cation of ICs in an untrusted supply chain poses a number of challenging security
threats such as IP piracy and IC overproduction [16]. To counter these threats,
various hardware design-for-trust techniques have been proposed. The term logic
locking, a.k.a. hardware obfuscation, surfaced in 2008 by EPIC [10], in which a
limited programmability was introduced into a netlist by means of inserting ad-
ditional key programmable gates (KG)s at design time. After fabrication, the
functionality of the IC is programmed by loading the correct key values. The
key inputs could be stored in, and loaded from, an on-chip tamper-proof mem-
ory [23]. The purpose of inserting KGs is to hide the IC’s functionality from
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Fig. 1: Categorization of attacks against logic locking schemes.

untrusted foundries. Since the functionality of a design is locked with a secret
key, the attacker cannot learn the functionality of the locked netlist after reverse
engineering. Insertion of n KGs hides the ICs functionality between 2n different
circuit possibilities, each generated by a different key. The correct functionality
will be recovered when the loaded n-bit key is correct.

EPIC, however did not end the threat against IP piracy (or other related
concerns), as this solution and many other obfuscation solutions that were pro-
posed over the last decade were broken using various carefully crafted attacks.
A decade of research in this area, has resulted in a wide range of defense [2],
[6], [5], [9], [8], [13], [15], [20], [18], [17], [26], [27], [33], [32] and attack solutions
[1], [7], [9], [12], [14], [19], [21], [22], [25], [28], [29], [31], [24], [30], [4]. In this
paper, we review many of these obfuscation solutions, explain and reviewing
most notable attack mechanisms, summarize and compare the effectiveness of
obfuscation solutions against these attacks, and describe the strength and weak-
nesses of various obfuscation and attack solutions. As illustrated in Fig. 1, the
defense and attack solutions related to hardware obfuscation, based on function-
ality, capability, effectiveness and time-line are categorized into four categories:
(1) Test-Inspired Attacks that were mostly inspired from test concepts and at-
tempted to discover the obfuscation key value based on the location of KGs,
described in Section 2. (2) SAT Attack, formulation and revelation of which
significantly affected the direction and presumed assumptions of the hardware
obfuscation research community, explained in Section 3. (3) Post-SAT Attacks
where the focus of hardware security researchers changed to the design of an
attack against obfuscation solutions that resist the SAT attack, explained in 4.
And (4) SMT Attack as a universal attack platform capable of instantiating
many theory solvers to act as pre- post- or co- processors to the SAT solver,
described in Section 5. We conclude the paper in Section 6 by summarizing the
effectiveness of attacks discussed in this paper and provide a short discussion on
new opportunities related to designing secure logic locking solutions.

2 Stage 1: Test-Based Attacks

2.1 Brute Force Attack

The brute force attack is the most intuitive attack against obfuscated circuits.
This attack exhaustively search for the correct key by testing all key and in-
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put values. For instance, assuming that adversary has access to the reverse-
engineered netlist, and considering that the circuit has four PIs ( i0..4) and
two KIs (k0..1), an exhaustive search may result in applying of 22+4 = 64 test
patterns (in the worst case) and checking the output against an activated (func-
tionally correct) chip to verify correctness. Based on the number of primary
inputs (|PI|) and the number of key bits (|KI|), the number of possible test
patterns is (2|PI|+|KI|). Hence, the search space for a brute force attack is ex-
tremely large, making the attack even for small circuits and small number of keys
unfeasible in a reasonable amount of time. For example, a small circuit with 20
input pins, which is obfuscated with 80 key gates poses 2100 possible test pattern.
An attacker can reduce the number of test patterns using functional test or ran-
dom test, in which the exponential impact of |PI|s will be eliminated, and only
2|KI| × (func test patterns) is required for brute force attack. But even with
this change, the attack time is exponential with respect to the number of key
gates. EPIC [10] used a random KG insertion policy referred to as random logic
locking (RLL). Using RLL, EPIC reasoned that by replacing a small percentage
of gates (or insertion of KGs), the obfuscation can resist brute force attacks.

2.2 Sensitization Attack

After introducing EPIC [10], Rajendran et al. [9] proposed a sensitization at-
tack, which determines individual key values, in a time linear to the —KI—, by
applying patterns that sensitize key values to the output. As its name implies,
sensitization of an internal wire (key bit) L to an output O means that the
value of L can be propagated to O and thus any change on L is observable on
O. After determining an input pattern that propagates the value of the key-bit
to the output, the attacker applies the input pattern to a functional IC (An IC
activated and programmed with the correct key that could be obtained from
market). The correct key value will be propagated to an output by applying
this pattern to the functional IC. The attacker observe and record this output
as the value of the sensitized key-bit. The propagation of a key-bit to the out-
put is heavily depending on the location of the KGs, hence, they classify KGs
based on their location and discuss corresponding attack strategies for each case.
The summary of strategies and techniques used in the sensitization attack is re-
flected in Table 1. To prevent sensitization attack they proposed SLL, in which
the KGs are inserted in locations with maximum mutual interference. In SLL
the attacker cannot sensitize the key-bit values to a primary output. Similar to
SLL, several prior-art methods in the literature, including fault-analysis (FLL),
LUT-based locking, etc. [2], [6], [9], [8], [27], , tried to maximize the complexity
of obfuscation using different KGs replacement strategies.

2.3 Random-based Hill-Climbing Attack

Plaza et al. [24] developed a new algorithmic attack that uses test patterns
and observe responses. Unlike sensitization attack [9], their proposed approach
does not require netlist access. They propose a randomized local key-searching
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Table 1: Classification of KGs in Sensitization Attack.

Term Description Strategy used by attacker
Runs of KGs Back-to-Back KGs Replacing by a Single KG

Isolated KGs No Path between KGs
Finding Unique Pattern per
KG (Golden Pattern (GP))

Dominating KGs
k1 is on Every Path Muting k0,
between k0 and POs Sensitizing k1

Concurrently Mutable Convergent at a Third Gate Muting k0/k1,
Convergent KGs Both can be Propagated to POs Sensitizing k1/k0
Sequentially Mutable Convergent at a Third Gate Determining k1 by GP,
Convergent KGs One can be Propagated to POs Update the Netlist, Target k0
Non-Mutable Convergent at a Third Gate

Brute Force Attack
Convergent KGs None can be Propagated to POs

algorithm to search the key that can satisfy a subset of correct input/output
patterns. The algorithm proposed in [24] is iterative in nature. At first, it se-
lects random value for key bits and then at each iteration, the key bits, which
are selected randomly, are toggled one by one. The target is to minimize the
frequency of differences between the observed and expected responses. Hence, a
random key candidate is gradually improved based on observed test responses.
If no solution is found in one iteration, the algorithm resets the key to a new
random key value. However, the complexity of this attack quickly increases with
increasing number of KGs.

3 Stage 2: SAT Attack

In 2015, Subramanyan et al. [22] proposed a new and powerful attack using
Boolean satisfiability (SAT) solver, called SAT attack, that effectively and quickly
broke all previously proposed logic locking techniques. As an ”oracle-guided” at-
tack, SAT attack requires a reverse-engineered but locked netlist (CL), and a
functionally activated chip (CO). A circuit view of steps taken in a SAT attack
is shown in Fig. 2. For this attack, the attacker first replicate the obfuscated
circuit and builds a double circuit which is used for finding an input (Xd[i])
that for two different key values generates two different outputs. Such input is
referred to as Discriminating Input Pattern(DIP). Each Xd[i] is used to create a
DI validation circuit (DIVC). The validation circuit, as shown in Fig. 2 assures
that for a previously found Xd[i], two different keys generate the same output
value. Each iteration of the SAT attack finds a new (Xd[i]), and add a new DI
validation circuit. The DIVCs are ANDed together to form a Set of Correct Key
Validation Circuit (SCKVC). In each iteration, the SAT solver try to find a new
Xd[i] and two key values that satisfy the double circuit (KDC) and the Vali-
dation Circuit (SCKVC). The key values and the Xd[i], as illustrated in Alg. 1
(line 5), is found by a SAT query. This means the new key generate two different
values for the new Xd[i], but generate the same value for all previously found
Xds for both key values. This process continues until the SAT solver cannot find
a new Xd[i] (line 4). At this point any key that generates the correct output for
the set of found Xds is the correct key (line 9).

For all prior obfuscation schemes, even those resistant to sensitization attack,
the SAT attack was able to rule out a significant number of key values at each
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Fig. 2: SAT Attack Iterative Flow.

Algorithm 1 SAT-based Attack Algorithm [22]

1: function SAT Attack(Circuit CL, Circuit CO)
2: i ← 0; F0 ← CL(X, K1, Y1) ∧ CL(X, K2, Y2);
3: while SAT(Fi ∧ (Y1 6= Y2)) do
4: Xd[i] ← sat assignment (Fi∧(Y1 6=Y2)); Yd[i] ← CO(Xd[i]);
5: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]); i ← i+1 ;

6: K∗ ← sat assignmentK1
(Fi);

iterations (by finding each DIP). Hence, In order to thwart SAT attack, the
first attempted approach was to weaken the strength of the DIPs to reduce its
pruning power. SARLock [20] and Anti-SAT [32] were the first prior-art methods
that accomplished this. Both SARLock and Anti-SAT engaged one-point flipping
function, demonstrated in Fig. 3. Using this obfuscation scheme, each DIP is
able to rule out only one incorrect key. Hence, the SAT attack requires to apply
all 2|KI| to retrieve the correct functionality. However, this method results in
obfuscation circuits that for all but one output work as the original circuit, and
the output corruption upon application of a wrong key is quite low.

4 Stage 3: Post-SAT Attacks

As discussed, the proposed SAT-resilient solutions suffered from low output cor-
ruption. This however could have been addressed by combining a SAT-hard so-
lution with a traditional obfuscation solution, such as RLL or SLL, that exhibits
high level of output corruption. Although SAT-resilient logic locking schemes
provided a defense against SAT attack, researchers found new vulnerabilities
associated with this class of obfuscation techniques resulting in the development
of many new attacks on the presumed SAT-hard logic locking schemes described
in this section.

4.1 Removal Attack

As shown in Fig 3, in bare implementation of one-point flipping circuit, the
locking circuitry is completely decoupled from the original circuit. A removal
attack identifies and removes/bypasses the locking circuitry to retrieve the orig-
inal circuit and to remove dependence on key values [19]. The removal attack,
presented in [19], was used to detect and remove SARLock [20]. In presence of
removal attack, researchers investigated SAT-hard solutions that are hard to de-
tect (preventing removal by pure structural analysis), an example of which was
Anti-SAT [32].
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Fig. 3: Flipping Structure of SARLock and Anti-SAT.

4.2 Signal Probability Skew (SPS) Attack

The Signal Probability Skew (SPS) attack [21] leverages the structural traces in
Anti-SAT block to identify and isolate the Anti-SAT block [32]. Signal probability
skew (SPS) of a signal x is defined as s = Pr[x = 1] − 0.5, where Pr[x = 1]
indicates the probability that signal x is 1. The range of s is [−0.5, 0.5]. If the
SPS of signal x is closer to zero, an attacker have lower chance of guessing the
signal value by random. For a 2-input gate, the signal probability skew is the
difference between the signal probability of its input wires. The flipping-circuit
in the Anti-SAT is constructed using two complementary circuits, g and g, in
which the number of input vectors that make the function g equal to 1 (p) is
either close to 1 or 2n − 1. These two complementary circuits converge at an
AND gate G. Considering this structure, the absolute difference of the signal
probability skew (ADS) of the inputs of gate G is quite large, noting that the
SAT resilience is ensured by this skewed p. Algorithm 2 shows the SPS attack,
which identifies the Anti-SAT block’s output by computing signal probabilities
and searching for the skew(s) of arriving signals to a gate in a given netlist.

Algorithm 2 SPS Attack Algorithm [21]

1: function SPS Attack(Circuit CL)
2: ADSarr ← {};
3: for each gate ∈ CL do
4: ADSarr(gatei) ← Compute ADS(CL, gatei);

5: G ← Find Maximum(ADSarr);
6: Y ← Find value from skew(G); . Correct value of Anti SAT output
7: CLock ← remove TFI(CL, G, Y ); . Transitive FanIn of the gate G
8: return CLock . CLock: CL after removing Anti SAT block

4.3 Bypass Attack

Although SARLock and Anti-SAT break the SAT attack, their respective output
corruptibility is very low if they are not mixed with traditional logic locking, such
as SLL. Observing and relying on the very low level of output corruption in such
SAT-hard solutions, the bypass attack [28] was introduced. The bypass attack
instantiates two copies of the obfuscated netlist using two randomly selected
keys, and build a miter circuit that evaluates to 1 only when the output of two
circuits is different. The miter circuit is then fed to a SAT solver looking for such
inputs. The SAT returns with minimum of two inputs for which the outputs
are different. These input patterns are tested using an activated IC (golden
IC) validating the correct output. Then a bypass circuit is constructed using a
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comparator that is stitched to the primary output of the netlist which is unlocked
using the selected random key, to retrieve the correct functionality if that input
pattern is applied. The Bypass attack works well when the SAT-hard solution is
not mixed with traditional logic locking mechanism since its overhead increases
very quickly as output corruption of logic locking increases. This observation
motivated researchers to look at possibilities of approximate attacks to retrieve
the key values associated to non SAT-hard obfuscation solutions that are mixed
with SAT-hard solutions.

4.4 AppSAT Attack

So far, defences solution to mitigate the SAT attack, are based on the assumption
that the attacker needs an exact attack on logic locking. However, Shamsi et al.
[12] proposed a new attack (AppSAT), which relax this constraint. AppSAT
shown in Algorithm 3, is an approximate attack on logic locking based on the
SAT attack and random testing. The authors use probably-approximate-correct
(PAC) model for formulating approximate learning problem. The exact SAT
attack continues to find DIPs until no more DIPs can be found. However, the
AppSAT will be terminated in any early step in which the error falls below the
certain limit. If this condition happens, the key value will be considered as an
approximate key with specified error rate; otherwise, the random sampling that
resulted in a disagreement will be added to a SAT formula as a new constraint. In
AppSAT, heuristic methods for estimating the error is used for large functions,
to avoid any computation complexity.

4.5 Double-DIP Attack

Double-DIP [30] is another approximate attack, shown in Algorithm 4. Double-
DIP is an extension of SAT attack in which during each iteration, the discrimi-
nating input should eliminate at least two wrong keys. To illustrate its effec-
tiveness, researchers used double-DIP to target SARLock+SSL, representing
a compound of SAT-hard and high output corruption obfuscation. When the
double-DIP attack terminates, the key of the traditional logic locking (SSL) is
guaranteed to be correct. As a result, the compound logic locking will be re-
duced to a single SAT attack resilient technique, that could then be attacked
using bypass attack.

4.6 Bit-Flipping Attack

The Bit-flipping attack [29] is yet another attack against compound logic locking
schemes in which a SAT-hard solution such as SARLock is combined with a
traditional logic locking to guarantee both high error rates and resilience to the
SAT-based attack. In Bit-flipping attack, the keys are first separated into two
groups (k1 and k2) by counting DIPs for two keys with hamming distance equal
to one. The attack is motivated from the observation that in traditional logic



8 Authors Suppressed Due to Excessive Length

Algorithm 3 AppSAT Attack Algorithm [12]

1: function AppSAT Attack(Circuit CL, Circuit CO)
2: i ← 0; F0 ← CL(X, K1, Y1) ∧ CL(X, K2, Y2);
3: while SAT(Fi ∧ (Y1 6= Y2)) do
4: Xd[i] ← sat assignment (Fi∧(Y1 6=Y2)); Yd[i] ← CO(Xd[i]);
5: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]); i ← i+1 ;
6: every n rounds do
7: for each (x ∈ Random Patterns) do
8: if CL(X, K1, Y) 6= CO(X) then
9: FailedPatterns ← FailedPatterns + 1;

10: Fi+1 ← Fi+1 ∧ (CL(X, K1, Y) = CO(X)); i ← i+1 ;

11: if error ¡ ErrorThreshold then
12: return K1 as an approximate key

13: K∗ ← sat assignmentK1
(Fi);

Algorithm 4 Double-DIP Attack Algorithm [30]

1: function DoubleDIP Attack(Circuit CL, Circuit CO)
2: i ← 0; F0 ← CL(X, K1, Y1) ∧ CL(X, K2, Y2) ∧ CL(X, K3, Y1) ∧ CL(X, K4, Y2) ;
3: while SAT(Fi ∧ (Y1 6= Y2)) ∧ (K1 6= K3)) ∧ (K2 6= K4)) do
4: Xd[i] ← sat assignment (Fi∧(Y1 6=Y2)) ∧ (K1 6= K3)) ∧ (K2 6= K4));
5: Yd[i] ← CO(Xd[i]);
6: Fi+1 ← Fi

∧4
j=1 CL(Xd[i], Kj , Yd[i]); i ← i+1 ;

7: K∗ ← sat assignmentK1
(Fi);

locking, wrong key causes substantial wrong input-output pattern. However, the
error rate of bit-flipping function is usually very small. As shown in Algorithm
5, after separation of keys, this attack fixes SAT-resilient keys, k2, as a random
number, and uses a SAT solver to find the correct key values for k1. After finding
k1, the bypass attack is applied to retrieve the original circuit.

Algorithm 5 Bit-flipping Attack Algorithm [29]

1: function BitFlipping Attack(Circuit CL, Circuit CO)
2: for each j ¡ Fixed-iteration do
3: KA ← a random key;
4: for each bit b ∈ KA do
5: KB ← KA while bit b flipped;
6: i ← 0; F0 ← CL(X, KA, YA) ∧ CL(X, KB , YB);
7: while SAT(Fi ∧ (YA 6= YB)) do
8: Xd[i] ← sat assignment (Fi∧(YA 6=YB));
9: Fi+1 ← Fi ∧ (X 6= Xd[i]); i ← i+1 ;

10: if i ¿ Threshold then
11: b is in K1,
12: break;

j ← j + 1;

13: K2 ← all key bits / K1; . Seperation is Done. Then, fix K2 as a random number.
14: K1 ← SAT ATTACK (CL, CO); . Find Traditional Keys using SAT.
15: C∗L ← update netlist(CL — K1)
16: return (BYPASS ATTACK(C∗L);

4.7 AppSAT Guided Removal Attack

AppSAT Guided Removal (AGR) attack targets compound logic locking, partic-
ularly Anti-SAT + traditional logic locking [19]. This attack integrates AppSAT
with a simple structural analysis of the locked netlist (a post-processing steps).
Unlike AppSAT, the AGR attack recovers the correct key. In this attack, first
the AppSAT is used to find the key of the traditional obfuscation scheme (used
as a part of compound lock). Then, AGR targets the remaining key bits belong
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to the SAT-resilient logic locking, such as Anti-SAT block, through a simple
structural analysis. As shown in Algorithm 6, in the post-processing steps, AGR
finds the gate (G) at which most of the Anti-SAT key bits converge. AGR finds
G by tracing the transitive fanout of the Anti-SAT key inputs, where all the
Anti-SAT key bits converge. The ratio of key bits converging at each of the in-
puts of the gate G, are close to 0.5, which is shown as the selected property in
line 7 of Algorithm 6. AGR identifies the candidates for gate G by checking this
property for all gates in the circuit, and then sort these candidate based on the
number of key inputs that converge at a gate and pick the gate G from all can-
didates, which has the most number of key inputs converge to that gate. Then
the attacker re-synthesize the design with the constant value for the output of
G gate and retrieving the correct functionality.

Algorithm 6 AGR Attack Algorithm [19]

1: function AGR Attack(Circuit CL, Circuit CO)
2: #Cand ← num gates(CL)
3: while (#Cand ¿ 1 and !Timeout) do
4: AppSAT Attack(); . 4 times
5: Candidates ← {};
6: for each gate ∈ CL do
7: if gatei has the selected property then
8: Candidates ← Candidates + 1;

9: G ← Find Max key count(Candidates);
10: CLock ← remove TFI(CL, G); . remove Transitive FanIn of the gate G
11: return CLock; . CLock: CL after removing Anti SAT block

4.8 Sensitization Guided SAT Attack

While the one-point flipping circuit in Anti-SAT and SARLock are completely
decoupled from the original netlist, Li et al. [15] proposed the AND-tree Insertion
(ATI), as a SAT-resilient logic locking, which embeds AND trees inside the
original netlist. It not only makes all aforementioned attack less effective, it also
decreases the implementation overhead. Additionally, the input of AND-tree are
camouflaged by inserting INV/BUF camouflaged gates, which can be replaced
with the XOR/XNOR gates in order to lock the AND-tree. However, this defense
was broken by a new attack that was coined as Sensitization Guided SAT (SGS)
attack [19]. The SGS attack is carried out in two stages: (1) sensitization that
exploits bias in input patterns which allows an attacker to apply only a subset
of DIPs, i.e., those that bring unique values to the AND-tree inputs. (2) SAT
attack using the patterns discovered in the first stage.

4.9 Functional Analysis Attack

Aiming to provide a defense that resists all previously formulated attacks led to
the introduction of Stripped-Functionality Logic Locking (SFLL) [18]. In SFLL
the original circuit is modified for at-least one input pattern (cube) using a cube
stripping unit, demonstrated in Fig. 4. As shown, Yfs is the output of the stripped
circuit, in which the output corresponding to at-least one input pattern is flipped.
The restore unit not only generates the flip signal for one input pattern per each
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Fig. 4: SFLL-HD while h = 0.

wrong key, it also restores the stripped output, (e.g. IN = 4 in Fig. 4) to recover
the correct functionality on Y . Note that applying removal attack on restore
unit recovers Yfs, which is not the correct functionality. In addition, SFLL-HD

is able to protect
(
k
h

)
input patterns that are of Hamming Distance (HD) h from

the k-bit secret key, and accordingly uses Hamming Distance checker as a restore
unit (e.g. h = 0 in Fig. 4 is also called TTLock [17]).

Although SFLL was resilient against all previously formulated attacks, it was
exploited using a newly formulated attack, called Functional Analysis on Logic
Locking (FALL) attack [4]. In this attack model, the adversary is assumed to
be a malicious foundry that knows the locking algorithm and its parameters,
e.g. h in SFLL-HD. A FALL attack is carried out in three main stages and re-
lies on structural and functional analyses to determine potential key values of a
locked circuit. First, FALL attack tries to find all nodes which are the results
of comparing an input value with a key input. It is done by a comparator iden-
tification. Such nodes (nodesRU ), which contains these particular comparators,
are very likely to be part of the functionality restoration unit. The set of all
inputs that appear in these comparators, should be in the fan-in cone of the
cube stripping unit. Then, it finds a set of all gates whose fan-in-cone is iden-
tical to the members of nodesRU . This set of gates must contain the output of
the cube stripping unit. Second, the attacker applies functional analysis on the
candidate nodes suggested by and collected from the first stage to identify sus-
pected key values. Broadly speaking, the attacker uses functional properties of
the cube stripping function used in SFLL, to determines the values of the keys.
Based on the author’s view, this function has three specific properties. So, they
have proposed three attacks algorithms on SFLL, which exploit unateness and
Hamming distance properties of the cube stripping functions. The input of these
algorithm is circuit node c, that computed from the first stage, and the algorithm
checks if c behaves as a Hamming distance calculator in the cube stripping unit
of SFLL-HD. If the attack is successful, the return value is the protected cube.
Third, they have proposed a SAT-based key confirmation algorithm using a list
of suspected key values and I/O oracle access, that verifies whether one of the
suspected key values computed from the second stage, is correct.

4.10 CycSAT Attack

Considering the strength of all previously formulated attacks, some of the re-
searchers started seeking solutions that fundamentally violated the assumptions
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of these attacks with respect to the nature of locked circuits. One of such at-
tempts was the introduction of cyclic logic locking [13][26], was first proposed in
[13]. In this obfuscation technique, as shown in Algorithm 7, each deliberately
established cycle is designed to have more than one way to open. The require-
ment for having more than one way to open each cycle assures that even if the
original netlist has no cycle by itself, the cycles remains irreducible by means of
structural analysis. The cyclic obfuscation resulted in an obfuscation with high
level of output corruption, while it was able to break the SAT attack either by 1)
trapping it in an infinite loop, or 2) forcing it to exit with a wrong key depending
on weather the introduced cycles make the circuit stateful or oscillating.

The promise of secure cyclic obfuscation was shortly after broken by CycSAT
attack [7]. In CycSAT, the key combinations that result in formation of cycles
are found in a pre-processing step. These conditions are then translated into
problem augmenting CNF formulas, denoted as cycle avoidance clauses, satis-
faction of which guarantee no cycle in the netlist. The cycle avoidance clauses
are then added to the original SAT circuit CNF and the SAT attack is executed.
The validity of this attack, however, was challenged in [26], as researchers illus-
trated that the pre-processing time for CycSAT attack is linearly dependent on
the number of cycles in the netlist. Hence, by building an exponential relation
between the number of feedback, and the number of cycles in the design, the
pre-processing step of CycSAT will face exponential runtime.

4.11 Behavioral SAT (BeSAT) Attack

Inability to analyze all cycles in the prepossessing step of CycSAT results in miss-
ing cycles in the pre-processing step of CycSAT, leading to building a statefull
or oscillating circuit, trapping the SAT stage of the CycSAT attack. BeSAT [31]
remedies this shortcoming by augmenting the CycSAT attack with a run-time
behavioral analysis. As shown in Algorithm 8, by performing behavioral analysis
at each SAT iteration, BeSAT detects repeated DIPs when the SAT is trapped
in an infinite loop. Also, when SAT cannot find any new DIP, a ternary-based
SAT is used to verify the returned key as a correct one, preventing the SAT from
exiting with an invalid key.

Algorithm 7 CycSAT Attack on Cyclic Locked Circuits [13]

1: function CycSAT Attack(Circuit CL, Circuit CO)
2: W = (w0, w1, ...wm) ← FindFeedback(CL);
3: for each (wi ∈ W ) do
4: F (wi, w

′
i) ← no structural path(wi);

5: i ← 0; NC(K)=∧m
i=0F (wi, w

′
i)

6: C∗L(X, K, Y) ← CL(X, K, Y) ∧ NC(K); F0 ← C∗L(X, K1, Y1) ∧ C∗L(X, K2, Y2);
7: while SAT(Fi ∧ (Y1 6= Y2)) do
8: Xd[i] ← sat assignment (Fi∧(Y1 6=Y2)); Yd[i] ← CO(Xd[i]);
9: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]); i ← i+1 ;

10: K∗ ← sat assignmentK1
(Fi);
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Algorithm 8 BeSAT Attack on Cyclic Locked Circuits [31]

1: function BeSAT Attack(Circuit CL, Circuit CO)
2: W = (w0, w1, ...wm) ← FindFeedback(CL);
3: for each (wi ∈ W ) do
4: F (wi, w

′
i) ← no structural path(wi);

5: i ← 0; NC(K)=∧m
i=0F (wi, w

′
i)

6: C∗L(X, K, Y) ← CL(X, K, Y) ∧ NC(K); F0 ← C∗L(X, K1, Y1) ∧ C∗L(X, K2, Y2);
7: while SAT(Fi ∧ (Y1 6= Y2)) do
8: Xd[i] ← sat assignment (Fi∧(Y1 6=Y2)); Yd[i] ← CO(Xd[i]);
9: Fi+1 ← Fi ∧ CL(Xd[i], K1, Yd[i]) ∧ CL(Xd[i], K2, Yd[i]);

10: if (Xd[i] in DIP) and (CL(Xd[i], K1) 6= Yd[i])) then

11: Fi+1 ← Fi+1 ∧ (K1 6= K̂1) ∧ (K2 6= K̂1);
12: else if (Xd[i] in DIP) and (CL(Xd[i], K2) 6= Yd[i]) then

13: Fi+1 ← Fi+1 ∧ (K1 6= K̂2) ∧ (K2 6= K̂2);

14: i ← i+1 ;

15: while SATK1
(Fi) do . Correct Key: K̂c

16: if Ternary SAT(Fi, Kc) then

17: Fi ← Fi ∧ (K1 6= K̂c)
18: else
19: K∗ ← K̂c; break;

5 Stage 4: SMT Attack

As discussed previously, many of the attacks proposed at post-SAT attack stage
were formulated by adding a pre-processing step to the original SAT attack,
and/or extending the SAT attack to co-process and check additional features in
each iteration. In other terms, to break many of the post-SAT era obfuscation
techniques, attackers relied on compound attacks by combining SAT solvers by
pre-processors (e.g. in CycSAT) and co-processors (e.g. in BeSAT) to extend its
modeling reach. Motivated by this trend, the need for having pre- co- and post-
processors along with a SAT solver in an attack was realized and addressed in [14]
and a new and extremely powerful attack, coined as Satisfiability Module Theory
(SMT) attack was introduced. The strength of SMT attack, as the superset of
SAT attack, comes from its ability to combine SAT and Theory solvers. As shown
in Fig. 5, The SMT attack could be invoked with any number and combination of
theory solvers, and a SAT solver, which allow the attacker to express constraints
that are difficult or even impossible to express using CNF, including timing,
delay, power, arithmetic, graph and many other first-order theories in general.
To showcase the modeling capability of SMT attack, the authors used the SMT
attack 1) to break a new breed of obfuscation that relied on locking the delay
information in netlist (by generating setup and hold violations), 2) to formulate
an accelerated attack (to reduce the attack time) with means of approximate
exit (if trapped with SAT hard solutions).

In pursuit of obfuscation schemes that could not be attacked by SAT mo-
tivated attackers, some researchers tried to extend the locking mechanism to
aspects of a circuit’s function that cannot be translated to CNF. For example,
Xie et al. proposed a timing obfuscation scheme, denoted as delay logic locking
(DLL), in [33]. The Goal of DLL obfuscation scheme is introducing setup and
hold violation if the correct key is not applied. In this case, the obfuscation at-
tempts to change both logical and behavioral (timing) properties. A functionally-
correct but timing-incorrect key will result in timing violations, leading to circuit
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Fig. 5: Overall Architecture of SMT Attack for Circuit Deobfuscation [14].

malfunctions. Considering that timing is not translatable to CNF, the SAT solver
remains oblivious to the keys used for timing obfuscation. Authors in [14], how-
ever, illustrated that the SMT attack could easily deploy a graph theory solver,
provide timing constraints to the theory solver (in terms of required min and
max delay to meet the hold and setup time), and use the theory solver in parallel
with the internal SAT solver to break both logic and delay obfuscation. They
additionally show that the theory solver could be initiated as a pre-processor
(Eager SMT approach) or as a co-processor (Lazy SMT approach) to break the
same problem, showcasing the strength of SMT attack. The lazy mode of this at-
tack is illustrated in Algorithm 9. Although at about the same time Chakraborty
proposed TimingSAT to attack the DLL [1], similar to many prior SAT-based
attack, it was by deploying a pre-processor for analysis of graph timing, and
generating helper clauses for the subsequent call to the SAT attack.

Algorithm 9 SMT Attack on DLL (Lazy Approach) [14]

1: function SMTLazy Attack(Circuit CL, Circuit CO)
2: C∗L ← toBOOLEAN(CL); . Replace TDK with Buffer
3: i ← 0; F ← C∗L(X, K1, Y1) ∧ C∗L(X, K2, Y2);
4: G∗L ← toGRAPH(CL); . Wires = Edges, Gates = Vertices
5: FT ← GenTCE(G∗L) . Theory Learned Clauses
6: FSMT ← F ∧ FT ; . SMT Clauses
7: while SMT(FSMT ) do . Xd[i], K1, K2, CC
8: Yd[i] ← CO(Xd[i]); F ← F ∧ C∗L(Xd[i], K1, Yd[i]) ∧ C∗L(Xd[i], K2, Yd[i]);
9: FSMT ← F ∧ CC; i ← i+1 ;

10: K∗ ← smt assignmentK1
(FSMT );

1: function GenTCE(Graph G∗L)
2: Inputs ← find start points(G∗L); Outputs ← find end points(G∗L); TCE(K) ← [];
3: for each ((Sp, Ep) ∈ (Inputs, outputs) do
4: Upper(Sp,Ep)(K) ← !(distance leq(Sp, Ep, tcd)); . Hold Violation
5: Lower(Sp,Ep)(K) ← distance leq(Sp, Ep, tp); . Setup Violation
6: Range(Sp,Ep)(K) ← Lower(Sp,Ep)(K) ∧ Upper(Sp,Ep)(K);
7: TCE(K) ← TCE(K) ∪ Range(Sp,Ep)(K);

8: return TCE(K)

The ability of SMT solver to instantiate and integrate different theory solver
makes it a suitable attack platform for modeling and formulating very strong
attacks. As an example of the strength of SMT attack, the authors in [14] for-
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mulated and presented an accelerated SMT attack with ability of detecting the
presence of SAT-hard obfuscation and switching to an accelerated approximate
attack. As shown in Algorithm 10, this was done by invoking a BitVector theory
solver to constrain the SMT solver for finding keys that result in highest output
corruption first. This could be done by constraining the required HD between
the output of double circuit when two different keys for the same discriminating
input is being tested. The required HD starts from a large value, and every time
that the SMT solver return UNSAT, the constraint is relaxed until HD of 1 is
reached. This leads to the guaranteed discovery of keys for traditional logic lock-
ing first. After N tries (Rep in Algorithm 10) for HD of 1, the SMT attack exits,
notes that there exist a SAT-hard obfuscation, which now could be addressed
by the Bypass attack.

Algorithm 10 Accelerated SMT Attack on Compound Locking [14]

1: function AccSMT Attack(Circuit CL, Circuit CO)
2: i ← 0; HDh ← sizeof (output); HDl ← HDh - 1;
3: TimeOut ← 20; Rep ← 20; HDR ← 1; Rcnt ← 0;
4: C∗L ← toBOOLEAN(CL); . Everything is Boolean.
5: F ← C∗L(X, K1, Y1) ∧ C∗L(X, K2, Y2);
6: BV∗L ← toBITVECTOR(CL); . Define BITVECTOR on output.
7: BVs∗L(X, K1, K2) ← ONEs(BV∗L(X, K1) ⊕ BV∗L(X, K2));
8: FT ← (BVs∗L(X, K1, K2) > HDl) ∧ (BVs∗L(X, K1, K2) 6 HDh);
9: FSMT ← F ∧ FT ; . SMT Clauses

10: while HDl > 1 do
11: while SMT(FSMT — TimeOut) do . Xd[i], K1, K2, CC
12: Yd[i] ← CO(Xd[i]);
13: F ← F ∧ C∗L(Xd[i], K1, Yd[i]) ∧ C∗L(Xd[i], K2, Yd[i]); FSMT ← F ∧ CC;
14: if HDl 6 HDR then
15: if Rcnt == Rep then
16: break;

17: Rcnt++;
HDl--;

18: K∗ ← smt assignmentK1
(FSMT );

6 Discussion & Opportunities

Table 2 compares the effectiveness of the attacks discussed in this paper against
most notable obfuscation schemes. As illustrated the combination of FALL, By-
pass and SMT attack can break all existing solutions, pointing us to a need
for a new direction for generating non-bypassable SMT hard obfuscation so-
lutions. The dilemma is that SAT-hard solutions have extremely low output
corruption, and are prone to Bypass, FALL, Removal and SPS attack. On the
other hand, the traditional logic locking schemes have high output corruption,
but could be easily broken with SAT/SMT attack. The compound logic locking
solutions that combine the SAT-hard solutions for resistance against SAT and
SMT attack, and traditional logic locking for resistance against Bypass, FALL,
Removal and SPS attack are also prone to approximate SAT and SMT attacks.
What is really desired, is a SMT-hard logic locking scheme with high degree
of output corruption. As a step in this direction, few very recent research pa-
pers have focused on increasing the execution time of each SAT/SMT iteration
rather than the total execution time [5], [11]. The Full-Lock in [5] is argued
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Table 2: Comparison of proposed attacks/defenses.

Attacks
Defenses . . RLL FLL SLL Anti-SAT SARLock Compound SFLL Cyclic SRCLock DLL

[10] [8] [9] [32] [20] [20] [18] [13] [26] [33]

Brute Force 7 7 7 7 7 7 7 7 7 7
Sensitization [9] 3 3 7 7 7 7 7 7 7 7
Hill-Climbing [24] 3 3 7 7 7 7 7 7 7 7
SAT [22] 3 3 3 7 7 7 7 7 7 7
SPS+Removal [19][21] 7 7 7 3 3 7 7 7 7 7
Bypass [28] 7 7 7 3 3 7 7 7 7 7
AppSAT [12] 3 3 3 7 7 P 7 7 7 7
Double-DIP [30] 3 3 3 7 7 P 7 7 7 7
Bit-Flipping [29] 3 3 3 3 3 3 7 7 7 7
AGR [19] 3 3 3 3 3 3 7 7 7 7
FALL [4] 7 7 7 7 7 7 3 7 7 7
CycSAT [7] 3 3 3 7 7 7 7 3 7 7
BeSAT [31] 3 3 3 7 7 7 7 3 7 7
TimingSAT [1] 3 3 3 7 7 7 7 7 7 3
SMT [14] 3 3 3 7 7 P 7 3 3 3

3: Attack Success, 7: Fail to Attack.
P: Only removes the key to the traditional locking in Compound Defense.

that the strength of SAT/SMT solvers come from their Conflict-Driven Clause
Learning (CDCL) ability, which is resulted by recursively calling Davis-Putnam-
Logemann-Loveland (DPLL) algorithm. Hence, the Full-Lock creates an obfus-
cation method that results in very deep recursive call trees. They argue that
the SAT/SMT attack execution time can be expresses by formula 1, in which N
denotes the number of iterations (DIPs) of the SAT/SMT attack, TDPLL(Φ) is
the execution time of recursive calls for DPLL algorithm on CNF Φ, and t is the
execution time of the remaining book keeping code executed at each iteration.

TAttack =

N∑
i=1

T (i) =

N∑
i=1

(t+ TDPLL(Φ)) =

N∑
i=1

M∑
j=1

(T
Avg
DPLL) 'MN × TAvg

DPLL (1)

Authors argue that M in formula 1 denotes the number of recursive DPLL
calls. Accordingly, the execution time of SAT attack could also become unfea-
sible by building an exponential relation between the percentage gate inserted
(area overhead) and M. The strong aspect of this alternative solution is that
(1) the problems posed at each iteration of SAT/SMT attack is a SAT-hard
problem, (2) the output corruption of this methods is significantly higher than
obfuscating solution relying on increasing the N , (3) it is not susceptible to SPS,
removal, bypass, approximate attack, to name a few. The hardness of SAT/SMT
attack in the solution posed by Full-Lock cannot be assessed/formulated similar
to that of SFLL. Moving towards this new direction for generating SAT-hard
problems with high level of output corruption can be generalized more, where
an obfuscation solution in this direction can engineer the number of recursive
calls, pushing the number of recursive call to be an exponential function of added
gates counts (area overhead).
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