
2018 9th International Symposium on Telecommunications (IST'2018)

978-1-5386-8274-6/18/$31.00 ©2018 IEEE

A Novel PUF based Logic Encryption Technique to

Prevent SAT Attacks and Trojan Insertion

Soraya Mobaraki

Department of Computer Engineering

University of Guilan

Rasht, Iran

s_mobaraki@webmail.guilan.ac.ir

Amirata Amirkhani

Department of Computer Engineering

University of Guilan

Rasht, Iran

amirata@msc.guilan.ac.ir

Reza Ebrahimi Atani

Department of Computer Engineering

University of Guilan

Rasht, Iran

rebrahimi@guilan.ac

Abstract—The manufacturing of integrated circuits (IC)
outside of the design houses makes it possible for the adversary to

easily perform a reverse engineering attack against intellectual
property (IP)/IC. The aim of this attack can be the IP piracy,
overproduction, counterfeiting or inserting hardware Trojan (HT)
throughout the supply chain of the IC. Preventing hardware
Trojan insertion is a significant issue in the context of hardware
security (HS) and has not been considered in most of the previous
logic encryption methods. To eliminate this problem, in this paper
an Anti-Trojan insertion algorithm is presented. The idea is based
on the fact that reducing the signals with low-observability (LO)
and low-controllability (LC) can prevent HT insertion
significantly. The security of logic encryption methods depends on
the algorithm and the encryption key. However, the security of
these methods has been compromised by SAT attacks over recent
years. SAT attacks, can decode the correct key from most logic
encryption techniques. In this article, by using the PUF-based
encryption, the applied key in the encryption is randomized and
SAT attack cannot be performed. Based on the output of PUF, a
unique encryption has been made for each chip that preventing
from counterfeiting and IP piracy.

Keywords—SAT Attack, Logic Locking, Rare Signal, Hardware

Trojan, Hardware Obfuscation, Design-For-Trust

I. INTRODUCTION

Nowadays, most of integrated circuit design companies do
not have manufacturing foundries and outsource manufacturing
and production of IC in order to reduce costs. This opens the way
for attackers that can make reverse engineering attacks, IC/IP
piracy, overproduction, and counterfeiting. Therefore, by
reverse engineering and knowing the function of the circuit, they
can insert a malicious circuit which is called Hardware Trojan
(HT). The HT can be used to gain information leakage and
manipulation of circuit function [1]. To prevent these attacks
different techniques have been presented, including logic based
hardware obfuscation. In logic based hardware obfuscation, the
techniques such as obfuscation by using logic encryption and
camouflaging have been introduced to prevent IP piracy,
counterfeiting, overproduction and hardware Trojan insertion
[2]. The logic encryption hides the correct function of the IC by
using the proper key in the design. In other words, the circuit has
a correct function only when a correct key is used. There are
typically two kinds of encryption: first, a new gate is inserted in
the design and second, a gate is replaced with another gate. The
overhead of the first method is higher compared to the second
one from power, delay, and area points of view. In the insertion
method, the gates can randomly insert in the netlist [2], which
cause hardware overhead. Thus, the choice may be based on a
50% hamming distance between the output generated by the

correct key and wrong key [4]. Encryption can be done by
inserting the AND/OR logic gate [5]. The second method, if the
replacement gate is optimized, has less overhead than the first
method. A new logic encryption is the replacement of the gate
with LUT [6]. In [7], a new topology introduced for logic gates
that have the area, power and delay overhead less than previous
methods. This new topology is replaced with selected gates for
logic encryption. They also considered the controllability of
signals to prevent HT insertion and easily detect them. Therefor,
the reduction of signal with the LC has more efficiency to
prevent HT insertion. However, the problem of signals with LO
has remained that the attacker can easily insert HT in them.
Another important issue in encryption methods is preventing
SAT attacks. The attacker can identify the encryption key by
using the relationship between the output and the encryption
key; without applying a brute force attacks which has an
exponential time complexity [8].

In this paper we improved the REAL algorithm presented in
[7] and in addition to controllability, the observability of the
signals is laso taken into account for gate replacement
candidates. Besides PUF based key generation strategy is
applied for logic encryption which is random and can be used as
a prevention technique against SAT attacks. For these attacks,
the attacker must have a copy of the netlist of obfuscated circuit.
An attacker may be at the foundry and have access directly to
the netlist or after buying a chip by using the reverse engineering
techniques, the netlist is obtained. For a SAT attack, the keys
must be available as inputs, as well as obfuscation gates
represented as a key-programmable gate (KPG). If the inputs are
represented by X and the outputs by Y, the C circuit will be C (X,
Y) and C (X, K, Y) is a circuit that is obfuscated by the key K. A
correct key leads us to C (X, Y) = C (X, K, Y). Two keys K1 and
K2 are considered for the attack. The output of both keys is
compared for each input value X. If and only if one of the inputs
is found that their output is not equal, the comparison ends and
this input called a distinguishing input (DIP). In this case, for
inputs Xi = (x0, x1, …, xx-1) the output of the IC is compared with
the outputs of K1 and K2, either one or both keys may be wrong.
Therefore, the wrong key will be remove from the correct keys
set. Each new key is evaluating with the DIPs; K1 and K2 are
equivalent when the outputs of them are the same for all inputs.
The key is correct when the DIP is not found and its output is
correct for all inputs [8].

Due to the process variation in chips, physical parameters are
different even in the same chips with the same technology and
fabrication. These intrinsic differences are used in the
conceptual term called "Physical Unclonable Function" (PUF),

507

which generate the random numbers and is used for
authentication and encryption. These random numbers are
sometimes used for keys in encryption algorithms. In logic
encryption, security of the key is very important. An attack to
this key by an adversary will lead to the IP of all the IC.
Therefore, in this paper, a unique intrinsic PUF based key for
logic encryption of each chip is applied.

The rest of the paper is organized as follows: Section II
provides related works to the logic encryption, and the use of
SAT attacks for decryption. Section III presents observability
and controllability tests for preventing HT insertion. The PUF
properties used to produce the encryption key and prevention
techniques for IP/IC piracy and counterfeiting of chips is also
explained in this section. Section IV describes the simulation and
evaluation results and finally, section V concludes the paper.

II. RELATED WORKS

In logic encryption, gate insertion such as XOR/XNOR can
be used to select which one of the inputs can be considered as
the key and according to the value of the key, output signal will
be buffered or reversed. Random insertion method in [2] encrypt
faster than other methods but it is a weak encryption method
because for some inputs, the output will be generated correctly
for the wrong key. In [4], encryption is performed based on the
achievement of a 50% hamming distance between the output
generated by the correct key and the output generated by the
incorrect key. Another insertion method, mux2×1 is used for
encryption that the key is used as the mux selector. In mux, one
of the inputs is used as the correct signal, which is selected based
on the highest fault impact, and another input used as the wrong
signal, which is selected based on the contradiction metric. This
metric is used for showing the maximized difference between
the correct value and the incorrect value. But this metric cannot
show that the correct and incorrect amounts are fully
complementary [9]. There are reports about vulnerability of all
of these techniques against the SAT attack [10], [7]. It is
important to mention signals with low-controllability and low-
observability cannot prevent the insertion of Trojan and this fact
has not been considered in [2], [4]. The idea of AND/OR gate
insertion was presented in [5] to reduce signals with low-
controllability, although it cannot completely eliminate low-
controllability signals. An example is shown in Fig. 1, where
computes the probability of logic ‘0’ (P0) and ‘1’ (P1) on each
signal of outputs of the gates by considering P0/P1 , for example,
G3 and G4 gate outputs are rare.

In Fig. 2, by inserting the OR gate in the output of G3, the
probability of "1" and "0" output is close together but the input
of G3 still has low controllability.

Fig. 1. Original Circuit

Fig. 2. Encrypted circuit using inserted OR gate.

In methods that use the gate replacement instead of insertion
of a new gate, encryption key is hided in the structure. This
structure can be a LUT that hides the function and creates a lot
of confidentiality and makes it hard to find the correct key, but
it has a lot of silicon overhead [6]. The LUT can be based on
reconfiguration, that with the increase in the number of keys,
increases area overhead [11]. It is important to mention that that
necessarily by increasing the number of keys, it does not
increase security against SAT attacks. Attempt to select the
appropriate location for LUT and consider the critical path cause
reduction in the delay and area overhead. By reducing the signals
with low controllability (decreased the number of nodes with
high Skew Probability Signal (SPS)) helps to prevent HT
insertion [12]. However, one should not forget that replacement
the gate with LUT, creates a large area overhead and selection
the LUT to replace have a large area, power, delay overhead and
will not be an effective replacement. In [7], a gate structure (key-
gat topology) with a much less area than the LUT was proposed
which reduces the number of low-controllability signals. Their
idea is reducing low-controllability signals and try to equalize
the probability of “0” (P0) and the probability of “1” (P1) in the
output of the gate. For example, the output of AND\NOR gate
that has the P0 less than P1, they increase the value of P1 for the
incorrect key. In the presented key-gate topology, the AND/NOR
gate has a valid key (K=1) and for the (K=0), generates constant
"1" in output. The OR/NAND gate, which has a valid key (K=0)
and P0 is less than P1, provides a constant value "0" for the
incorrect key (K=1). The XNOR/XOR gate, for each probability
in the input gate, always produces the equal P0 and P1 in outputs.
The NOT gate inverts the input so the value of P0 in the output is
equal to P1 in the input and vice versa, the value of P1 in the
output is equal to P0 in the input. The NOT0/NOT1 in new
topology, for each probability of the input, produces P0 close to
P1 in the output. Thus, NOT0/NOT1 based on the fact that P0 is
smaller in the output or P1 is selected. NOT1 has the correct key
(K=1) and is selected when the value of P1 is less than P0 in the
output. And NOT0 has a valid key (K=0) and it is selected when
the value of P0 is less than P1 in the output. The AND/NOR key-
gate topology and its transistor level structureis shown in 0.

508

(a) (b)

Fig. 3. (a) AND gate (b) NOR gate [7]

The correct key for each key-gate is shown in TABLE Iand
TABLE II

TABLE I. THE GATES OUTPUT PRESENTED IN [7]

Key Inputs Output

k A B AND NAND OR NOR
XOR/X

NOR

0 0 0 1 1 0 1 0

0 0 1 1 1 1 1 1

0 1 0 1 1 1 1 1

0 1 1 1 0 1 1 0

1 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 1

TABLE II. INVERTER GATE OUTPUT IN TOPOLOGY [7]

Key Inputs Output

k A NOT1 NOT0

0 0 1 1

0 1 1 0

1 0 1 0

1 1 0 0

The REAL algorithm presented in [7] calculates the value of
the controllability for all the signals, which is shown by the
vulnerable factor VF=P0-P1. The gates that have VF greater than
threshold values are considered as vulnerable gates. The initial
replacement is done for all the gates; the gate that reduces more
vulnerable gates is selected as a critical gate. Nevertheless, the
problems have remained 1) by reducing the number of signals
with low-controlling (high VF), the problem of the signals with
low-observability is still remained. Because the attacker does not
just focus on rare signals to insert a Trojan, it may choose a
signal that has low-observability. 2) The presented key
expansion idea which is used to reduce the number of keys is
ineffective. Because the used key in the topology has P0=P1=1/2
and, therefore, the output of gate must be set to P0=P1=1/2, that
can be used as a key for the next key-gate without increasing VF.

3) It is not clear how to choose the candidate between gates
reducing the equal number of vulnerable gates. 4) Most
encryption methods are weak against SAT attacks. So far many
solutions were presented preventing SAT attacks, for example in
[10], in the interference graph, clique with the maximum size of
non-mutable keys created. Therefore, the attacker is inevitable
to use brute force attacks. However, many of Anti-Sat Attack
methods, the Skew Probability Signal (SPS) or controllability of
signals has not been considered and known vulnerable in [13].

III. PROPOSED ALGORITHM

In this paper, in addition to considering the reduction of
signals with low-controllability, the observability of the signals
is also taken into account and calculated and tried to reduce the
number of low-observability signals. With respect to the amount
of observability and controllability of the signals, a weight
function (WF) is obtained and according to this WF, encryption
is performed by the replacement method. In this paper SAT
attacks were also eliminated using PUF based encryption keys.
Finally, in order to prevent the counterfeiting and IP piracy of
the chips, a unique encryption pattern will be provided based on
the output of the PUF for each chip.

A. Increasing Observability to Prevent Trojan Insertion

Although logic encryption has several advantages its
application alone might not properly minimize rare signals and
will not be a good technique to prevent HT insertion. This is due
the cases that attacker may insert the trojan in a signal with low-
observability feature and its effect is less on the output. In this
paper, a new algorithm in logic encryption is presented, which
has Anti-Trojan insertion property. The presented topology in
[7] is used as a replacement gate. 0-Controllability in a signal is
equal to P0 and the 1-controllability is equal to P1. According to
equation (1), the overall controllability of a signal is obtained
from the multiplication of the 0-controllability (C0) and the 1-
controllability (C1) in the signal:

CS=C0×C1 ()

In this paper by using the presented STAFAN method in
[14], controllability in the output of the gate is obtained from C1
and C0 in the inputs of the gate. On the other hand the
observability is obtained from the output to the inputs and
observability of the main outputs of the circuit is "1". The
observability in one input of the gate can be achieved by
observability of the output and controllability of other inputs.
For example, consider the AND gate in Fig. 4.

Fig. 4. AND gate

According to equation (2), the C1 in the output of AND is

obtained when both inputs are "1".

C1(z)=C1(a).C1(b) (2)

And in the equation (3) to calculate C0, it just need to

calculate the complement of C0. In the equation (4),

observability of the inputs "a" is obtained. In the input "b",

observability is calculated by the equation (5).

509

C0(z)=1-C1(z) (3)

O(a)=O(z).C1(b) (4)

O(b)=O(z).C1(a) (5)

Another example is OR gate in which the observability and

controllability can be calculated such as the AND gate. To

calculating the C0 in the output of OR gate, used the equation

(6). C1 is also calculated by the equation (7).

C0(z)=C0(a).C0(b) (6)

C1(z)=1-C0(z) (7)

The observability in the input “a” of the OR gate is

calculated by equation (8). Observability in the input “b” is also

calculated by equation (9).

O(a)=O(z).C0(b) (8)

O(b)=O(Z).C0(a) (9)

The observability of other gates is similar the AND and OR

gate and used the observability of output to calculate the

observability of the inputs. Controllability is calculated from the

input to the output. In this paper, a new replacement method is

proposed that removes vulnerable signals in addition to

encryption. At the beginning of the Algorithm I, the number of

key-gate for replacement in each circuit is determined. The

replacement continues until the number of replacements (NOR)

in the last round becomes zero. The first step is to input the

circuit netlist (CN) to the algorithm. Then controllability (SC)

and observability (SO) of the signals is calculated. A signal with

lower SC compared to the threshold of controllability (SCth) is

considered as a signal with the first vulnerability factor (FVF),

and the number of signals with the first vulnerability factor

(NFVF) factor is determined. The signal with lower SO

compared to the threshold of observability is considered as

signal with the second vulnerability factor (SVF). After that we

determine the number of signals with the second vulnerability

factor (NSVF). In the first replacement, the NFVF and NSVF

values are considered as the number of signals with the first

vulnerability factor (ONFVF) and the number of signals with

second vulnerability factor (ONSVF) in the original circuit.

Afterward, an initial replacement is done for each gate and the

values (NFVFt) and (NSVFt) are considered as the number of

signals with the first vulnerability factor and the number of

signals with the second vulnerability factor per initial

replacement, respectively. The difference between the number

of vulnerability signals after the initial replacement and the

original circuit is calculated and as (diff_FVF) and (diff_SVF)

are considered. Based on the weight function (WF) of the

equation (10), a comparison is done between replacements.

WF= diff_FVF + diff_SVF (10)

If WF is equal to zero, this means that initial replacement

cannot improve any vulnerability factors, if it is negative, it

destroys one or both factors. To avoid these alternatives, only

the gates in the (Gate_list) that have improved at least one of

FVF or SVF is specified and a list of weights (WF_list) each

initial replacement that improved vulnerability factors is

determined. Thus, lists (SCF_list) and (SOF_list) considered,

which indicate the improvement in controllability and

observability of signals in each replacement, respectively. For

each replacement licensed in NOR, the value (diff_SCF =

ONFVF – NFVF) and (diff_SOF = ONSVF – NSVF) is

calculated. Based on the fact that in the previous replacement,

which one of the vulnerability factors has more improvment, in

this replacement, it's trying to improve another factor. If it was

the first replacement, diff_SOF and diff_SCF are both zero,

because both NSVF and NFVF are equal to ONFVF and

ONSVF in the original circuit. If two factors are improved

equally (diff OF = diff SCF), selected the gate from the

Gate_list that has the maximum weight in WF_list. And if there

are several gates with maximum weights, by reviewing

SCF_list and SOF_list, among them, the gate is selected that

fully or approximately improved both factors. And the gate is

inserted in a set of selected gates (SG) for replacement. And if

the FVF more improved (diff_SCF> diff_SOF), in this

replacement SVF should more improve. In this case, the

maximum value in the SOF_list is selected and if several gates

had the maximum value, the gate with the maximum weight in

WF_list has selected and inserted in the SG. Finally, if the SVF

has been improved in the previous replacement, the FVF should

be improved in this replacement. For example, assume that the

following lists are available:

• Gate_list = [1,2,3,4,5,6]

• SCF_list = [2,3,3,1,0,0]

• SOF_list = [2,1,0,3,4,1]

• WF_list = [4,4,3,4,4,1]

In this example, the vulnerability factors have similar

improvement in the previous replacement and in this

replacement, four gates have the weight equal to 4, that

maximum weight. One of these four gates according to the

SCF_list and the SOF_list is selected. The first gate which have

improved both the factors equally is selected. The algorithm

terminates when 1) the desired number of replacement is done

2) no longer has a better answer. In this case, the algorithm

returns the obfuscated netlist. The execution time to calculate

the number of each vulnerable factor is O(N). The replacement

of each gate is also performed in O(1) and for all circuit gates,

an initial replacement is performed with O(N). Finally, the

runtime complexity of the algorithm is O(N2)= N.(1+N+N).

B. Using PUF to Produce the Encryption Key

Using the PUF for the encryption key makes the SAT attack
more difficult. In this paper, for each key-gate, one bit of the
output of PUF is used as the key for the key-gate. In the Anti-
Trojan insertion algorithm, after identifying the selected gate for
replacement, the key-gate is determined based on the gate library
which presented in [7]. The correct key for each key-gate is
shown in TABLE Iand TABLE II.

510

Algorithm I: proposed Anti-Trojan Insertion Algorithm

1: Input: SCth, SOth, NOR, CN

2: Output: ON

3: Function: ATIA(CN, SCth, SOth, NOR)

4: ON ← CN

5: FOR i = 1 to NOR DO

6: NFVF ← get_num_FVF(ON, SCth)

7: NSVF ← get_num_SVF(ON, SOth)

8: IF i = 1 THEN

9: ONFVF ← NFVF

10: ONSVF ← NSVF

11: END IF

12: FOR EACH gate in ON DO

13: ONt ← replace (ON, node)

14: NFVFt ← get_num_FVF(ONt, SCth)

15: NSVFt ← get_num_SVF(ONt, SOth)

16: diff_FVF ← NFVF - NFVFt

17: diff_SVF ← NFVF - NFVFt

18: WF ← diff_FVF + diff_SVF

19: IF WF > 0 THEN

20: IF diff_FVF >= 0 and diff_SVF >= 0 THEN

21: Gate_list ← Gate

22: SCF_list ← diff_FVF

23: SOF_list ← diff_SVF

24: WF_list ← WF

25: END IF

26: END IF

27: END FOR

28: IF WF_list = null THEN

29: break

30: END IF

31: diff_SCF ← ONFVF - NFVF

32: diff_SOF ← ONSVF - NSVF

33: IF diff_SCF = diff_SOF THEN

34: SG ← get_gate(WF_list, SOF_list, SCF_list,

Gate_list)

35: ELSE IF SCF_diff > SOF_diff THEN

36: SG ← get_gate(WF_list, SOF_list, Gate_list)

37: ELSE

38: SG ← get_gate(WF_list, SCF_list, Gate_list)

39: END IF

40: ON ← replace (ON, SG)

41: END FOR

42: RETURN ON

43: END

Each bit of the output of PUF is used as the key for the
selected gates for replacement, respectively. Since the output of
PUF is randomize, the key generated by PUF for the selected
gate that going to be replaced might be different from its real key
so the gate is replaced with its equivalent gate in the library.
According to TABLE I the AND gate has the correct key "1".
For example, if the AND gate is selected for the replacement, but
the key generated by PUF for key-gate is "0". Therefore, instead
of the AND gate, the NAND + INV gates is replaced. The correct
key for the NAND gate in TABLE I is "0". In other words, in
each chip based on bits generated by the PUF, there is a unique
replacement for the Selected Gates (SG) that is supposed to be
replaced. By doing this, the SAT attack becomes difficult to get
the correct key because PUF is used to generate the encryption
key and for each chip, there is a unique encryption. Therefore,
the time to find the relationship between the output of chips and
the encryption key will be exponential. The anti-trojan insertion

algorithm introduced in the previous section, has been improved
to prevent SAT Attack and is presented in Algorithm II.

Algorithm II: Logic encryption based PUF

1: Input: ON, PUF_Key_list

2: Output: FON

3: Function: LPFU(ON, PUF_Key_list)

4: i = 0

5: FOR EACH gate in ON DO

6: IF gate = key_gate THEN

7: IF PUF_Key_list[i] ≠ valid key for gate THEN

8: FON ← replace (gate, equal_gate)

9: i = i + 1

10: END IF

11: END IF

12: END FOR

13: RETURN FON

14: END

In Algorithm I, the obfuscated netlist will be obtained, which
is used in Algorithm II. In line 7, if the key generated by PUF
(PUF_Key) is not equal to the correct key of key-gate
(obfuscation gate), it is replaced with the equivalent gate. The
equivalent gate has an equal key to PUF_Key. In TABLE III
based on PUF_Key, its equivalent gates are selected for
replacement.

TABLE III. EQUIVALENT GATES TO REPLACE

Equal gate for replacePUF_KeyValid keyGate

INV + topologyNAND01AND

INV + topologyNOR10OR

INV + topologyOR01NOR

INV + topologyAND10NAND

INV + topologyXNOR10XOR

INV + topologyXOR01XNOR

C. Preventing of IP/IC Piracy and Counterfeiting

Algorithm II makes it possible for each chip, has a unique
encryption pattern based on output generated by the PUF. For
example, if N gate are selected for encryption in a design, this
means that N key-gate must be replaced. For each key-gate, it
is necessarily to use the one bit of the output of PUF as key.
Finally, there are 2N different replacement and different
encryption, because the output generated by the PUF will be
randomized on each chip. This can prevent from IP piracy,
reverse engineering and counterfeiting of chips.

IV. SIMULATION RESULTS AND SECURITY ANALYSIS OF

PROPOSED ALGORITHMS

The methods proposed in this paper have been evaluated on
the ISCAS-85 benchmarks. Algorithm I will reduce the risk of
trojan insertion. In Algorithm II, the replacement of key-gate
with equivalent gates does not change the controllability and
observability of signals, and the obtained results from
Algorithm I to prevent the insertion of the HT. The
observability threshold of this evaluation is SOth = 0.07, and

511

controllability threshold SCth = 0.95×0.05 = 0.0475 the
reduction in the number of vulnerable signals in proposed
method and presented method in [7] is shown in Error!
Reference source not found..

(a)

(b)

Fig. 5. Improvement of vulnerability factors in (a) proposed method and (b)

[7]

In Error! Reference source not found.(a), by increasing
the number of keys, the proposed algorithm reduces the
vulnerable signal and in Error! Reference source not
found.(b), most of the benchmarks, by increasing the number
of keys, not improve vulnerable signals. The number of signals
with low observability (NOSVF) and low controllability
(NOFVF) after replacement with the number of keys presented
in [7], as shown in TABLE IV. The number of signals with LO
in the proposed method is less than [7]. In Error! Reference
source not found., by increasing the number of keys, the
number of signals with LC and LO in the proposed method is
improved.

In Error! Reference source not found., the number of
vulnerable signals is shown in each benchmark. In Error!
Reference source not found., the comparison of the average
number of vulnerable signals with SOth= 0.0475 and SCth= 0.07
is shown for all benchmarks.

In Error! Reference source not found.the result of this
work is compared to [7] with different SOth and SCth=0.0475.

The run-time after Algorithm II is O(N2) because, by
merging the two algorithms, after the SG is specified, it can base
on the key that generated by PUF, be replaced with equivalent
gates. The PUF for generating the encryption key must be
carefully selected and have a stable output. There are several
choices for the PUF but since this an intrinsic PUF a stable Ring
osilator PUF [15] can be applied to generate the keystreams for
logic encryption.

TABLE IV. LC AND LO WITH KEY LENGTH PROPOSED IN [7]

Circuit
Original REAL[7] Proposed

LC LO LC LO Key LC LO Key

C432 9 21 0 31 1 9 13 1

C499 40 130 15 98 5 15 98 5

C880 49 47 0 46 5 39 35 5

C1355 112 346 0 296 15 21 262 15

C1908 104 449 16 507 30 53 334 30

C2670 49 686 0 716 20 16 609 20

C3540 288 1139 0 1171 30 76 923 30

C5315 69 1285 1 1227 35 2 1161 35

C7552 214 2212 54 2205 50 97 2078 50

TABLE V. SIGNALS WITH LC AND LO BY INCREASING THE KEY LENGTH

Circuit
Original REAL[7] Proposed

LC LO LC LO Key LC LO Key

C432 9 21 0 31 6 5 11 6

C499 40 130 0 98 8 0 98 8

C880 49 47 0 46 14 39 21 14

C1355 112 346 0 296 40 0 223 40

C1908 104 449 16 507 50 53 266 50

C2670 49 686 0 716 46 10 526 46

C3540 288 1139 0 1171 50 61 899 50

C5315 69 1285 0 1225 50 1 1020 50

C7552 214 2212 54 2205 50 97 2078 50

V. CONCLUSION

In this paper, a new logic encryption method is presented
that in addition to encryption, reduces the number of signals
with common vulnerability factors. It also significantly
eliminates signals with low controllability and low
observability. This work will largely prevent trojan insertion.
To prevent SAT attacks, the encryption key is generated using
the output of PUF. Based on the output of PUF, each chip will
have a unique encryption, which it makes counterfeiting, IP
piracy, and reverse engineering harder.

REFERENCES

[1] Guin, Ujjwal, Domenic Forte, and Mohammad Tehranipoor. "Anti-
counterfeit techniques: from design to resign." In Microprocessor Test and
Verification (MTV), 2013 14th International Workshop on, pp. 89-94.
IEEE, 2013.

512

TABLE VI. COMPARATION BETWEEN PRESENT METHOD AND [7]

Circuit

SOth = 0.08 SOth = 0.09 SOth = 0.1

Original REAL[7] Proposed Original REAL[7] Proposed Original REAL[7] Proposed

LC LO LC LO Key LC LO Key LC LO LC LO Key LC LO Key LC LO LC LO Key LC LO Key

C432 9 34 0 44 6 6 12 6 9 37 0 47 5 6 26 5 9 39 0 49 1 8 36 1

C499 40 130 0 98 8 0 98 8 40 130 0 98 8 0 98 8 40 130 0 106 8 0 106 8

C880 49 49 0 58 11 21 30 11 49 70 0 74 10 41 38 10 49 77 0 95 18 29 49 18

C1355 112 346 0 302 32 0 266 32 112 346 0 302 40 0 248 40 112 346 0 320 28 0 264 28

C1908 104 474 16 527 50 53 311 50 104 489 16 553 50 53 326 50 104 500 16 564 50 53 341 50

C2670 49 737 0 764 50 8 577 50 49 744 0 775 48 8 591 48 49 706 0 797 43 6 626 43

C3540 288 1227 0 1244 50 74 956 50 288 1258 0 1280 50 75 1021 50 288 1281 0 1298 50 74 1031 50

C5315 69 1371 0 1315 50 4 1100 50 69 1406 0 1348 50 6 1199 50 69 1452 0 1400 50 0 1237 50

C7552 214 2272 54 2277 50 98 2155 50 214 2310 54 2319 50 19 2187 50 214 2358 54 2366 50 96 2336 50

[2] Chakraborty, Rajat Subhra, and Swarup Bhunia. "Hardware protection
and authentication through netlist level obfuscation." In Proceedings of
the 2008 IEEE/ACM International Conference on Computer-Aided
Design, pp. 674-677. IEEE Press, 2008.

[3] Roy, Jarrod A., Farinaz Koushanfar, and Igor L. Markov. "EPIC: Ending
piracy of integrated circuits." In Proceedings of the conference on Design,
automation and test in Europe, pp. 1069-1074. ACM, 2008.

[4] Rajendran, Jeyavijayan, Youngok Pino, Ozgur Sinanoglu, and Ramesh
Karri. "Logic encryption: A fault analysis perspective." In Proceedings of
the Conference on Design, Automation and Test in Europe, pp. 953-958.
EDA Consortium, 2012.

[5] Dupuis, Sophie, Papa-Sidi Ba, Giorgio Di Natale, Marie-Lise Flottes, and
Bruno Rouzeyre. "A novel hardware logic encryption technique for
thwarting illegal overproduction and hardware trojans." In On-Line
Testing Symposium (IOLTS), 2014 IEEE 20th International, pp. 49-54.
IEEE, 2014

[6] Baumgarten, Alex, Akhilesh Tyagi, and Joseph Zambreno. "Preventing
IC piracy using reconfigurable logic barriers." IEEE Design & Test of
Computers 27, no. 1 (2010).

[7] Rathor, Vijaypal Singh, Bharat Garg, and G. K. Sharma. "A Novel Low
Complexity Logic Encryption Technique for Design-for-Trust." IEEE
Transactions on Emerging Topics in Computing (2018)

[8] Subramanyan, Pramod, Sayak Ray, and Sharad Malik. "Evaluating the
security of logic encryption algorithms." In Hardware Oriented Security
and Trust (HOST), 2015 IEEE International Symposium on, pp. 137-143.
IEEE, 2015.

[9] Rajendran, Jeyavijayan, Huan Zhang, Chi Zhang, Garrett S. Rose,
Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. "Fault analysis-
based logic encryption." IEEE Transactions on computers 64, no. 2
(2015): 410-424.

[10] Yasin, Muhammad, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and
Ramesh Karri. "On improving the security of logic locking." IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 35, no. 9 (2016): 1411-1424.

[11] Liu, Bao, and Brandon Wang. "Embedded reconfigurable logic for ASIC
design obfuscation against supply chain attacks." In Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2014, pp. 1-6.
IEEE, 2014.

[12] Kamali, Hadi Mardani, Kimia Zamiri Azar, Kris Gaj, Houman
Homayoun, and Avesta Sasan. "LUT-Lock: A Novel LUT-based Logic
Obfuscation for FPGA-Bitstream and ASIC-Hardware Protection." arXiv
preprint arXiv:1804.11275 (2018).

[13] Yasin, Muhammad, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and
Jeyavijayan Rajendran. "Security analysis of anti-sat." In Design

Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific,
pp. 342-347. IEEE, 2017.

[14] Jain, Sunil K., and Vishwani D. Agrawal. "Statistical fault analysis." IEEE
Design & Test of Computers 2, no. 1 (1985): 38-44.

[15] Mehdi Ayat, Reza Ebrahimi Atani, Sattar Mirzakuchaki, “On Design OF
PUF-Based Random Number Generators”, International Journal of
Network Security & Its Applications (IJNSA), Vol.3, No.3, May 2011,
Pages 30-40.

513

