
On the Difficulty of
FSM-based Hardware Obfuscation

Marc Fyrbiak1, Sebastian Wallat2, Jonathan Déchelotte3, Nils Albartus1,
Sinan Böcker1, Russell Tessier2 and Christof Paar1,2

1 Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, Germany
{marc.fyrbiak,nils.albartus,sinan.boecker,christof.paar}@rub.de

2 University of Massachusetts Amherst, MA, USA
{swallat,tessier}@umass.edu

3 University of Bordeaux, France
jonathan.dechelotte@ims-bordeaux.fr

Abstract. In today’s Integrated Circuit (IC) production chains, a designer’s valuable
Intellectual Property (IP) is transparent to diverse stakeholders and thus inevitably
prone to piracy. To protect against this threat, numerous defenses based on the
obfuscation of a circuit’s control path, i.e. Finite State Machine (FSM), have been
proposed and are commonly believed to be secure. However, the security of these
sequential obfuscation schemes is doubtful since realistic capabilities of reverse engi-
neering and subsequent manipulation are commonly neglected in the security analysis.
The contribution of our work is threefold: First, we demonstrate how high-level
control path information can be automatically extracted from third-party, gate-level
netlists. To this end, we extend state-of-the-art reverse engineering algorithms to
deal with Field Programmable Gate Array (FPGA) gate-level netlists equipped with
FSM obfuscation. Second, on the basis of realistic reverse engineering capabilities we
carefully review the security of state-of-the-art FSM obfuscation schemes. We reveal
several generic strategies that bypass allegedly secure FSM obfuscation schemes and
we practically demonstrate our attacks for a several of hardware designs, including
cryptographic IP cores. Third, we present the design and implementation of Hardware
Nanomites, a novel obfuscation scheme based on partial dynamic reconfiguration that
generically mitigates existing algorithmic reverse engineering.
Keywords: Hardware Reverse Engineering · Hardware Obfuscation · Hardware
Nanomites · FSM-based Hardware Obfuscation

1 Introduction
Hardware is the root of trust in virtually any modern computing system [FWS+ar].
However, modern IC design and fabrication processes are globalized and various (untrusted)
stakeholders have access to the designer’s valuable hardware IP and are able to commit
piracy. Due to piracy it is estimated that IC companies face losses in the range of a billion
US dollars in global revenue [FSK+17]. Incomplete operative, low-quality counterfeits or
malicious manipulations of the underlying hardware can have catastrophic consequences
for the security and safety of target systems. Since the threat potential of IC piracy is an
increasing concern for practical applications [VPH+17], numerous hardware protection
schemes have been proposed, see Shakya et al. [STBF17] for a comprehensive survey.
Two aspects are mainly addressed: (1) IP theft protection, and (2) reverse engineering
protection a.k.a. obfuscation. In both cases the goal is to prevent adversaries from
gathering high-level information about valuable IP.

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,
Vol. 2018, No. 3, pp. 293–330
DOI:10.13154/tches.v2018.i3.293-330

mailto:marc.fyrbiak@rub.de,nils.albartus@rub.de,sinan.boecker@rub.de,christof.paar@rub.de
mailto:swallat@umass.edu,tessier@umass.edu
mailto:jonathan.dechelotte@ims-bordeaux.fr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i3.293-330

294 On the Difficulty of FSM-based Hardware Obfuscation

Most common strategies to realize hardware protection at the Register Transfer Level
(RTL) or gate-level focuses on FSMs [CB08,CB09b,CB09c,CB09a,AK07,Kou12b,ASF+17],
since virtually all digital systems use FSMs to define their behaviors. Thus, FSM obfus-
cation is favored as an approach for concealing overall internal functionality. However,
the realistic capabilities of reverse engineering are often neglected in the security analysis
of these schemes, hence their security can be limited. To be fair, public information on
reverse engineering capabilities has attracted little scrutiny from the scientific community,
as discussed in Section 2.2. Little is known about what kind of information can be reverse
engineered in an automatic manner, and what kind of information is most challenging to
analyze. Reverse engineering is not only associated with illegitimate actions, but there are
also various reasons for legitimate applications such as failure analysis and the detection
of counterfeit products and hardware Trojans [FSK+17].

Goals and Contributions. In this paper, we focus on reverse engineering and ob-
fuscation of FSMs in third-party, gate-level netlists. Our goal is to demonstrate the
shortcomings of allegedly secure, state-of-the-art obfuscation schemes by (semi-)automatic
reverse engineering and manipulation. To this end, we address reverse engineering tech-
niques that deduce high-level information under realistic assumptions. We then carefully
review obfuscation schemes and show how their protection can be defeated. Finally, we
introduce our novel defense called Hardware Nanomites which evades state-of-the-art
algorithmic reverse engineering techniques. In summary, our main contributions are:

• Deobfuscation of FSM Obfuscation Schemes. We practically demonstrate the
(semi-)automated deobfuscation of several allegedly secure FSM-based obfuscation
schemes. In concert with realistic reverse engineering capabilities, we provide compre-
hensive insights into published security metrics and previous (erroneous) assumptions
about reverse engineering to serve as an educational basis for future obfuscation
designers and implementers.

• Novel Technique and Comprehensive Evaluation. We augment state-of-the-
art reverse engineering algorithms to disclose high-level FSM information from FPGA
gate-level netlists. We show that the algorithm is effective for several hardware
designs while keeping analysis times practical.

• FSM Reverse Engineering Mitigation. Finally, we present Hardware Nanomites,
a novel obfuscation method to hinder FSM reverse engineering. We eliminate funda-
mental starting points for FSM reverse engineering by leveraging partial dynamic
FPGA reconfiguration.

2 Background and Related Work
In the following we introduce our threat model and the state-of-the-art in reverse engineering
and IP protection techniques.

2.1 Threat Model
We assume an adversary with access to the flattened gate-level netlist who has no a
priori knowledge of the design’s internal workings. More precisely, the adversary has no
information of module hierarchies, synthesis options, or the names of gates and signals.
Furthermore, we assume that the design may incorporate an FSM-based obfuscation
technique, as detailed in Section 4. The high-level goal of the adversary is to commit IP
infringement such as unauthorized redistribution or overproduction of valuable IP. Since
the design is equipped with obfuscation, the adversary is forced to deobfuscate the design
first. The gate-level netlist can be obtained through several means: (1) chip-level or layout

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 295

reverse engineering [QCF+16, VPH+17] in the case of Application Specific Integrated
Circuits (ASICs), (2) bitstream-level reverse engineering [NR08,SFK+17] in the case of
FPGAs, or (3) directly from the (firm / hard) IP provider [RKK14].

Note that our threat model is consistent with prior research on hardware security [CB09a,
AK07,RKK14,STBF17].

2.2 Gate-Level Netlist Reverse Engineering
Hansen et al. [HYH99] pioneered gate-level netlist reverse engineering. They described
several best-practices for a human reverse engineer such as the detection of recurrent
modules and common library structures. Shi et al. [STGR10] reported a technique to
algorithmically extract FSM gates and signals from ASIC gate-level netlists. Later, Shi et
al. [SGR+12] described a method to extract diverse functional modules from a gate-level
netlist via Boolean function analysis. Li et al. [LWS12] developed a technique to match
unknown sub-circuits against library components based on pattern mining of simulation
traces and model checking. In further work, Li et al. [LGS+13] described how word-level
structures can be algorithmically uncovered. Subramanyan et al. [STL+14] extended the
algorithmic reverse engineering technique arsenal by extracting functional components such
as register files or adders. Since functional identification requires that the input signals of
the component are in a specific order, a reverse engineer must examine all orderings to find
the correct permutation. Gascón et al. [GSD+14] addressed this problem with a template-
based solution. Meade et al. [MZJ16] extended FSM reverse engineering by retrieving the
state transition function from ASIC gate-level netlists. Wallat et al. [WFSP17] presented
insights on offensive reverse engineering aspects such as the removal of watermarks and the
weakening of stream cipher implementations. Recently, Fyrbiak et al. [FWS+ar] developed
a general framework to perform reverse engineering and manipulation of gate-level netlists.

While previous solutions offer methods for algorithmic FSM reverse engineering [STGR10,
MZJ16], they specifically target non-obfuscated ASIC gate-level netlists. Recently, Meade et
al. [MZZ+17] introduced theoretical attack descriptions on several FSM obfuscation schemes
(a subset of our schemes covered in Section 4), however, they did not perform a practical
evaluation of the aforementioned attacks. We discuss several limitations of their presented
defense strategy in this paper. Our work fills an important gap to provide detailed insights
on reverse engineering processes. Moreover, we target schemes that have been claimed to
be resistant to reverse engineering.

2.3 Hardware IP Protection
Modern System-on-Chip (SoC) design often involves the use of numerous reusable IP
cores to reduce both time-to-market and cost [SWM+06]. The economic advantages of
IP use are accompanied by increased security risks for both IP owners and consumers.
To protect an owner’s IP against piracy threats such as cloning and reverse engineering,
various solutions have been proposed.

One line of research focuses on obfuscation techniques at various levels to hinder
reverse engineering, i.e. register-transfer level, gate-level, and layout-level, see Shakya et
al. [STBF17] for a comprehensive survey. Another line of research focusses to facilitate
post-manufacturing control of designed IP core summarized under the concept of hardware
metering, see Koushanfar [Kou12a] for a comprehensive survey. Solutions related to
hardware metering focus on tracking and (un)locking ICs and often incorporate obfuscation
techniques to conceal the metering functionality or embed it in a way that it is hard to
remove.

Even though numerous techniques for IP protection have been proposed, the security
of these techniques is often questionable since realistic reverse engineering capabilities are
often neglected or not properly discussed. In this work, we address several shortcomings

296 On the Difficulty of FSM-based Hardware Obfuscation

of FSM-based obfuscation/watermarking schemes and propose a novel methodology to
mitigate automated deobfuscation.

3 Automated FSM Reverse Engineering
Preliminaries. From a high-level perspective, an FSM is a computational model that
can be in exactly one of a finite number of states at any time. An FSM switches state
depending on inputs and its current state and generates outputs to control the operations
of other units. Two FSM types can be distinguished: the output of a Moore machine
depends solely on the current state, and the output of a Mealy machine depends on both
the current state and FSM input. To be more precise, we use the notation in Definition 1
throughout the rest of this paper.

State Transition
Logic

Output Logic
State
MemoryInput

Figure 1: Block diagram of a hardware FSM (dashed line in the case of a Mealy machine).

Definition 1 (Finite State Machine). We define a Finite State Machine by a 6-tuple
(S, I, δ, s0,O, λ): S is a finite set of states, I is the input alphabet, δ : S × I → S is the
state transition function, s0 ∈ S is the initial state, O is a finite set of output symbols,
and λ is the output function (λ : S → O for a Moore machine, λ : S × I → O for a Mealy
machine).

Figure 1 illustrates the high-level structure of an FSM in hardware. An FSM consists
of three parts: (1) the state transition logic that implements δ, (2) the memory storing
the current state that implements S, and (3) the output logic that implements λ.

State Encoding. Several FSM state encoding styles exist to satisfy diverse optimiza-
tion goals such as speed or power consumption. Since the encoding affects the hardware
implementation (and consequently reverse engineering), we summarize the most common
styles:

• Binary. Each state is numbered sequentially in order of appearance (starting from
0). Thus, all states can be represented with a dlog2(|S|)e-bit register. Consequently,
the amount of utilized registers is minimized, but the amount of state transition
logic is increased.

• Gray. Similar to binary state encoding, Gray-encoded states can be represented
with a dlog2(|S|)e-bit register. Based on the employed Gray code, consecutive state
values only differ by one bit which reduces the potential for glitches, reduces the
amount of combinational logic needed for state transitions, and minimizes power
consumption.

• One-Hot. Each state is represented with a |S|-bit register). Hence, all register
bits except one are equal to 0 at any time. This encoding increases the amount of
registers, but simplifies state transition logic in each path to achieve higher clock
frequency.

Note that from an obfuscation point of view, binary encodings are preferable over
one-hot encodings since the latter grow linearly with the number of states while the former

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 297

grow logarithmically. While reverse engineering the chosen state encoding, an analyst can
gather valuable information about design strategies. For example, power consumption
minimization can be assumed in the case of Gray encoding.

Boolean
Function
Analysis

Topological
Analysis

FSM
Candidates

Gate
-level
Netlist

FSMs

Figure 2: Overview of our FSM reverse engineering work flow. Starting with a third-party,
gate-level netlist, we first determine the gates of each FSM candidate using the topological
analysis. Afterwards each candidate is processes by the Boolean function analysis to
determine the state transition graph.

FSM Reverse Engineering. Figure 2 provides an overview of our two-step reverse
engineering technique. First, a topological analysis of the gate-level netlist (Section 3.1)
generates a set of FSM candidates consisting of gates and signals that may form an
FSM. Second, each candidate is processed by Boolean function analysis (Section 3.2) that
determines the set of states S, the input alphabet I, the state transition function δ, and
the initial state s0.

3.1 Phase 1: Topological Analysis
To disclose FSM gates and signals from a gate-level netlist, we transform the netlist
into a multi-digraph using an approach similar to the technique described by Shi et
al. [SGR+12]. Using this format, we analyze the graph topology for FSM characteristics
described hereinafter. Even though the block diagram in Figure 1 might appear to be
quite elementary, it inherently considers various fundamental properties.

Property I: Registers. Typically FSM state memory registers are controlled by the
same set of signals. Therefore, we group all Flip Flops (FFs) with the same clock, enable,
and (a)synchronous (re)set signals into a register (represented as set of FF sets) in line 2
of Algorithm 1. Note that these identified registers are important for further (manual)
netlist reverse engineering, since they disclose crucial module-boundary information which
partitions the design into easier to analyze functionally-related units.

Property II: Strongly Connected Components. FSM memory and state tran-
sition logic form a strongly connected component, i.e. a path exists in each direction
between each pair of vertices, see Figure 1. Thus, we first sort out FFs that are not in any
strongly connected component with more than 2 vertices 4 - 7 since state memory
FFs should exhibit a cyclic structure. In addition, we split state registers whose FFs are
in different strongly connected components 8 - 10 since FSM FFs should influence
all other FFs. Note that we are using Tarjan’s algorithm to identify strongly connected
components [Tar72].

Property III: Combinational Logic Feedback Paths. FSM state memory register
output signals possess a feedback to its inputs via a series of combinational gates, forming
a combinational logic feedback path, see Figure 1. All state memory FFs that do not reach
themselves through combinational gates are removed from the register 11. In this step,
we also determine all state transition logic gates. Therefore, we add all combinational
gates in the feedback paths. Subsequently, we augment the set by adding predecessors of
all logic gates until we reach a global input or a register gate.

Property IV: Influence/Dependence Metric. FSM candidates with only one FF
in the register are rejected to minimize the number of potential FSMs. In addition, we
sort out FFs where the intersection of influenced and dependent FFs is smaller or equal

298 On the Difficulty of FSM-based Hardware Obfuscation

Algorithm 1 Topological Analysis
Input: D - Design netlist

Output: C - Set of FSM candidates
// initialization

1: C ← ∅
// ensure property I

2: set of sets RS ← registers(D)
// ensure property II

3: set of sets SCC ← strongly_connected_components(D)
4: for set register ∈ RS do
5: for gate g ∈ register do
6: if SSC.find_element(g) == false then
7: register ← register \ {g}
8: for set register ∈ RS do
9: if is_splittable(register) == true then
10: RS ← (RS \ register) ∪ split(register)

// ensure property III
11: CLFP ← combinational_logic_feedback_path(D,RS)

// ensure property IV
12: for set register ∈ RS do
13: for gate g ∈ register do
14: if

⋃
Ir ∩ Dr ≤ 1 then

15: register ← register \ {g}
// ensure property V

16: for set register ∈ RS do
17: if compute_control_behavior(register) == 0 then
18: RS ← RS \ {register}
19: else
20: C ← C ∪ {c(register, CLFP)}
21: return C

to 1 12 - 15. More precisely, for each register FF r we determine the set of dependent
registers Dr and the set of influenced registers Ir. We then compute the intersection⋃
Ir ∩ Dr.
To measure the influence and dependence among all FFs in the register, we compute

the mean of all
⋃
Ir ∩Dr for each register FF r ∈ R, normalized by dividing through |R|2.

This metric is used since, in a typical FSM, each state register FF influences and depends
on all state register FFs. A value of 1 implies a strong coherence between the FFs whereas
a value of 0 implies a loose coherence.

Property V: Control Behavior Metric. Typically, FSM state memory register
output signals connect to gates which are not in the strongly connected component
(implementing λ). These control signals define the circuit’s behavior. Since Look-Up
Tables (LUTs) are the building blocks used to realize combinational logic in FPGAs, we
cannot directly use a previous approach (Shi et al. [SGR+12]) which is based on gate type
analysis, i.e. whether a control signal connects to the select pin of a multiplexer. Moreover,
a technique based on the presence of specific gate types is not reliable for netlists equipped
with hardware obfuscation.

We solve these issues in a generic way by using a metric to quantify the control behav-
ior 17. To this end, we retrieve the FSM output logic gates which are (1) either successors
of state memory FFs that are not in the state transition logic, or (2) transition logic
gates that connect to gates outside of the strongly connected component. Note that the

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 299

latter case occurs due to multi-level logic optimization. To measure the control behavior,
we approximate the Boolean difference of a state FF output signal that connects to the
output logic. We retrieve the minimal Boolean function representation using the Quine
McCluskey algorithm [Qui52]. Then, we count how many minimized clauses are affected
by the control signal normalized by dividing by the number of clauses, yielding a real value
in [0, 1]. Note that a value of 1 implies a strong control behavior, whereas a value of 0
implies no control behavior. We remove any candidate which possesses a value of 0 for all
control signals. Finally, an FSM candidate is added to C 20.

Use of Metrics for Reverse Engineering. We want to emphasize that (1) control
behavior and (2) influence/dependence metrics are especially useful for a human reverse
engineer since multiple FSM candidates are typically retrieved. In such cases, the metrics
and a detailed report of the topological analysis (e.g,. which FFs influence and depend
on each other, or the Boolean functions of control signals) are advantageous for manual
analysis, see Section 5.

In summary, a topological analysis determines a set of FSM candidates consisting
of register gates, combinational logic gates, and input and control signals that behave
similarly to FSMs. Although the analysis discloses relevant gates and logic signals, it does
not determine the key elements for reverse engineering of the hardware design, i.e. the
state transition function δ. Based on δ, we can deduce the set of (reachable) states S and
analyze the output function λ.

3.2 Phase 2: Boolean Function Analysis

To determine the state transition function δ, the set of states S and the output function λ
for each FSM candidate, we analyze its combinational logic gates with an approach similar
to Meade et al. [MZJ16]. The key idea is similar to a Breadth-First Search (BFS): we start
at the initial state s0 and for each possible input value we determine the reachable states
before moving on to the next level states. Typically, the initial state can be determined
from gate configuration values, i.e. initial register values or (re)set signals. To determine
the next state from a given current state and input configuration, we evaluate the Boolean
functions of the combinational state transition logic. More precisely, each state memory
FF data input is represented by a Boolean function whose input variables consist of the
state value (FF data output) and FSM input signal values.

Algorithm 2 shows our technique to retrieve the state transition function δ from an
FSM candidate independently of the state encoding. First, we initialize m and Q with
the initial_state determined by the set of registers R in lines 1 - 4 . Second, we
determine the set of reachable states S and δ 5 - 12. In line 7 , we iterate through
each input signal configuration, e.g., for a 10-bit input signal we enumerate all 210 possible
assignments. To compute the evaluate function in line 8 , we use Reduced Ordered Binary
Decision Diagrams (BDDs) to represent the Boolean functions. Third, we analyze δ for any
input-independent state register series and remove candidate state registers that behave
like a counter 13 - 16. Overall, the time complexity is O(|S| · 2i), where i is the bit width
across all input signals.

Property: Input Independent State Series. FSM reverse engineering faces several
challenges in practice: the similarity of FSMs to counter circuits and non-standard
implementation styles by designers. Counters are simplistic FSMs and topological analysis
misclassifies them as FSM candidates even though they might not be used for design
control. Additionally, counters can be utilized in FSMs even though integrating datapath
units into the control path can be considered bad design practice. We provide an example
of such an FSM implementation in Listing 5 in the Appendix.

300 On the Difficulty of FSM-based Hardware Obfuscation

Algorithm 2 Boolean Function Analysis
Input: c ∈ C - FSM candidate with register R,
combinational logic gates L, and input signals IS

Output: m - FSM with set of finite states S,
state transition function δ, and initial state s0
// initialization

1: m.s0 ← initial_state(c.R)
2: m.S ← {m.s0}
3: Q ← Queue()
4: Q.enqueue(m.s0)

// determine set of reachable states
5: while Q 6= ∅ do
6: s← Q.dequeue()
7: for input signal configuration i ∈ c.IS do
8: snew ← evaluate(c.L, s, i)
9: m.δ(s, i)← snew

10: if snew /∈ m.S then
11: Q.enqueue(snew)
12: m.S ← m.S ∪ {snew}

// determine input independent state registers
13: IIS ← input_independent_state_series(m)
14: for gate r ∈ c.R do
15: if has_constant_value(r, IIS) = false then
16: c.R ← c.R \ {r}
17: return m

(a) Branch. (b) Merge.

si sj sksh

sg

si sj sk

Figure 3: Input independent state series starting point si (series marked in dashed red): (a)
Branch: si has one successor and one predecessor which is a branch (multiple successors).
(b) Merge: si has one successor and multiple predecessors.

To separate counter registers from state registers, we analyze the state transition
function δ. In contrast to FSMs, counters are typically input-independent (except for
enable or reset signals). Hence, we search for input-independent state series 13. These
series start with either a branch or a merge state, cf. Figure 3, and end in a state with
more than one successor. For each register in the series only the counter registers toggle,
hence we remove them in line 16.

Differences to Related Work. As noted earlier in this section, our FSM reverse
engineering algorithms are based on previous work by Shi et al. [STGR10] and Meade et
al. [MJTZ16]. Overall, the structure and properties of our algorithms (phases 1 and 2) are
similar to both works. However, both previous works specifically target ASIC gate-level
netlists, and we had to augment them to work with FPGAs and improve their reliability
using Boolean function analysis. Neither work considers FSMs equipped with obfuscation
strategies, so we introduced two metrics which aid the human reverse engineer during
manual inspection. Also, the separation of counters and FSM circuity was not tackled by
the previous approaches.

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 301

4 Reverse Engineering and Deobfuscation of FSM Obfus-
cation Schemes

On the basis of how FSM circuity can be (semi-)automatically reverse engineered, we
now analyze several FSM obfuscation schemes and review their claimed security with a
particular focus on realistic reverse engineering and manipulation capabilities (Section 4.1 -
Section 4.4). We then summarize the different issues in Section 4.5 to serve as an educational
basis for future obfuscation designers and implementers.

4.1 HARPOON [CB09a]
HARPOON is a design methodology to obfuscate FSMs and provide a form of authenticity
which was utilized in a series of works [CB08,CB09b,CB09c,CB09a]. The HARPOON
threat model is equivalent to ours, see Section 2.1.

4.1.1 Design Principle

In general, HARPOON augments an FSM with a series of states that form a preceding
obfuscation mode and an authentication mode, see Figure 4. More precisely, the obfuscation
mode consists of several states sO

0 , . . . , s
O
l which have to be traversed in a suitable sequence

to reach the original initial state s0 so that the FSM operates as intended. The new initial
state of the obfuscated FSM is sO

0 . Note that the input sequence (i0, . . . , im) required to
perform the correct transitions leading to s0 is called the enabling key and it is only known
by honest parties. Without knowledge of this key, it should be challenging for an adversary
to sell and enable unauthorized design copies. Authentication mode consists of several
states sA

0 , . . . , s
A
n for which the output function λ generates outputs serving as watermarks.

Similar to the obfuscation mode, the input sequence required to traverse the authentication
states is called the authentication key. To deter simulation-based reverse engineering of
the design, HARPOON leverages modification cells so that the design performs incorrect
calculations when the FSM is not in post-validation operating mode.

sO
0start

sO
1

sO
2

sO
3 sO

4

sA
0 sA

1 sA
2

s0

s1

s2

s3

i0 i1

i2

Figure 4: HARPOON design methodology example. The original FSM (dashed blue part)
is augmented by an obfuscation mode sO

0 , s
O
1 , s

O
2 , s

O
3 , s

O
4 and an authentication mode

sA
0 , s

A
1 , s

A
2 . The enabling key to reach the original initial state s0 is (i0, i1, i2).

4.1.2 Security Analysis

Chakraborty et al. assessed the security of HARPOON with a “purely random ap-
proach” [CB09a] (p. 1497) similar to a brute-force attack of the enabling key. This attack

302 On the Difficulty of FSM-based Hardware Obfuscation

does not reflect a realistic adversarial proceeding. We found several strategies to enable
unauthorized design activation including: (1) disclosure of the enabling key, and (2) initial
state / watermark patching. We acknowledge that a similar attack strategy for enabling
key disclosure based on Tarjan’s algorithm has been described in a theoretical sense by
Meade et al. [MZZ+17] without experimentation.

For both strategies mentioned above, we must reverse engineer the state transition func-
tion δ of the FSM using our aforementioned method in Section 3. Note that Chakraborty et
al. [CB09a] claimed a security level of 10−47 for 30 state memory FFs and 4 FSM inputs.
Hence, our Boolean function analysis determines the state transition function after 234

steps (worst-case).
Disclosure of the Enabling Key. To disclose the enabling key (i0, . . . , im) from

a gate-level netlist, the state transition function δ is analyzed using the state transition
graph. An important observation is that there is no path from the original s0, s1, . . .
FSM states back to the preceding states in obfuscation mode, see Figure 4. Additionally,
the state transition function of the original FSM typically consists of a cyclic structure
and thus forms a strongly connected component which can be identified with Tarjan’s
algorithm [Tar72]. Subsequently, we can disclose the enabling key (i0, . . . , im) by examining
which inputs lead to the original initial state s0 (e.g., by using Dijkstra’s shortest path
algorithm).

Initial State Patching. Based on the observations for enabling key disclosure, we
can also patch the state memory to entirely skip the obfuscated mode. Therefore, we have
to alter initial values of the FFs to s0 (derived by δ and the strongly connected component
property). For Xilinx FPGAs, FFs and latches include an initialization attribute INIT
which sets the initial values of state outputs after configuration [Xil09]. For other gate
libraries, the (a)synchronous (re)set signals may be rerouted to GND or VCC depending
on s0. For ASICs, typical FFs in gate libraries offer Q and QN (negated Q) output pins,
so these signals can be multiplexed on reset to model either a logic 0 or 1 for the state
transition function.

Watermark Manipulation. Similar to initial state patching, we can manipulate the
watermark to invalidate the design’s authenticity and survive post-silicon authentication
where scan-FFs can be used to set the state memory to sA

0 . Therefore, we must alter
the output function λ, so that the output values are changed for authentication states
sA

0 , . . . , s
A
n (e.g., by negating each output). For Xilinx FPGAs, output logic is typically

implemented in LUTs so we can simply change its INIT value to alter its functionality.
For other gate libraries (e.g., of ASICs), we may add additional inverter gates to alter the
functionality and thus the watermark.

4.2 Dynamic State Deflection [DY18]
Dynamic State Deflection is an FSM obfuscation technique that is used to prevent the
unauthorized overwriting of the FSM state memory register. Our proposed initial state
patching uses this type of overwriting. The threat model employed by Dofe et al. [DZY16,
DY18] is equivalent to our threat model, see Section 2.1.

4.2.1 Design Principle

The general principle of Dynamic State Deflection is to protect each original FSM state
to verify whether the correct enabling key ik is present for each state transition. In case
any invalid key i 6= ik is present, the modified state transition δ yields a deflection to
so-called black hole clusters sb0, . . . , sbn, see Figure 5, and thus protects from overwriting
of the FSM state memory register. A key feature of its construction is that once an invalid
key i 6= ik is assigned to the design, it never reaches an original state. Since each state
transition verifies the presence of a valid enabling key part, the FSM has to be augmented

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 303

with a dedicated enabling key port. Note that the scheme also builds up on existing
techniques such as HARPOON [CB09a] to protect the design with a preceding obfuscation
mode and enabling key (i0, . . . , im, ik). To be more precise, the (i0, . . . , im) part refers to
the enabling key of the preceding obfuscation mode, while the latter ik refers to the key
validated for every original state transition.

start

s0

s1

s2

s3

Figure 5: Dynamic State Deflection design methodology example. The original FSM
(dashed blue part) is augmented by an HARPOON obfuscation mode (dotted red part)
and each original state is protected by a black hole (states marked in black).

4.2.2 Security Analysis

Dofe et al. examined the security for the Interlocking Obfuscation scheme and claimed
to raise the bar for reverse engineering since the transition between states is based on
a complex structure. However, we show an automated strategy to enable unauthorized
design activation by disclosure of the enabling key. Although a similar attack strategy
based on Tarjan’s algorithm for key recovery has been described theoretically by Meade et
al. [MZZ+17], we provide a practical implementation. For this strategy, we have to
reverse engineer the state transition function of the FSM using our aforementioned method
in Section 3. Note that Dofe et al. [DY18] used a 12-bit enabling key size for their evaluation.
Our Boolean function analysis is able to practically determine the state transition function
in a similar context.

Disclosure of the Enabling Key. Similar to HARPOON, we exploit the char-
acteristic construction of the state transition function δ to retrieve the enabling key
(i0, . . . , im, ik) from the gate-level netlist. In particular, the black hole clusters (forming a
strongly connected component) can be distinguished from original states using Tarjan’s
algorithm [Tar72], see Figure 5. Note that the original FSM states do not form a strongly
connected component with the black hole clusters, since there exists no path from the black
hole clusters back to any original state. After distinguishing original from obfuscation
mode states, we can analyze δ for the inputs leading to s0 (e.g., by using Dijkstra’s shortest
path algorithm).

On State Transition Function Patching. To increase security, Dofe et al. proposed
increasing the key size for ik (e.g., to 64-bits). The key is checked prior to an original state
transition. Even though this key size increase appears to improve protection against a
naive brute-force of δ, a synthesizer will implement a characteristic comparator that can
be automatically identified and manipulated, especially for large key sizes [FWS+ar]. Note
that after reverse engineering the location of the comparator circuit, we may simply patch

304 On the Difficulty of FSM-based Hardware Obfuscation

the state transition function δ (e.g., to report true for each value of ik) and ultimately re-
enable initial state patching. For Xilinx FPGAs, state transition function logic is typically
realized in LUTs so we can simply change its INIT values to alter the functionality and
report true for each ik input. For ASICs, we may insert or remove certain combinational
logic gates to alter the functionality of state transition function logic accordingly. Hence,
either the key can be reverse engineered by a naive brute-force evaluation of δ for smaller
key sizes or an in-depth analysis of comparator circuits that are present for larger key sizes
can be used if a brute-force evaluation might not be efficient (e.g., ≥ 240 on a standard
computer).

4.3 Active Hardware Metering [AK07]
Hardware Metering [KQ01,Kou12a,Kou17] refers to a collection of security mechanisms
and protocols to facilitate post-manufacturing control of designed IP cores. The collection
of metering techniques can be broadly separated into (1) passive, and (2) active techniques.
Passive metering facilitates unique chip identification, whereas active metering additionally
enables designers to (un)lock chips. We focus on active hardware metering. Note that
the threat model for active hardware metering is equivalent to our threat model, see
Section 2.1.

4.3.1 Design Principle

Active hardware metering augments an original FSM with preceding states which must be
traversed in the correct order to reach the original initial state s0. To this end, the original
state register with s FFs is augmented by l FFs, which results in 2l additional states
sO

0 , . . . , s
O
2l−1 for a binary-like state encoding, see Section 3. In particular, the new initial

state sO
0 is determined by a device-unique and unpredictable Random Unique Block (RUB),

see Figure 6. The state transition function δ is generated using one or more small ring
counters (e.g., 16 or 32 states) which are then modified by randomly reconnecting and
adding several edges. These small ring counters are then combined to form the obfuscated
FSM and original states are also randomly connected to additional black hole states similar
to the structure explained for Dynamic State Deflection in Section 4.2. To unlock a design,
the initial register value of sO

0 is read out by the user and sent to the IP provider who
determines the enabling key (i0, . . . , im). Without the enabling key it should be challenging
for an adversary to sell and enable unauthorized copies of the design.

State Transition Logic
State

Memory

RUB

l + s

reset

Figure 6: Active Hardware Metering technique example. The RUB response determines
the initial state of the FSM. The enabling key then determines the transition from the
obfuscation mode states (marked in red) to the original initial state of the FSM (marked
in blue).

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 305

4.3.2 Security Analysis

The security of active hardware metering was previously examined for reverse engineering
and manipulation, i.e. control signal capture and replay1. To increase security, the authors
propose to alter the FSM so that the reset state is RUB-dependent as well, hence an FSM
only operates correctly when it receives a specific stream of signals from the RUB after reset.
Thus, the authors conclude that this renders reverse engineering “much more difficult” and
the control signal capture and replay “almost impossible”. Koushanfar [Kou12b] proved the
security of the scheme with a related structure. Implementation details are dedicated to
the state transition function δ, but the output function λ is hardly considered. It is noted
that “the BFSM inputs are Primary Inputs (PI) and its outputs are Primary Outputs (PO)
since they are the same as the PI and PO in the original design” [Kou12b] (p. 57). Despite
these claims and associated proof, we now provide an attack to perform unauthorized
design activation by means of initial state patching.

Initial State Patching. To disclose the original initial state s0 from the gate-level
netlist, we carefully analyze the output generation logic λ. An important observation is
that λ is only affected for original states by construction of Active Hardware Metering and
thus we can infer original states by analysis of the Boolean functions for the output logic
gates. To be more precise, the output logic will typically implement control signals that
only become active (e.g., logical ’1’) only for specific states. Based on such comparator
circuitry we can directly read out original state configurations from the Boolean functions
of the control signals. For example, a comparator circuit is added to the output logic
λ to ensure that the l obfuscation FFs hold a pre-defined value (e.g, zero) to safeguard
correct functionality of the design. Note that large comparators can be also automatically
identified due to its characteristic functionality [FWS+ar].
We then initialize Boolean function analysis with the original states extracted from output
logic λ. Due to the construction of Active Hardware Metering, we can only transit from an
original state to either other original states or black hole states. Therefore, the complexity
of our Boolean function analysis is not 2s+l for an l + s-bit state register but rather
bound by the (usually linear) number of original and black hole cluster states. Similar
to Dynamic State Deflection in Section 4.2, we can automatically distinguish between
original states and black hole states using Tarjan’s algorithm as the black hole states from
a strongly connected component in the state transition graph. In contrast to HARPOON
and Dynamic State Deflection, we cannot directly read the original initial state s0 of the
state transition graph in each case. Nevertheless, typical designs implement a reset state
which initializes the data path registers and thus, by analysis of which control signal causes
such a characteristic reset behavior, we can recover the original initial state s0. Otherwise
the analyst has to reverse engineer (parts of) the datapath to identify an initial state that
makes sense.

We want to emphasize that recovery of the original initial state s0 by the aforementioned
reset behavior can be performed independently of the Boolean function analysis. Thus,
neither a large (e.g., > 64) number of input signals nor a large number of state memory
FFs prevent initial state patching.

On Enabling Key Disclosure. We want to highlight that for a small number of
states |S| and a number of input signals i, an enabling key disclosure is possible. Since
the initial value of the state memory FFs (defined by the RUB) can be read out by the
adversary, he is able to perform Boolean function analysis of the FSM circuit. For example,
Alkabani et al. concluded that a brute-force attack on FSMs with up to 18 FFs and 8
input signals does not yield success, cf. Table 3 in [AK07], however, targeted reverse

1“In this attack, Bob [the adversary] attempts to bypass the FSM by learning the control signals and
attempting to emulate them. Bob may completely bypass the FSM by creating a new FSM that provides
control signals to all functional units, and control logic (e.g. MUXs and FFs) in the datapath.” [AK07]
(p. 299)

306 On the Difficulty of FSM-based Hardware Obfuscation

engineering of the state transition function δ is possible for these values (226 in the worst-
case which takes a couple of minutes to perform on commodity hardware, see Section 5).
It is possible to analyze δ to identify the original FSM states by investigating which
states affect the output function λ and control other parts of the circuit. In further work,
Koushanfar [Kou17] evaluated this technique for 20 FFs and 64 input signals. Enabling
key disclosure would not be effective for such designs, but initial state patching may be
performed.

In related work, Gören et al. [GOY+13] proposed a partial bitstream protection scheme
based on obfuscation, partial reconfiguration, and Physical Unclonable Functions (PUFs).
This scheme leverages partial bitstreams to generate PUF responses to steer obfuscated
FSM behavior. However, as no original FSM state may transit back to an obfuscation
state, we can exploit control signal characteristics (similar to Active Hardware Metering)
to determine the original initial state.

4.4 Interlocking Obfuscation [DHW+13]
Interlocking Obfuscation is an FSM obfuscation technique that is used to provide anti-
tamper hardware [DHW+13]. The threat model used by Desai et al. is equivalent to our
threat model, see Section 2.1.

4.4.1 Design Principle

Similar to HARPOON, the Interlocking Obfuscation scheme augments the original FSM
with an obfuscation mode sO

0 , . . . , s
O
l and a code-word, see Figure 7. The code-word is

interwoven with the state transition function δ, so that δ is not only dependent on the
current state and input but also on the value of the code-word. Moreover, δ modifies the
code-word, i.e. δ : S × I × C → S × C for the set of possible code-words C. Hence, without
knowledge of the initial correct code-word value c0 ∈ C (which is only available to honest
parties) it should be challenging for an adversary to unlock and tamper with the design.

State
Memory

Code
Word

State Transition Logic

start

Figure 7: Interlocking Obfuscation design methodology example. The original FSM (dashed
blue part) is augmented by an obfuscation mode and a code-word (dotted red part).

4.4.2 Security Analysis

The security of Interlocking Obfuscation was assessed with a brute-force approach [DHW+13]
where the adversary tries all combinations to separate the code-word from the actual
state memory FFs and subsequently find the correct initial code-word c0. Since Desai et
al. choose 56 FFs in their evaluation (8 state memory + 48 code-word), the number
of combinations is

(56
8
)
· 248 ≈ 278 (in case the adversary knows the number of states)

Sara Halimi
Highlight

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 307

and therefore is impractical to compute. Before we detail two generic problems with
the Interlocking Obfuscation scheme, we note that Meade et al. [MZZ+17] theoretically
described a key recovery approach, however, their approach requires the state transition
graph, necessitating a separation of the code-word and state memory FFs. Meade et al. did
not provide information on how to separate the FFs and thus enable the computation of
the decisive state transition graph. Thus, their attack would only work for small code-word
sizes.

Initial State Patching. A key feature of Interlocking Obfuscation is the interwoven
structure of the code-word and the state memory FFs which should be challenging to
reverse engineer. To patch the initial state, we use a strategy that is similar to the one
we used for Active Hardware Metering, see Section 4.3. Since the output function λ is
not affected by the code-word, we can simply read out FF assignments from the Boolean
functions and thus separate code-word and state memory FFs. Since the “code-word is
not needed to compute a correct next state for all original state” (p. 3 [DHW+13]), we can
identify the original initial state s0 either by reset behavior, or Boolean function analysis
similar to Active Hardware Metering.

On Anti-Tamper Hardware. Another issue is the effectiveness of anti-tamper
protection. Even though the FSM is obfuscated and only a valid code-word enables the
design, the tamper resistance of this scheme is questionable since it only protects the design
control path. Desai et al. [DHW+13] chose an Advanced Encryption Standard (AES)
design for their evaluation, however, several AES datapath attacks on Sboxes have been
published [KK06,SFKP15] (the first reference appeared several years prior to the publication
by Desai et al.). These attacks leak the secret key and can be performed irregardless of
any obfuscated control path, rendering the anti-tamper property questionable.

4.5 Lessons Learned
We now summarize the different issues of the schemes to provide future obfuscation
designers and implementers with a clear picture of what is and is not currently possible
with respect to automatic reverse engineering.

Topological Analysis Discloses FSM Gates. FSMs exhibit several characteristics
(e.g., cyclic structure with a combinational logic feedback path), so state memory FFs and
transition and output logic gates can be automatically extracted from a gate-level netlist,
independent of the number of inputs or state memory FFs.

Separation of Obfuscated Parts. A common denominator of the presented schemes
is the possible separation of original and obfuscation circuitry, since the obfuscation circuitry
is not logically entangled with remaining logic. For example, the output function λ does
not depend on obfuscation states in Active Hardware Metering [AK07] or Interlocking
Obfuscation [DHW+13]. This observation enables separation and ultimately enables key
recovery or initial state patching. Bogus output generation for obfuscation states (as
realized in HARPOON [CB09a]) indeed provides an effective countermeasure against the
separation of obfuscation and original FSM circuitry. However, adding the capability to
generate a bogus output is not a generic solution (e.g., in case the FSM steers an actuator).

Complexity of Boolean Function Analysis. As noted earlier in this section, the
complexity to retrieve the state transition function δ is O(|S| · 2i), where i is the combined
bit width of all input signals. If the state space and number of input signals is small, δ can
be reverse engineered, yielding potential enabling keys. Moreover, this approach provides
the state transition graph which is valuable for manual analysis. Scaling the FSM (e.g., to
220 states) is not trivial since a straightforward implementation will require a large amount
of combinational logic for state transitions. Scaling the FSM input signal count (e.g., to 40)
may be prohibitive since the signals must be meaningfully connected to external devices.

Eavesdropping on the Enabling Key. Eavesdropping on the enabling key may
also be a realistic attack vector, however, it requires access to a benign device and a valid

308 On the Difficulty of FSM-based Hardware Obfuscation

enabling key. Moreover, further reverse engineering is required to understand how the
enabling key is transferred from a communication interface to the FSM and subsequently
processed.

5 Evaluation
We now provide an evaluation of our new automated FSM reverse engineering and manipu-
lation strategies to underline the insecurity of the allegedly secure FSM-based obfuscation
strategies presented in Section 4. We first present how we implemented the different
obfuscation strategies.

Implementation. Since no openly available implementation of the different obfusca-
tion schemes was available, we generated the gate-level netlists for the selected hardware
designs using Xilinx ISE (version 14.7) ourselves. For HARPOON we selected 14 additional
states and 8-bit enabling key input signals. For Dynamic State Deflection we used the
HARPOON obfuscation mode and added black hole clusters of 5 states for each original
state. We deliberately omit an isolated evaluation of HARPOON since this technique is
already included in Dynamic State Deflection. Our selected parameters for HARPOON
are similar to the original work [CB09a] as the authors choose an FSM with 4 states and
10-bit enabling key size, cf. Section V C [CB09a]. Our parameters for Dynamic State
Deflection are also similar to the original work [DZY16] that utilized a 12-bit enabling key.
We realized Active Hardware Metering using 256 additional states and an 8-bit enabling
key, as well as a black hole cluster of 5 states per original state. This parameter choice
is similar to the original work [AK07], that evaluated obfuscated hardware designs with
18 FFs and 8-bit input which has a comparable worst-case complexity, see Table 3 [AK07].
Interlocking Obfuscation was generated with a 4 -bit code-word. Our FSM reverse engi-
neering algorithms Algorithm 1 and Algorithm 2 are implemented with the assistance of
HAL [FWS+ar]. As soon as HAL is openly released, we will publish our analysis plugin and
(obfuscated) gate-level netlists. We want to note that all evaluated obfuscation strategies
are realized with a binary state encoding since results for Gray-encoded FSMs are similar.
As explained in the previous section, one-hot state encodings are not reasonable for FSM
obfuscation since the number of utilized FFs grows linearly with the number of states
yielding a large area overhead.

5.1 Case Study: Cryptographic Designs
Even though most cryptographic primitives in use today are resilient against traditional
attacks, adversaries leverage implementation attacks (e.g., side-channel analysis) to under-
mine vital security goals such as confidentiality and integrity [FWS+ar]. To counteract
such attacks, numerous strategies have been investigated by the research community and
industry has yielded highly-optimized and secure implementations [TM14]. Thus, from
an economic point of view cryptographic implementations are valuable IP that are worth
protecting from IP infringement (e.g., by using FSM obfuscation).

For this case study, we selected two cryptographic hardware designs: (1) an iterative
AES IP core, and (2) an iterative Secure Hash Algorithm (SHA)-3 IP core, since both
cryptographic building blocks are widely deployed in practice. State transition graphs of
both FSMs are depicted in Figure 14 in the Appendix. We obfuscated each hardware design
with Dynamic State Deflection, Active Hardware Metering, and Interlocking Obfuscation
as described in the previous section.

5.1.1 HARPOON and Dynamic State Deflection

AES. Our topological analysis identifies 2 FSM circuits after about 2 minutes of computa-
tion time on a standard laptop:

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 309

Figure 8: State transition graph of AES IP core obfuscated with Dynamic State Deflection
(including HARPOON). Tarjan’s algorithm splits all states into 3 strongly connected
components: obfuscation mode of HARPOON (marked in red), black hole cluster states
(marked in black), and original FSM (marked in blue). Rectangle nodes mark the sequence
from initial state 000000 to the original initial state 010001. Input values for each state
transition are deliberately left out for readability.

(1) 32 FFs, 131 input signals, control value 0.971, influence/dependence value 0.625
(2) 8 FFs, 21 input signals, control value 0.519, influence/dependence value 0.625

Our analysis indicates that each FF in the first candidate only connects to 4 successor
gates (an unlikely scenario for control signals that steer a complex data path) and there
is no FF subset where all FFs depend on each other. Based on these properties it seems
unlikely that this candidate implements an FSM and quick manual analysis reveals that
this circuit actually implements a shift-register. Since the influence/dependence value of
the second candidate is 0.625 6= 1.0, we analyze the topological analysis report and see
that the FFs form two groups where all FFs influence and depend on each other: one

310 On the Difficulty of FSM-based Hardware Obfuscation

group with 2 FFs and the other one with 6 FFs, see Listing 1. We omit the group with
2 FFs since we are searching for an obfuscated FSM with >> 4 states. Boolean function
analysis of the 6 FFs yields the state transition graph shown in Figure 8. As described
in Section 4.2, an analysis of the strongly-connected components yields three parts: the
obfuscation mode of HARPOON, the black hole clusters of Dynamic State Deflection, and
the original FSM. With the state transition function δ we can generate the enabling key
by searching for a path from the initial state to the original initial state (marked as red
boxes in Figure 8). Similarly, we can perform an initial state patching attack by altering
the INIT value of each state memory FF accordingly. The 222 (6 FFs and 16 input signals)
computations for the Boolean function analysis took about 5 min on a standard laptop.

Listing 1: Excerpt of the topological analysis report of AES IP core obfuscated with
Dynamic State Deflection (including HARPOON). Gate names have been blinded so
that no information can be inferred by names. FFs U1, U2, . . . U8 form 2 distinct
groups where all FFs influence and depend on each other.
...
[+] U1 influences and depends on: U1 , U2 , U3 , U4 , U5 , U6
[+] U2 influences and depends on: U1 , U2 , U3 , U4 , U5 , U6
[+] U3 influences and depends on: U1 , U2 , U3 , U4 , U5 , U6
[+] U4 influences and depends on: U1 , U2 , U3 , U4 , U5 , U6
[+] U5 influences and depends on: U1 , U2 , U3 , U4 , U5 , U6
[+] U6 influences and depends on: U1 , U2 , U3 , U4 , U5 , U6
[+] U7 influences and depends on: U7 , U8
[+] U8 influences and depends on: U7 , U8
...

SHA-3. Results for the SHA-3 IP core are similar to those from the AES core. Our
topological analysis detects 2 FSM candidates after around 24 minutes on a standard
laptop:

(1) 128 FFs, 2573 input signals, control value 0.803, influence/dependence value 0.016
(2) 6 FFs, 19 input signals, control value 0.408, and influence/dependence value 1.0

The first candidate belongs to the iterative SHA-3 data path and does not implement
an FSM as indicated by the low influence/dependence value. The latter candidate has
characteristics of an FSM circuit. Boolean function analysis of this candidate yields a
state transition graph that is similar to the one generated for AES, shown in Figure 8.
The graph leads to the disclosure of the enabling key and enables initial state patching.
The 225 (6 FFs and 19 input signals) computations for the Boolean function analysis took
about 27 minutes on a standard laptop.

For both obfuscated hardware designs (AES and SHA-3), our input independent state
series analysis reports that all FSM FFs yield non-state behavior (triggered by the black
hole clusters). Hence, we can use this information to distinguish whether the FSM
incorporates black hole state clusters if they are implemented with input-independent state
transitions.

5.1.2 Active Hardware Metering and Interlocking Obfuscation

AES. Our topological analysis identifies 3 FSM candidates after about 4 minutes of
computation on a standard laptop:

(1) 32 FFs, 131 input signals, control value 0.971, influence/dependence value 0.625
(2) 2 FFs, 7 input signals, control value 0.463, influence/dependence value 1.000
(3) 15 FFs, 17 input signals, control value 0.845, influence/dependence value 0.742

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 311

As the first candidate does not implement an FSM, see Section 5.1.1, and the second
candidate is too small to implement any obfuscated FSM, we focus on the third FSM
candidate. Since the influence/dependence value is 0.742 6= 1.0, the topological analysis
report is needed to examine the influence/dependence of each FF. Analogous to Listing 1,
we can exclude 6 FF since they do not form a subgroup where all FFs influence and depend
on each other. As a result, we focus on the remaining 9 FFs of the third candidate.

Figure 9: State transition graph of AES IP core obfuscated with Active Hardware Metering.
Tarjan’s algorithm splits all states into 2 strongly connected components: black hole cluster
states (marked in black), and original FSM states (marked in blue). Input values for each
state transition are deliberately left out for readability.

312 On the Difficulty of FSM-based Hardware Obfuscation

Listing 2: Excerpt of the topological analysis report of AES IP core obfuscated
with Active Hardware Metering. Gate and net names have been blinded so that no
information can be inferred by names. FFs U1, U2, . . .U9 connect to control signals
O1 and O2. Boolean functions of O1, O2, O3 are determined by Quine McCluskey
Boolean function minimization, ~ refers to a negated literal, + to a disjunction, and
* to a conjunction. Based on the Boolean functions, we infer two states where we
assign each FF the Boolean value in the formula.
...
[Control Signal] O1 = U1*~U2*~U3*~U4*~U5*~U6* U7*~U8* U9
[Control Signal] O2 = U1*~U2*~U3*~U4*~U5* U6*~U7*~U8*~U9
...

Listing 2 shows an excerpt of the topological analysis report of the third candidate. The
characteristic control signals O1 and O2 only depend on the 9 FFs (and not on the 6 FFs
excluded via influence/dependence analysis). This information confirms that the 6 FFs do
not belong to the FSM state memory. In the listing, we minimized Boolean functions of 2
control signals and we can infer 2 potential states, namely s1 = U1 . . . U9 = 100000101,
and s2 = U1 . . . U9 = 100001000 which we feed to the Boolean function analysis yielding
the state transition graph in Figure 9 (similar to the adapted original in the Appendix).
Note that the computation time for the Boolean function analysis took around 4 minutes
on a standard laptop. Based on the state transition graph, we deduce the original initial
state s0 = 000110111 as it behaves as a fallback state (in case a specific condition holds)
and the other states form a strongly connected component (in case this specific condition
does not hold).

As explained in Section 4.4, an attack on the Interlocking Obfuscation scheme is the
same as for the Active Hardware Metering scheme and thus we omit the results for the
former approach.

SHA-3. The results for the SHA-3 IP core are similar to those found for AES in
the previous section. Our topological analysis detects 2 FSM candidates after about 38
minutes of computation on a standard laptop:

(1) 128 FFs, 2574 input signals, control value 0.250, influence/dependence value 0.016

(2) 9 FFs, 19 input signals, control value 0.406, influence/dependence value 1.000

Similar to the results for Dynamic State Deflection, the first candidate belongs to the
iterative SHA-3 data path while the latter candidate shows characteristics of an FSM
circuit.

Listing 3: Excerpt of the topological analysis report of SHA-3 IP core obfuscated
with Active Hardware Metering. Gate and net names have been blinded so that
no information can be inferred by names. FFs U1, U2, . . .U9 connect to control
signals O1, O2, and O3. Boolean functions of O1, O2, and O3 are determined by
Quine McCluskey Boolean function minimization, ~ refers to a negated literal, + to
a disjunction, and * to a conjunction. Based on the Boolean functions, we infer 3
potential states where we assign each FF the Boolean value in the formula and all
other not considered FFs (e.g, U2 in O1) are assigned logical ’0’.
...
[Control Signal] O1 = U1* ~U5* U6*~U7*~U8*~U9
[Control Signal] O2 = U1* ~U5*~U6* U7* ~U9
[Control Signal] O3 = ~U2*~U3* U4* U5*~U6* U7* U8* U9
...

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 313

Figure 10: State transition graph of of SHA-3 IP core obfuscated with Active Hardware
Metering. Tarjan’s algorithm splits all states into 3 strongly connected components: black
hole cluster states (marked in black), original reset state (marked in blue), and original
FSM states (marked in blue). Input values for each state transition are deliberately left
out for readability.

Listing 3 shows an excerpt of the topological analysis report of the second FSM
candidate. We see the minimized Boolean functions of 3 control signals O1, O2 and
O3. Each signal implements characteristic control behavior since each becomes a logical
’1’ under one specific state memory configuration. Based on these 3 signals, we infer 3
potential states namely s1 = U1 . . . U9 = 100001000, s2 = U1 . . . U9 = 100000100, and
s3 = U1 . . . U9 = 000110111 and feed them to Boolean function analysis which yields the
state transition graph in Figure 10. We want to highlight that the state values in Figure 10
are not in order U1 . . . U9 and thus differ from s1, . . . , s3. As described in Section 4.3,
Boolean function analysis is not dependent on the number of FFs but rather on the
number of original states due to the specific construction of the Active Hardware Metering
scheme. Original states transit either to other original states or to black hole cluster
states. The computation for the Boolean function analysis took around 17.5 minutes on
an standard laptop. Based on the state transition graph, we deduced the original initial
state s = 001100111 to perform initial state patching of obfuscation and state memory
FFs. Initial state patching to the original reset state s is also possible without Boolean
function analysis. Control signal O3 implements a data path reset functionality since it
only becomes active in the initial state and connects to the reset ports of 1608 FFs (1600
SHA-3 data path FFs and 8-bit Linear Feedback Shift Register (LFSR) FFs).

314 On the Difficulty of FSM-based Hardware Obfuscation

As explained in Section 4.4, an attack on the Interlocking Obfuscation scheme is the
same as one on the Active Hardware Metering scheme and thus we omit the results for the
former approach.

5.2 Case Study: Communication Interfaces
Virtually all hardware designs implement dedicated communication interfaces to exchange
information with peripheral devices. These interfaces range from simplistic parallel
interfaces to complex serial interfaces. Since communication interfaces receive potentially
untrusted data from peripheral devices, design activation measures implemented in these
building blocks can be used to reject untrusted data before it is forwarded to internal
hardware modules, thus protecting valuable IP.

For this case study, we selected a serial Universal Asynchronous Receiver Transmitter
(UART) interface since this interface is widely deployed in real-world embedded systems.
We augmented the UART with our previously-described FSM obfuscation schemes and
evaluated each approach separately.

5.2.1 HARPOON and Dynamic State Deflection

UART. Our topological analysis detects 5 FSM candidates after about 17 seconds of
computation time on a standard laptop:

(1) 6 FFs, 8 input signals, control value: 1.0, influence/dependence value: 1.0
(2) 16 FFs, 6 input signals, control value: 0.500, influence/dependence value: 0.445
(3) 4 FFs, 18 input signals, control value: 0.400, influence/dependence value: 1.000
(4) 17 FFs, 6 input signals, control value: 0.785, influence/dependence value: 0.495
(5) 5 FFs, 14 input signals, control value: 0.698, influence/dependence value: 0.520

Based on the high control and influence/dependence values, we identify the first
candidate as a potential FSM. Boolean function analysis of the 6 FFs and 8 input signals
yields a state transition graph similar to the one depicted in Figure 8. Analogously, Tarjan’s
algorithm splits the states into three sets (obfuscation mode states, black hole states, and
original states) and thus enables disclosure of the enabling key and initial state patching.
The 214 (6 FFs and 8 input signals) computations for Boolean function analysis took about
2 s on a standard laptop.

We now briefly describe the other four identified circuits and why they are marked as
potential FSMs by topological analysis. The second candidate represents the transmission
FSM with (2 FFs), a clock divider (8 FFs) and a countdown counter (6 FFs). Based on the
topological analysis report, we can separate the transmission FSM FFs from the datapath
FFs since each of the 16 FFs depends on the 2 FSM state memory FFs. The third candidate
refers to a 4-bit counter which naturally exhibits a high internal influence/dependence but
a low overall controllability since counters and FSMs behave similarly. Analogous to the
transmission FSM, the fourth candidate refers to the receiving FSM (3 FFs) which includes
a clock divider (8 FFs) and a countdown counter (6 FFs). The last candidate refers to the
state machines for the empty/full logic of both receiving and transmission FIFO circuits
used in the design. Each candidate refers (partially) to genuine FSM circuits.

5.2.2 Active Hardware Metering and Interlocking Obfuscation

UART. Similar to the results for Dynamic State Deflection, our topological analysis
detects 5 FSM candidates:

(1) 9 FFs, 8 input signals, control value: 1.000, influence/dependence value: 1.000

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 315

(2) 16 FFs, 6 input signals, control value: 0.500, influence/dependence value: 0.445
(3) 4 FFs, 18 input signals, control value: 0.400, influence/dependence value: 1.000
(4) 17 FFs, 6 input signals, control value: 0.785, influence/dependence value: 0.495
(5) 5 FFs, 14 input signals, control value: 0.698, influence/dependence value: 0.520
Since the control and influence/dependence values are 1.0, we identify the first candidate

as a potential FSM. Candidates 2-4 are the same ones discussed in the previous section.

Listing 4: Excerpt of the topological analysis report of UART IP core obfuscated
with Active Hardware Metering. Gate and net names have been blinded so that
no information can be inferred by names. FFs U1, U2, . . .U9 connect to control
signals O1, O2, O3, O4. Boolean functions of the control signals are determined by
Quine McCluskey Boolean function minimization, ~ refers to a negated literal, + to
a disjunction, and * to a conjunction. Based on mutual configuration of FFs for all
control signals, we identify FFs U3, . . . , U9 as obfuscation state memory since control
signals only change their output in case these FFs hold a pre-defined all-zero value
and consequently FFs U1 and U2 are marked as original state memory since they
yield changing output for the control signals.
...

[Control Signal] O1 = U1* *~U5*~U6* U7*~U8* U9
[Control Signal] O2 = ~U1* *~U5*~U6* U7*~U8*~U9
[Control Signal] O3 = U1* *~U5*~U6*~U7* U8*~U9
[Control Signal] O4 = ~U2*~U3* U4* U5*~U6*~U7*~U8*~U9
...

Figure 11: State transition graph of UART IP core obfuscated with Active Hardware
Metering. Tarjan’s algorithm splits all states in 2 strongly connected components: black
hole cluster states (marked in black), and original FSM states (marked in blue). Input
values for each state transition are deliberately left out for readability.

Listing 4 shows an excerpt of the topological analysis report of the selected FSM
candidate. We see the minimized Boolean functions of control signals O1, . . .O4 and

316 On the Difficulty of FSM-based Hardware Obfuscation

can infer 4 potential states s1 = U1 . . . U9 = 100000101, s2 = U1 . . . U9 = 100000100,
s3 = U1 . . . U9 = 100000010, and s4 = U1 . . . U9 = 000110000 which we feed to Boolean
function analysis yielding the state transition graph in Figure 11. We want to highlight
that the state values in Figure 11 are not in order U1 . . . U9 and thus differ from s1, . . . , s4.
The computation time for the Boolean function analysis took around 2 s on a standard
laptop. Using Tarjan’s algorithm we were able to distinguish original states from black
hole cluster states by virtue of the specific construction of Active Hardware Metering.

As explained in Section 4.4, the attack on the Interlocking Obfuscation scheme is the
same for Active Hardware Metering and thus we deliberately omit the results for the former
approach.

In summary, we observed that (semi-)automatic reverse engineering and targeted
manipulation on FSM obfuscation performs well in practice for several obfuscation schemes
and hardware designs. We also performed experiments where we integrated a UART
communication interface with the cryptographic cores. Results for these experiments were
similar to the ones presented in Section 5.1 and Section 5.2 so they have been omitted.

6 Hardware Nanomites
As demonstrated in previous sections, topological and Boolean function analyses are
powerful tools that can extract crucial information from obfuscated FSM circuits. Even
though the state transition graph may not be recovered by Boolean function analysis in
some cases, topological analysis can be used to yield sufficient information to deobfuscate
a protected FSM (e.g., for Active Hardware Metering).

Analogy: Software Obfuscation. In the domain of software protection, self-
modifying code, i.e. code that alters its own instructions during execution, is typically
leveraged to mitigate static analyses [Auc96,KMNM03,MAM+06]. To additionally protect
against dynamic analysis by use of debugging or emulation, alternative methods can
be utilized [GTG07]. A well-known example is Armadillo Nanomites Technology which
protects software from dynamic analysis by exploiting the fact that only one ring-3 (user
land) debugger can be attached to a debugged process at a time [Inc].

Nanomites in Hardware. Our idea for Hardware Nanomites builds on the concept
of combining self-modifying code and anti-debugging to hinder reverse engineering of
FSMs. From a high-level point of view, the state transition function and output logic
of an FSM is split into partial designs that are loaded into an FPGA as needed via
partial reconfiguration. This reconfiguration approach effectively provides the same design
functionality as the original design at runtime without storing all logic needed to perform
transitions in the FPGA at once. Intuitively, we hinder topological analysis since the entire
state transition function is not present in the device at any point in time. The approach
also hinders simulation, i.e. dynamic analysis, since currently available simulators cannot
straightforwardly deal with partial dynamic FPGA reconfiguration. Thus, attempting to
simulate a complete netlist representation of an FPGA-based FSM becomes an extremely
challenging task.

6.1 Design
Principle. We now present the detailed design and implementation of Hardware Nanomites
to hamper FSM reverse engineering, see Figure 12. In general, we unravel the overall FSM
to split the state transition computation and output logic computation into multiple partial
designs that are dynamically reconfigured to the dynamic physical block during runtime.
Although one partial design per state is used in the following description for clarity, in reality,
a larger number of states (e.g., 10-20) per partial design can be used for efficiency. Our
formulation stated below can be easily modified to consider multiple states per partial design.

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 317

Partial
Reconfi-
guration

Controller

Dynamic
Physical

Block

State
Register

Static
Data Path

Ê initialize

Ì reconfigure

Ë load τi

s0

s1

s2

sn

sob

101
001

τ0

010
001

τ1

010
111

τ2

110
101

τn

101
010

τob

· · ·

Figure 12: Hardware Nanomites system overview. Before using the first partial design
τ0, the state register is initialized to load it. After obtaining a request to load the next
partial design τi, the partial reconfiguration controller then loads the requested design and
reconfigures the dynamic physical block. The partial design interacts with the static data
path and state register to perform calculations and afterwards requests loading of the next
design. Note that state sob (marked in black) represents a bogus state.

Formally expressed, we form a tuple τi = (λi : Si → Oi, δi : S ×I → S),∀i = 0, . . . , |S| − 1
and each τi is then implemented in a partial design. In addition to the original output
and next state computation, we define bogus output values and bogus next state values
for originally undefined or abnormal input configurations (e.g., so that a valid state may
transit to one or multiple bogus states, see state sob in Figure 12), and bogus states transit
between each other similar to the blackhole approach of Dynamic State Deflection. Bogus
states are able to update the state register (to an apriori known invalid value) so that the
next transition again yields a bogus state. Note that we map multiple state IDs to the
same partial bitstream. When needed, each partial design is loaded into the reconfigurable
partition connected to the static state register. After the processing of each state, the next
state is stored in the state register and the partial reconfiguration controller is triggered to
load the next partial design, if necessary. We note that Hardware Nanomites can be used
in concert with an adapted key-based activation mechanism, i.e. a preceding obfuscation
mode similar to HARPOON or Active Hardware Metering.

Example. To illustrate our approach, we consider an iterative AES cryptographic IP
core consisting of five datapath layers SubBytes, ShiftRows, MixColumns, AddRoundKey,
and a round counter, see Figure 13. A single state per partial design is considered for
illustrative purposes. The current state s1 and currently loaded partial design determine
the next state s2 and control signals. Additionally, the computation conditionally triggers
reconfiguration and also defines which partial design is reconfigured. Although no single
partial design provides the complete functionality of the control path, the correct state
transitions still take place since the entire state transition and output logic information is
distributed across the partial designs.

Optimizations. To address performance penalties introduced by partial design re-
configuration (e.g., FPGA reconfiguration and the loading of partial designs), several
techniques can be leveraged to improve performance: (1) the use of multiple dynamic
physical blocks, and (2) the use of partial bitstream caches.

Since a dynamic physical block for a typical state transition function only consists of
several hundred LUTs and FFs, see Section 6.2, we can easily instantiate multiple blocks
to allow parallel pre-fetching of candidate partial designs. The selection of which partial

318 On the Difficulty of FSM-based Hardware Obfuscation

State Register

Static Data Path

SubBytes

ShiftRow

MixColumns

AddRoundKey

IncRoundCnt

Dynamic Physical Block

s2

s3

sob

s0

s1

s2

s3

s4

sob

101
001

τ0

010
001

τ1

010
111

τ2

010
101

τ3

011
101

τ4

101
010

τob

Original State Ma-
chine and Bogus State

Partial Reconfiguration Controller DDRUART

next_data +
next_state

output_data

data

state

reconfigure load τi

Figure 13: Example: Iterative AES IP core with Hardware Nanomites currently holding
the partial design τ2. The dynamic physical block (marked in red) takes the current state
register value state and data from the static design part as an input and determines the
next state and control signals. The circuit updates the round counter, assigns values to
the primary output, and triggers partial reconfiguration, if necessary. Note that the state
register is managed by the partial reconfiguration controller as a memory-mapped address.

design is used for a specific next state can then be determined by the partial reconfiguration
controller. A series of multiplexers are needed at the state register input to select the
correct next state in this scenario.

Another optimization strategy is the use of partial configuration generation [TPD15] and
caching [LCH00] which have been investigated for years in the FPGA research community
and are quickly becoming more widely used in practice. The use of partial reconfiguration
to support partial designs with a selection of next state logic is particularly feasible
considering the small footprint of most next state logic (typically less than ten LUTs
per state transition). Thus, the amount of information that must be swapped into the
FPGA on demand is highly constrained. In the caching scenario, the loading of partial
bitstreams could be performed before next state processing takes place to reduce time
overhead. Simultaneously, partial designs could be compressed to save space and loading
time.

6.2 Implementation
We now highlight the details of our Hardware Nanomites implementation. Prior to the
creation of the partial designs, the states of the FSM must be partitioned into groups.
Each group defines a collection of state transition and output logic. This action is simple
to define if the number of states per partial design is 1 or another small number. An initial
approach for assignment of states to groups is to perform greedy state selection, although
more complicated selection heuristics could be formulated for larger numbers of states per
partition.

Our implementation of Hardware Nanomites incorporates several hardware components:
(1) Xilinx HWICAP [Xil16] to perform partial FPGA reconfiguration, and (2) a Xilinx

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 319

Microblaze soft-processor (performance optimized for standalone applications) [Xil] to
simplify management of the partial bitstreams. The 64-bit state register is managed by
the partial reconfiguration controller, i.e. as a memory-mapped address. Since bogus
states are able to update the state register to invalid values, 264 − (x ·m) bogus state
values are reachable. Here x is the number of original states and m is the number of
states that are additionally mapped to each original state. A 128-bit bus is used for the
FSM input signals in our implementation which prevents a practical implementation of a
Boolean function analysis. Also, we incorporated a Double Data Rate (DDR) controller to
be able to store the partial bitstreams in external DRAM and allow for fast interfacing
to the HWICAP. Since we store partial bitstreams externally, we can apply a randomly
chosen permutation to access 128-bit chunks of each bitstream. This randomization hinders
straightforward detection and translation of the partial bitstream into a (partial) gate-level
netlist. To this end, we store the permutation and bitstream memory boundaries in the
firmware so an adversary not only has to perform gate-level netlist reverse engineering
but also low-level embedded software reverse engineering, see Section 6.3 for a detailed
security analysis. As a result, the security of Hardware Nanomites can be improved by
applying established software obfuscation or Instruction Set Architecture (ISA) obfuscation
techniques [FRB+18] for the partial reconfiguration controller, see Section 6.3.

During the floor-planning step, the designer must mark a region that will host the
dynamic part a.k.a. Dynamic Physical Block (pBlock). The region must be able to
accommodate the largest partial module that will be loaded. To determine the size of the
largest partial module, the designer synthesizes each partial module and obtains a count
of the required resources from the synthesis report to allocate a suitable pBlock that is
large enough to fit all partial modules.

On-Demand Partial Bitstream Streaming. Our physically-implemented proto-
type includes a UART core to receive partial bitstreams and store them in DRAM at
runtime to provide on-demand design reconfiguration. This setup not only accelerates
the implementation, but it may be of further interest for Internet of Things (IoT) appli-
cations where obfuscated hardware designs may be directly streamed to the FPGA to
increase the effort of reverse engineering (similar to advanced software protection via code
streaming [AME+06]).

We now consider the hardware area overhead of Hardware Nanomites FSM obfuscation
of the AES core implemented on a Xilinx KCU105 evaluation board [Xil17a] containing a
Xilinx UltraScale FPGA.

Hardware Nanomites on Non-SoC FPGAs. Table 1 and Table 2 show the
hardware area overhead for both the static and dynamic design parts. The static part of
the implementation utilizes roughly 13% of available LUTs resources and 6% of all FFs.
The dynamic part utilizes only a fraction of the resources (> 0.1% of both LUTs and FFs).
Note that the utilized storage memory scales with the number of partial bitstreams.

Hardware Nanomites are particularly well-suited for modern FPGA designs that im-
plement partial reconfiguration features [CCP+16]. All FPGAs introduced by the two
major FPGA vendors (Xilinx and Intel) over the past five years contain these features. If a
reconfiguration controller is available, the area resource overhead of reconfiguration control
logic is negligible. In terms of latency, the additional reconfiguration time depends on the
pBlock size and bitstream reconfiguration speed. These values are also small for typical
FSMs (e.g., 352kB

400MB/s = 880µs for a 400MB/s HWICAP speed and a partial bitstream size
of 352kB). Our utilized hardware components, the Xilinx Microblaze, a DDR controller
and an UART controller, are typical components in hardware designs and can be easily
repurposed.

Hardware Nanomites on SoC FPGAs. Our Hardware Nanomites scheme can
also easily leverage existing hardware resources on SoC FPGAs to minimize the resource
overhead for the static design part. For example, on Xilinx 7-series ZYNQ devices, the

320 On the Difficulty of FSM-based Hardware Obfuscation

fixed-logic ARM Cortex A9 can be used in place of the MicroBlaze. Additionally, a DDR
controller, UART, and PCAP reconfiguration interface (replacing the HWICAP) are
already present on the processing system [Xil17b,Xil15] and, thus, the only additional
logic resource overhead is proportional to the added states for both storage and pBlock
size.

Table 1: Hardware design resource utilization of the Hardware Nanomites static design
parts synthesized for a xcku040-2ffva1156e. Note that the complete static design also
includes components for the bitstream streaming such as a UART IP core.
Component #LUTs (Logic) #FFs #LUTs (Memory)
Microblaze 1553 (0.64 %) 1401 (0.29 %) 198 (0.18 %)
DDR Controller 15151 (6.25 %) 17520 (3.61 %) 1379 (1.22 %)
HWICAP 312 (0.13 %) 959 (0.20 %) 1 (≥ 0.01 %)
AXI SmartConnect 5827 (2.40 %) 8977 (1.85 %) 2017 (1.79 %)
Misc. Parts (UART, . . .) 1335 (0.55 %) 1752 (0.36 %) 94 (0.08 %)
Complete Static Design 24178 (9.97 %) 30609 (6.31 %) 3689 (3.27 %)

Table 2: Hardware design resource utilization for the pBlock (Hardware Nanomites dynamic
design part) synthesized for a xcku040-2ffva1156e.
#LUTs (Logic) #FFs #LUTs (Memory) Partial Bitstream Size

160 (0.07 %) 320 (0.07 %) 80 (0.07 %) 352 kByte

Case Study: AES. In our evaluation we used an adapted version of the AES-T1000
implementation [STK13] consisting of a 5-state FSM (similar to Figure 14 in the Appendix)
that includes bogus states for transitions that were originally invalid. Moreover note
that we changed original cipher architecture to an iterative one. Prior to loading a new
functional partial bitstream of 352kB in an UltraScale device, a clearing bitstream of 9.9kB
must be loaded. Note that the clearing bitstream is not needed for UltraScale+ devices.
For a standard reconfiguration speed of 400MB/s, the reconfiguration time overhead for
all five states is (352kB+9.9kB)·5

400MB/s = 4.524 · 10−3s. Since our AES design clock frequency
is limited to 100MHz (the speed of the DDR controller), the AES operation is delayed
4.524 · 10−3s · 100 · 106s−1 = 452, 375 clock cycles.

Since we believe that Hardware Nanomites provide a valuable building block for FPGA-
based hardware obfuscation, we plan to publish the sources for our implementation to
foster future research in this direction.

6.3 Security Evaluation

Before we present a security evaluation of Hardware Nanomites, we stress that sound
quantification of resiliency against reverse engineering is an open problem since it involves
the quantification of human factors [FSK+17]. Therefore, we can only present what steps
a reverse engineer must overcome to analyze an FSM protected with Hardware Nanomites.
To this end, we assess the security for static design analysis and dynamic design analysis,
i.e. simulation, and we discuss why the mentioned approaches are challenging to reverse
engineer in an automated fashion. Note that we leverage the same adversary model as
defined in Section 2.1, i.e. access to the original obfuscated gate-level netlist and the
adversary is able (as soon as he has access to the partial bitstreams) to convert them into
partial netlists. The attacker’s goal is to deobfuscate the design (e.g., identify activation
keys or tamper with the design to skip key validation.)

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 321

6.3.1 Static Design Analysis

As shown in previous sections, static analysis techniques, such as topological analysis,
are effective in obtaining crucial FSM information from gate-level netlists. Thus, from
a high-level point of view, the adversary’s goal is to transform the static design and all
partial designs into a version where known FSM reverse engineering techniques can be
repurposed. To this end, an adversary may attempt to multiplex the partial designs into
a single netlist which could eventually be prone to topological analysis. However, for
this generic reverse engineering activity, the adversary encounters two major challenges:
(1) access to the partial bitstreams, and (2) mapping of the τi IDs to partial bitstreams.

Challenge: Access to Partial Bitstreams. To transform the partial designs into
a single static gate-level netlist, the adversary has to first obtain the partial bitstreams.
Depending on the implementation, partial bitstreams are either stored in FPGA internal
or external memory. In the former case, the adversary must identify and reverse engineer
the contents of FPGA memory structures that hold the partial bitstreams. There are
no automated techniques reported so far to the best of our knowledge that perform this
activity. In the latter case (which we use in our implementation), the adversary must first
analyze the chunk-level permutations of partial bitstreams which requires an analysis of
the partial reconfiguration controller (≈ 1.7k LUTs and ≈ 1.4k FFs) as there are numerous
variants for the Xilinx Microblaze processor and significant parts of the firmware data flow
(≈ 4.4MB), i.e. combined hardware and software reverse engineering. These numbers for
the effort depict the worst case of reverse engineering all information. Since access to the
partial bitstreams involves combined hardware and software reverse engineering, it is quite
challenging considering state-of-the-art reverse engineering technology.

Challenge: Mapping τi IDs to Partial Bitstream. Once the adversary has
obtained the partial bitstreams and transformed them into partial netlists (via file format
reverse engineering), he must assemble a single static netlist. To this end, all partial netlists
must be multiplexed to determine which state transition is currently active. Note that
this action requires an understanding of the mapping between τi indices and the partial
bitstreams. This mapping is handled in the firmware of the reconfiguration controller and
thus extracting this information requires a combination of hardware and software reverse
engineering efforts. After successful extraction of this mapping, the adversary is able to
assemble the netlist and finally perform topological analysis.

In summary, for an attacker to defeat our approach substantial new automated software
and hardware reverse engineering approaches that have not yet been reported would be
needed. In contrast to the aforementioned state-of-the-art FSM obfuscation schemes, we
significantly increase the required manual reverse engineering effort since at least several
thousand logic gates and several kilobytes of firmware must be analyzed rather than
several hundred FSM gates and signals. Although there is a large body of software reverse
engineering research, such automated software analyses can be easily thwarted by use of
software and ISA obfuscation [FRB+18] so that manual deobfuscation of the ISA, software,
and hardware must be performed first.

6.3.2 Dynamic Design Analysis

Another generic strategy to obtain operational information from an FSM equipped with
Hardware Nanomites is to analyze runtime behavior, i.e. perform simulation. However, to
the best of our knowledge, an efficient gate-level simulation model for partially reconfig-
urable FPGA designs is not currently available in industry or academia. While rudimentary
approaches exist [SL95,PRD+15], they either tend to drastically increase the size of the
simulation model and thus increase the workload for the simulator beyond practical limits,
or they are not designed for gate-level simulation. We acknowledge that designing and
implementing such a tool (or improving the rudimentary ones) is theoretically possible

322 On the Difficulty of FSM-based Hardware Obfuscation

and would allow inspection of the dynamic physical block during runtime. Even with
such a tool, reverse engineering of a Hardware Nanomites protected FSM would be a
challenging process as both software and hardware have to be analyzed in concert since
the reconfiguration controller is implemented in software.

Another possible dynamic reverse engineering strategy would be to derive a static
simulation model for each partial design that includes the static part, so that the reverse
engineer is able to iteratively analyze and switch between different simulation models
manually. However, this approach requires significant apriori (manual) static reverse
engineering effort, i.e. identification of partial bitstreams and extraction of ID to bitstream
mappings. As mentioned in the previous section, no semi-automated reverse engineering
techniques that perform these tasks have been reported to the best of our knowledge.

7 Discussion
Applications of FSM Reverse Engineering. We have demonstrated that automated
reverse engineering of FSMs provides valuable high-level information, i.e. design of the
control path and its controlled datapath units. Since reverse engineering is a tool to enable
legitimate and illegitimate applications, we discuss the implications for both.

From a defender’s point of view, high-level FSM information can be used to identify
hardware Trojans implemented with sequential logic or Trojans which incorporate FSM-
based obfuscation for increased stealthiness [STK13,MJTZ16, ZYX14]. Moreover, our
insights on the capabilities of FSM reverse engineering can support assessment of future
hardware design obfuscation strategies. Reverse engineering is beneficial in the case of
source code loss, faulty product design detection, and competitor analysis [VPH+17].

From an adversary’s point of view, high-level FSM information offers an attractive entry
point for further reverse engineering of datapath units such as details of a cryptographic
implementation or microarchitecture specifics. More importantly, register grouping discloses
crucial module boundary information, which partitions the design into easier to analyze,
functionally-related units.

On the Difficulty of Using Obfuscation Metrics. Modeling the security of
practical obfuscation schemes against reverse engineering is challenging, see Section 4. We
observed that a realistic appreciation of reverse engineering capabilities and consideration
of the system context are often neglected. The capabilities of (automated) gate-level
netlist reverse engineering are often not considered, since this topic is not well studied,
see Section 2.2. Designers of obfuscation techniques often do not detail why the development
of automated reverse engineering is challenging or what steps would be needed by a rational
reverse engineer to defeat the obfuscation. In Section 4.5 we provided a concise overview
of the lessons learned to provide future obfuscation designers with valuable information on
adversarial approaches.

Focusing solely on FSM obfuscation is not enough to prevent an attacker from gaining
meaningful high-level design information. The general system context must be considered as
well. Consider an FPGA hardware design with a communication interface, a cryptographic
algorithm, and an FSM controlling both cores. The FSM is obfuscated and employs a key-
based activation, so that it is not possible to algorithmically or manually reverse engineer
its state transition function (e.g., 64-bit input signal). This implementation enables the
adversary to obtain high-level design information without analyzing the highly-obfuscated
FSM. This example shows that it is necessary to consider obfuscation not just for the
FSM, but also for the system as a whole. This directive extends to people researching
obfuscation as well as system designers responsible for implementing obfuscation techniques.
Designers need to consider the non-obfuscated parts of a design, even in the presence of
FSM obfuscation.

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 323

As mentioned in Section 5, we acknowledge that we implemented the different FSM
obfuscation schemes ourselves as no publicly available implementations were available.
However, our tools did not use any design information beyond what was obtained from
the gate-level netlists.

Future Work Several directions can be explored in future research. Reverse engi-
neering of FPGA designs with dynamic reconfiguration should be explored to quantify
the complexity increase (compared to static designs). In addition, further work should
explore automated techniques for general-purpose reverse engineering for security-relevant
circuitry. It would be desirable to quantify the human factor in reverse engineering or to
set up a reverse engineering competition. The evaluation can be extended to diverse (open-
source and closed-source) synthesizers to potentially improve reliability of the topological
analysis.

8 Conclusion
Due to globalization, IC design, implementation, and manufacturing involves various
(untrusted) suppliers and stakeholders. Hence, a designer’s valuable IP is visible to many
parties thus increasing the risk of IP piracy. Numerous works have proposed solutions
to protect against IP piracy. Hardware design obfuscation of a circuit’s FSM to protect
against the crucial threat of reverse engineering and IP infringement has been a particular
focus. However, the security of many schemes is in doubt since realistic reverse engineering
capabilities are barely addressed in the open literature and thus not adequately considered
in security analyses.

In this paper, we carefully reviewed the security of several state-of-the-art FSM obfus-
cation schemes. In concert with realistic reverse engineering capabilities, we demonstrated
several generic strategies to bypass these schemes on FPGA gate-level netlists while
keeping analysis times practical. We augment netlist reverse engineering algorithms to
disclose high-level FSM information in FPGA gate-level netlists. Our rigorous evaluation
demonstrates the effectiveness of FSM reverse engineering and the automatically disclosed
information supports a human analyst to further reverse engineer a design for constructive
as well as malicious purposes.

Our insights on realistic reverse engineering capabilities invite a rethinking of future
hardware design obfuscation.

Acknowledgments
The authors would like to thank our anonymous reviewers and our shepherd Colin O’Flynn
for their valuable feedback and remarks. Part of this work was supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation
programme (ERC Advanced Grant No. 695022 (EPoCH)) and by NSF grant CNS-1563829.

References
[Age00] National Security Agency. Rijndael128 implementation. http://csrc.nist.

gov/archive/aes/round2/r2anlsys.htm#NSA, 2000. [Online] Accessed: July
28, 2018.

[AK07] Yousra Alkabani and Farinaz Koushanfar. Active hardware metering for
intellectual property protection and security. In USENIX Security Symposium.
USENIX Association, 2007.

http://csrc.nist.gov/archive/aes/round2/r2anlsys.htm#NSA
http://csrc.nist.gov/archive/aes/round2/r2anlsys.htm#NSA

324 On the Difficulty of FSM-based Hardware Obfuscation

[AME+06] Itzik Artzi, Bridget Mcdermott, Dan Eylon, Amit Ramon, and Yehuda Volk.
Network streaming of multi-application program code, May 2006.

[ASF+17] Sarah Amir, Bicky Shakya, Domenic Forte, Mark Tehranipoor, and Swarup
Bhunia. Comparative analysis of hardware obfuscation for IP protection. In
ACM Great Lakes Symposium on VLSI, pages 363–368. ACM, 2017.

[Auc96] David Aucsmith. Tamper resistant software: an implementation. In Ross
Anderson, editor, Information Hiding, pages 317–333, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[CB08] Rajat Subhra Chakraborty and Swarup Bhunia. Hardware protection and
authentication through netlist level obfuscation. In ICCAD, pages 674–677.
IEEE Computer Society, 2008.

[CB09a] Rajat Subhra Chakraborty and Swarup Bhunia. HARPOON: an obfuscation-
based soc design methodology for hardware protection. IEEE Trans. on CAD
of Integrated Circuits and Systems, 28(10):1493–1502, 2009.

[CB09b] Rajat Subhra Chakraborty and Swarup Bhunia. Security against hardware
trojan through a novel application of design obfuscation. In Jaijeet S. Roy-
chowdhury, editor, 2009 International Conference on Computer-Aided Design,
ICCAD 2009, San Jose, CA, USA, November 2-5, 2009, pages 113–116. ACM,
2009.

[CB09c] Rajat Subhra Chakraborty and Swarup Bhunia. Security through obscurity:
An approach for protecting register transfer level hardware IP. In Mohammad
Tehranipoor and Jim Plusquellic, editors, IEEE International Workshop on
Hardware-Oriented Security and Trust, HOST 2009, San Francisco, CA, USA,
July 27, 2009. Proceedings, pages 96–99. IEEE Computer Society, 2009.

[CCP+16] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13, Oct 2016.

[DHW+13] Avinash R. Desai, Michael S. Hsiao, Chao Wang, Leyla Nazhandali, and Simin
Hall. Interlocking obfuscation for anti-tamper hardware. In CSIIRW, page 8.
ACM, 2013.

[DY18] Jaya Dofe and Qiaoyan Yu. Novel dynamic state-deflection method for gate-
level design obfuscation. IEEE Trans. on CAD of Integrated Circuits and
Systems, 37(2):273–285, 2018.

[DZY16] Jaya Dofe, Yuejun Zhang, and Qiaoyan Yu. DSD: A dynamic state-deflection
method for gate-level netlist obfuscation. In ISVLSI, pages 565–570. IEEE
Computer Society, 2016.

[FBT17] Domenic Forte, Swarup Bhunia, and Mark M. Tehranipoor, editors. Hardware
Protection Through Obfuscation, volume 1. Springer Publishing Company,
Incorporated, 1st edition, 2017.

[FRB+18] M. Fyrbiak, S. Rokicki, N. Bissantz, R. Tessier, and C. Paar. Hybrid obfusca-
tion to protect against disclosure attacks on embedded microprocessors. IEEE
Transactions on Computers, 67(3):307–321, March 2018.

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 325

[FSK+17] Marc Fyrbiak, Sebastian Strauss, Christian Kison, Sebastian Wallat, Malte
Elson, Nikol Rummel, and Christof Paar. Hardware reverse engineering:
Overview and open challenges. In IVSW [IVS17], pages 88–94.

[FWS+ar] M. Fyrbiak, S. Wallat, P. Swierczynski, M. Hoffmann, S. Hoppach, M. Wil-
helm, T. Weidlich, R. Tessier, and C. Paar. HAL—the missing piece of the
puzzle for hardware reverse engineering, trojan detection and insertion. IEEE
Transactions on Dependable and Secure Computing, 2018, to appear.

[GOY+13] Sezer Gören, Ozgur Ozkurt, Abdullah Yildiz, H. Fatih Ugurdag, Rajat Subhra
Chakraborty, and Debdeep Mukhopadhyay. Partial bitstream protection for
low-cost fpgas with physical unclonable function, obfuscation, and dynamic
partial self reconfiguration. Computers & Electrical Engineering, 39(2):386–397,
2013.

[GSD+14] Adrià Gascón, Pramod Subramanyan, Bruno Dutertre, Ashish Tiwari, Dejan
Jovanovic, and Sharad Malik. Template-based circuit understanding. In
FMCAD, pages 83–90. IEEE, 2014.

[GTG07] M. N. Gagnon, S. Taylor, and A. K. Ghosh. Software protection through
anti-debugging. IEEE Security Privacy, 5(3):82–84, May 2007.

[HYH99] Mark C. Hansen, Hakan Yalcin, and John P. Hayes. Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering. IEEE Design & Test of
Computers, 16(3):72–80, 1999.

[Inc] Apriorit Inc. Nanomite and debug blocker technologies: Scheme, pros, and cons.
https://www.apriorit.com/white-papers/293-nanomite-technology.

[IVS17] IEEE 2nd International Verification and Security Workshop, IVSW 2017,
Thessaloniki, Greece, July 3-5, 2017. IEEE, 2017.

[KK06] Tim Kerins and Klaus Kursawe. A cautionary note on weak implementations
of block ciphers. In In 1st Benelux Workshop on Information and System
Security (WISSec 2006), page 12, 2006.

[KMNM03] Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto. Exploiting self-
modification mechanism for program protection. In Proceedings 27th Annual
International Computer Software and Applications Conference. COMPAC
2003, pages 170–179, Nov 2003.

[Kou12a] F. Koushanfar. Hardware Metering: A Survey, pages 103–122. Springer
Publishing Company, Incorporated, 2012.

[Kou12b] Farinaz Koushanfar. Provably secure active IC metering techniques for piracy
avoidance and digital rights management. IEEE Trans. Information Forensics
and Security, 7(1):51–63, 2012.

[Kou17] Farinaz Koushanfar. Active Hardware Metering by Finite State Machine
Obfuscation, pages 161–187. Volume 1 of Forte et al. [FBT17], 1st edition,
2017.

[KQ01] Farinaz Koushanfar and Gang Qu. Hardware metering. In DAC, pages 490–493.
ACM, 2001.

[LCH00] Z. Li, K. Compton, and S. Hauck. Configuration caching management tech-
niques for reconfigurable computing. In Proceedings 2000 IEEE Symposium on
Field-Programmable Custom Computing Machines (Cat. No.PR00871), pages
22–36, 2000.

https://www.apriorit.com/white-papers/293-nanomite-technology

326 On the Difficulty of FSM-based Hardware Obfuscation

[LGS+13] Wenchao Li, Adrià Gascón, Pramod Subramanyan, Wei Yang Tan, Ashish
Tiwari, Sharad Malik, Natarajan Shankar, and Sanjit A. Seshia. Wordrev:
Finding word-level structures in a sea of bit-level gates. In 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust, HOST
2013, Austin, TX, USA, June 2-3, 2013, pages 67–74. IEEE Computer Society,
2013.

[LWS12] Wenchao Li, Zach Wasson, and Sanjit A. Seshia. Reverse engineering circuits
using behavioral pattern mining. In HOST, pages 83–88. IEEE, 2012.

[MAM+06] Matias Madou, Bertrand Anckaert, Patrick Moseley, Saumya Debray, Bjorn
De Sutter, and Koen De Bosschere. Software protection through dynamic
code mutation. In Joo-Seok Song, Taekyoung Kwon, and Moti Yung, editors,
Information Security Applications, pages 194–206. Springer Berlin Heidelberg,
2006.

[MJTZ16] Travis Meade, Yier Jin, Mark Tehranipoor, and Shaojie Zhang. Gate-level
netlist reverse engineering for hardware security: Control logic register identi-
fication. In ISCAS, pages 1334–1337. IEEE, 2016.

[MZJ16] Travis Meade, Shaojie Zhang, and Yier Jin. Netlist reverse engineering for
high-level functionality reconstruction. In ASP-DAC, pages 655–660. IEEE,
2016.

[MZZ+17] Travis Meade, Zheng Zhao, Shaojie Zhang, David Z. Pan, and Yier Jin. Revisit
sequential logic obfuscation: Attacks and defenses. In ISCAS, pages 1–4. IEEE,
2017.

[NR08] Jean-Baptiste Note and Éric Rannaud. From the bitstream to the netlist. In
FPGA, page 264. ACM, 2008.

[PRD+15] Xerach Peña, Fernando Rincon, Julio Dondo, Julian Caba, and Juan Carlos
Lopez. Run-time partial reconfiguration simulation framework based on
dynamically loadable components. In Kentaro Sano, Dimitrios Soudris, Michael
Hübner, and Pedro C. Diniz, editors, Applied Reconfigurable Computing, pages
153–164. Springer International Publishing, 2015.

[QCF+16] Shahed E. Quadir, Junlin Chen, Domenic Forte, Navid Asadizanjani, Sina
Shahbazmohamadi, Lei Wang, John A. Chandy, and Mark Tehranipoor. A
survey on chip to system reverse engineering. JETC, 13(1):6:1–6:34, 2016.

[Qui52] Willard V Quine. The problem of simplifying truth functions. The American
Mathematical Monthly, 59(8):521–531, 1952.

[RKK14] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. A primer on
hardware security: Models, methods, and metrics. Proceedings of the IEEE,
102(8):1283–1295, 2014.

[SFK+17] Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, Amir Moradi, and Christof
Paar. Interdiction in practice - hardware trojan against a high-security USB
flash drive. J. Cryptographic Engineering, 7(3):199–211, 2017.

[SFKP15] Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, and Christof Paar. FPGA
trojans through detecting and weakening of cryptographic primitives. IEEE
Trans. on CAD of Integrated Circuits and Systems, 34(8):1236–1249, 2015.

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 327

[SGR+12] Yiqiong Shi, Bah-Hwee Gwee, Ye Ren, Thet Khaing Phone, and Chan Wai
Ting. Extracting functional modules from flattened gate-level netlist. In
ISCIT, pages 538–543. IEEE, 2012.

[SL95] J. Stockwood and P. Lysaght. A simulation tool for dynamically reconfig-
urable field programmable gate arrays. In Proceedings of Eighth International
Application Specific Integrated Circuits Conference, pages 167–170, Sep 1995.

[STBF17] Bicky Shakya, Mark M. Tehranipoor, Swarup Bhunia, and Domenic Forte.
Introduction to Hardware Obfuscation: Motivation, Methods and Evaluation,
pages 3–32. Volume 1 of Forte et al. [FBT17], 1st edition, 2017.

[STGR10] Yiqiong Shi, Chan Wai Ting, Bah-Hwee Gwee, and Ye Ren. A highly efficient
method for extracting fsms from flattened gate-level netlist. In International
Symposium on Circuits and Systems (ISCAS 2010), May 30 - June 2, 2010,
Paris, France, pages 2610–2613. IEEE, 2010.

[STK13] Hassan Salmani, Mohammad Tehranipoor, and Ramesh Karri. On design
vulnerability analysis and trust benchmarks development. In 2013 IEEE 31st
International Conference on Computer Design, ICCD 2013, Asheville, NC,
USA, October 6-9, 2013, pages 471–474. IEEE Computer Society, 2013.

[STL+14] Pramod Subramanyan, Nestan Tsiskaridze, Wenchao Li, Adrià Gascón,
Wei Yang Tan, Ashish Tiwari, Natarajan Shankar, Sanjit A. Seshia, and
Sharad Malik. Reverse engineering digital circuits using structural and func-
tional analyses. IEEE Trans. Emerging Topics Comput., 2(1):63–80, 2014.

[SWM+06] Resve A. Saleh, Steven J. E. Wilton, Shahriar Mirabbasi, Alan J. Hu, Mark R.
Greenstreet, Guy Lemieux, Partha Pratim Pande, Cristian Grecu, and André
Ivanov. System-on-chip: Reuse and integration. Proceedings of the IEEE,
94(6):1050–1069, 2006.

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM
J. Comput., 1(2):146–160, 1972.

[TM14] Stephen Trimberger and Jason Moore. FPGA security: Motivations, features,
and applications. Proceedings of the IEEE, 102(8):1248–1265, 2014.

[TPD15] R. Tessier, K. Pocek, and A. DeHon. Reconfigurable computing architectures.
Proceedings of the IEEE, 103(3):332–354, March 2015.

[VPH+17] Arunkumar Vijayakumar, Vinay C. Patil, Daniel E. Holcomb, Christof Paar,
and Sandip Kundu. Physical design obfuscation of hardware: A comprehensive
investigation of device and logic-level techniques. IEEE Trans. Information
Forensics and Security, 12(1):64–77, 2017.

[WFSP17] Sebastian Wallat, Marc Fyrbiak, Moritz Schlogel, and Christof Paar. A look at
the dark side of hardware reverse engineering - a case study. In IVSW [IVS17],
pages 95–100.

[Xil] Xilinx. Microblaze soft processor core. https://www.xilinx.com/products/
design-tools/microblaze.html.

[Xil09] Xilinx. Spartan-6 Libraries Guide for HDL Designs, 2009. v 11.4.

[Xil15] Xilinx. Partial Reconfiguration of a Hardware Accelerator with
Vivado Design Suite for Zynq-7000 AP SoC Processor, 2015.
https://www.xilinx.com/support/documentation/application_notes/
xapp1231-partial-reconfig-hw-accelerator-vivado.pdf.

https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/support/documentation/application_notes/xapp1231-partial-reconfig-hw-accelerator-vivado.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1231-partial-reconfig-hw-accelerator-vivado.pdf

328 On the Difficulty of FSM-based Hardware Obfuscation

[Xil16] Xilinx. AXI HWICAP v3.0 LogiCORE IP Product Guide, 2016.
https://www.xilinx.com/support/documentation/ip_documentation/
axi_hwicap/v3_0/pg134-axi-hwicap.pdf.

[Xil17a] Xilinx. KCU105 Board User Guide, 2017. https://www.
xilinx.com/support/documentation/boards_and_kits/kcu105/
ug917-kcu105-eval-bd.pdf.

[Xil17b] Xilinx. Zynq-7000 All Programmable SoC Data Sheet: Overview,
2017. https://www.xilinx.com/support/documentation/data_sheets/
ds190-Zynq-7000-Overview.pdf.

[ZYX14] Jie Zhang, Feng Yuan, and Qiang Xu. Detrust: Defeating hardware trust
verification with stealthy implicitly-triggered hardware trojans. In ACM
Conference on Computer and Communications Security, pages 153–166. ACM,
2014.

https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kcu105/ug917-kcu105-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kcu105/ug917-kcu105-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kcu105/ug917-kcu105-eval-bd.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier, C. Paar 329

Appendix
Listing 5 shows an FSM with a merged counter (highlighted lines in yellow). Note the
FSM is implemented in an iterative AES core to control key schedule processing. Since
the round counter signal CV_RUNUP_STATE is processed inside the control path, the counter
and the state signal RUNUP_STATE are merged into a single FSM candidate. Our input
independent state series analysis (presented in Section 3.2) addresses this issue and splits
the counter from the FSM part.

Listing 5: FSM incorporating a counter (see key_sched_iterative.vhdl [Age00]).
1 ...
2 constant LAST_ECVRUNUP_STEP : integer := 1; -- # of steps for cv runup
3 constant LAST_DCVRUNUP_128 : integer := 9; -- # of steps for cv runup
4

5 signal CV_RUNUP_STEP : integer range 0 to 255;
6 type RUNUP_STATE_TYPE is (HOLD, CV_RUNUP, CV_EXPAND, DONE);
7 signal RUNUP_STATE : RUNUP_STATE_TYPE;
8

9 ...
10

11 RUNUP_FLOW: process(clock, reset)
12 begin
13 if reset = ’1’ then
14 CV_RUNUP_STEP <= 0;
15 RUNUP_STATE <= HOLD;
16 elsif clock’event and clock = ’1’ then
17 case RUNUP_STATE is
18

19 ...
20

21 when CV_RUNUP =>
22 if (CV_RUNUP_STEP /= LAST_ECVRUNUP_STEP and KS_ENC = ’1’)
23 or (CV_RUNUP_STEP /= LAST_DCVRUNUP_128 and KS_ENC = ’0’) then
24 CV_RUNUP_STEP <= CV_RUNUP_STEP + 1;
25 RUNUP_STATE <= RUNUP_STATE;
26 else
27 RUNUP_STATE <= DONE;
28 CV_RUNUP_STEP <= 0;
29 end if;
30

31 ...
32

33 end case;
34 end if; -- reset = ’1’
35 end process; -- RUNUP_FLOW

330 On the Difficulty of FSM-based Hardware Obfuscation

Figure 14 shows the reduced state transition graphs of the hardware designs utilized
in our evaluation, see Section 5. We deliberately omitted the input signals yielding state
transitions for improved readability. Note that we retained original state names for clarity
as our Boolean function analysis only recovers the state memory value but obviously not
the original meaning of the state.

(a) SHA-3 FSM. (b) AES encryption FSM.

Figure 14: Original state transition graph diagrams of hardware designs utilized in Section 5.

	Introduction
	Background and Related Work
	Threat Model
	Gate-Level Netlist Reverse Engineering
	Hardware IP Protection

	Automated FSM Reverse Engineering
	Phase 1: Topological Analysis
	Phase 2: Boolean Function Analysis

	Reverse Engineering and Deobfuscation of FSM Obfuscation Schemes
	HARPOON tcad:2009:chakraborty
	Dynamic State Deflection tcad:2018:dofe
	Active Hardware Metering usenix:2007:alkabani
	Interlocking Obfuscation csiirw:2013:desai
	Lessons Learned

	Evaluation
	Case Study: Cryptographic Designs
	Case Study: Communication Interfaces

	Hardware Nanomites
	Design
	Implementation
	Security Evaluation

	Discussion
	Conclusion

