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a b s t r a c t 

Herein, we study an optimal control problem of delay differential model to describe 

the dynamics of tumour-immune interactions in presence of immuno-chemotherapy. The 

model includes constant delays in the mitotic phase to justify the time required to stim- 

ulate the effector cells and for the effector cells to develop a suitable response to the tu- 

mour cells. By applying optimal control theory, we seek to minimize the cost associated 

with the immuno-chemotherapy and to reduce load of of tumour cells. Non-Negativity 

of the solutions of the model and existence of an optimal control has also been proven. 

Optimality conditions and characterization of the control are also discussed. We numeri- 

cally approximate the solution of the optimal control problem by solving the state system 

forward and adjoint system backward in time. The numerical simulations show that the 

combination of immuno-chemotherapy protocol reduces the tumour load in few months 

of therapy. 
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1. Introduction 

Cancer is the leading cause of death not only in the developing countries, but also in developed countries; see the statis-

tics of Health World Organization (WHO). Although a great research effort is being devoted to understand the interaction

between tumour cells and immune system, the treatment of cancer is still one of the most challenging problems of modern

medicine. Cancer treatment should kill cancer cells in the entire body and in the meantime keep the healthy cells above the

minimum level. Chemotherapy is one of the most prominent cancer treatment modalities, but it is not always a compre-

hensive solution for tumour regression [7,37] . Now, progress is being made with an experimental form of immunotherapy

to eliminate the tumour cells in the host [22] . 

Immunotherapy (which is sometimes referred to biological therapy) is quickly becoming one of the most important com-

ponents of cancer treatments, especially in multi-pronged approaches [28] . The goal of immunotherapy is to reinforce the

body’s own natural ability to combat cancer by enhancing the effectiveness of the immune system to act against cancer cells,

which involves the use of cytokines 1 with Adoptive Cellular Immunotherapy (ACI), derived from the body or laboratory-

produced versions of such substances, to improve or restore immune system function [16,17] . Although it is not entirely

clear how immunotherapy treats cancer, it may work by stopping or slowing the growth of cancer cells, stopping cancer
∗ Corresponding author. 

E-mail address: frihan@uaeu.ac.ae (F.A. Rihan). 
1 Cytokines: Protein hormones that mediate both natural and specific immunity, called interferons and interleukins. They increase the production of 

immune cells, can be made in the laboratory and given to patients as part of treatment for cancer. 
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Fig. 1. Schematic diagram showing the key-players in tumour-immune interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from spreading to other parts of the body, or helping the immune system increase its effectiveness at eliminating cancer

cells [19] . There are, mainly, three known categories of immunotherapy: immune response modifiers (cytokines), mono-

clonal antibodies 2 and vaccines 3 . The most commons cytokines are IL-2 and interferon-alpha (INF- α) [20] . IL-2 does not kill

tumour cells directly like classical chemotherapy. Instead, IL-2 activates and stimulates the growth of immune cells, most

importantly T-cells 4 , but also Natural Killer (NK) cells, both of which are capable of destroying cancer cells directly. The main

role of ACI is that the T-cells are collected from a patient and grown in the laboratory. This increases the number of T-cells

that are able to kill cancer cells or fight infections. These T-cells are given back to the patient to help the immune system

to fight disease. This can be done in two ways, either by (i) a lymphokine-activated killer cell therapy (LAK therapy), or a

tumour infiltrating lymphocyte therapy (TIL) [10] (see Fig. 1 ). However, we should mention that the common side-effects of

IL-2 treatment include weight gain and low blood pressure, which can be treated with other medications [29,35] . 

Chemotherapy and radiotherapy are also common cancer therapies that have developed to fight cancer [20] . The ba-

sic idea behind chemotherapy is to kill cancerous cells faster than healthy cells, while radiotherapy uses radiation to kill

cancerous cells. Immunotherapy is used as a maintenance therapy following a combination of chemotherapy or radiother-

apy, and in some circumstances it is used as a single agent to treat cancer [5,6] . The combination is due to the fact that

the chemotherapy treatment kills both cancerous and healthy cells and therefore it depletes the patient’s immune system,

making the patient prone to dangerous infections. For this and other reasons, it is desirable to strengthen the immune sys-

tem after an immune-depleting course of chemotherapy. Additionally, recruiting body’s own defense to fight cancer can be a

powerful treatment strategy. Therefore, maintaining a strong immune system, by combining immunotherapy and chemother- 

apy, may be essential to successfully fight the cancer. However, the query now is how to most effectively combine cancer

immunotherapy and chemotherapy? 

Clearly, the interactions between tumour cells and immune system are very complex and need sophisticated models

to describe such interactions. Several mathematical models have been proposed to describe the dynamics of tumour and
2 Monoclonal antibodies: a type of immunotherapy, are made in the laboratory. Monoclonal antibodies may be used alone, or they may have an attached 

drug or radioactive material. 
3 Cancer vaccines, another type of immunotherapy, stimulate the bodys immune system to destroy cancer cells. 
4 T-cell: A type of white blood cell that is of key importance to the immune system and is at the core of adaptive immunity, the system that tailors the 

body’s immune response to specific pathogens. The T-cells are like soldiers who search out and destroy the targeted invaders. 
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immune system over time (see e.g. [2,3,25,34] ). In 1985, De Boer et al. [9] suggested a mathematical model which contained

eleven ordinary differential equations (ODEs) with five algebraic equations to describe anti-tumour response with IL-2 taken

into account. A simple version of this model is proposed by Kirschner and Panetta [17] , which is based on three ODEs.

Recently, in [30] , the authors adopted a predator-prey formulation of the tumour immunity problem as a battle between

immune cells and tumour cells (predators and prey, respectively). The time-delay was taken into account in order to achieve

a better compatibility with reality [31,40] . Many research papers have been published in mathematical modeling of the

interactions between tumour cells and immune cells, tumour cells and normal cells alone, or tumour cells and chemotherapy

treatment; See e.g. [7,17,33,37] . 

Of course, there exists many research papers on delay differential models in biology and biomedicine, but only a few

papers study such models in the framework of optimal control theory. The goal of this paper is to model mathematically,

analyze and explore computationally potentially optimal ways to combine immuno-chemotherapy treatment strategies that

can minimize a tumour while maximizing the strength of the immune system, with minimal toxicity to the patient. We

formulate and analyze a delay differential model describing immune response and tumour cells under the influence of

immunotherapy and the combinations of immuno-chemotherapy. Tme-delay is taken into account in order to achieve a

better compatibility with reality, which exists when activated T-cells produce IL-2 and for immune system develop suitable

response. We also aim to solve the optimal control problem to find the optimal control variables and identify the best

treatment strategy. 

The organization of this paper is as follows: in Section 2 , we present a mathematical model governed by a system of De-

lay Differential Equations (DDEs) that includes treatment terms which represent an external source of the effectors cells by

ACI and an external input of IL-2. We then extend the model to include chemotherapy and study the non-negativity of solu-

tions of the system. In Section 3 , we investigate the stability of the drug-free steady states (in the absence of chemotherapy)

and existence of Hopf-bifurcation. In Section 4 , we solve the optimal control problem governed by DDEs with two control

variables. Existence of the solution and optimality conditions are also discussed. Numerical simulations for different weights

in the objective are presented in Section 5 , to verify the obtained results. Finally, we give concluding remarks in Section 6 . 

2. Development of the model 

Mathematical models provide biologists and clinicians with the tools that may guide effort s to clarify fundamental

mechanisms of cancer progress and improve current strategies of stimulate the development of new ones. A number of

mathematical models, based on Marchuk’s model [24] of antiviral immune response, have been developed to describe the

dynamics of tumour-immune system. In our knowledge, the first attempts to consider the effects of immunotherapy within

an appropriate ODEs model was made by Kirschner and Panetta in [17] . They studied the immunotherapy based on the use

of IL-2 together with ACI by introducing some terms in the dynamical systems. Consider the three populations: E ( t ), the

activated immune-system cells (commonly called effector cells) such as cytotoxic T-cells, macrophages, and NK cells that are

cytotoxic to the tumour cells; T ( t ), the tumour cells; and I L ( t ), the concentration of IL-2 in single tumour-site compartment

(See Fig. 1 ). The proposed model labeling the interaction between the effector cells, tumour cells, and the cytokine (IL-2)

takes the form 

dE(t) 

dt 
= μT (t) − δE(t) + 

ρ1 E(t − τ1 ) I L (t − τ1 ) 

η1 + I L (t) 
+ σ1 , 

dT (t) 

dt 
= α1 T (t) ( 1 − β1 T (t) ) − ρ2 E( t − τ2 ) T ( t − τ2 ) 

η2 + T ( t) 
, 

dI L (t) 

dt 
= 

ρ3 E(t) T (t) 

η3 + T (t) 
− bI L (t) + σ2 . (1)

In the first equation, the effector cells grow due to the direct presence of the tumour, given by the term μT , where μ is the

antigenicity of the tumour. They are also stimulated by IL-2 that is produced by effector cells in an autocrine and paracrine

manner 
ρ1 E(t−τ1 ) I L (t−τ1 ) 

η1 + I L (t) 
, where ρ1 is the rate at which the effector cells grow and η1 is the half saturation constant 5 (the

concentration supporting half the maximum rate). δE ( t ) gives the natural decay of the effector cells. σ 1 ≥ 0 is a treatment

term that represents the external source of the effector cells such as ACI. There is a time-lag, τ 1 , between the production

of interleukin-2 by activated T-cells and the effector cell stimulation from treatment with IL-2. Hence, a discrete time-delay

τ 1 ≥ 0 is being inserted to the third term of the first equation of the system. To ease the analysis, we ignored the time-

delay in the denominator, due to the fact that I L (t ∗ − τ1 ) = I L (t ∗) and E(t ∗) = E max (the maximum or saturated value) when

t ∗ → ∞ . 

The second equation represents the rate of change of the tumour cells which follows a logistic growth term

α1 ( 1 − β1 T (t) ) . The loss of tumour cells is denoted by an immune-effector cell interaction at rate ρ2 , modeled also by

Michaelis–Menten kinetics to indicate the limited immune response to tumour, 
ρ2 E(t−τ2 ) T (t−τ2 ) 

η2 + T (t) 
, η2 is the half saturation

constant. τ 2 ≥ 0 is the time required for the immune system to develop suitable response. (To ease the analysis, we also

ignore the time-delay in the denominator.) 
5 Half saturation constant is defined as the substrate concentration at which growth E ( t ) is occurring at 1 
2 

E max . 
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Fig. 2. Shows (from top to bottom and left to right) different steady states of model (1) : tumour-free steady state E 0 (with α1 = 1 , ρ2 = 5 × 10 −3 , τ = 0 . 3 ), 

low persistent-tumour steady state E + 
1 

(with α1 = 1 , ρ2 = 2 × 10 −5 , τ = 0 . 3 ), medium persistent-tumour steady state E + 
2 

(with α1 = 0 . 5 , ρ2 = 1 . 8 × 10 −5 , 

τ = 0 . 3 ), and high persistent-tumour steady state E + 
3 

(with α1 = 1 , ρ2 = 4 × 10 −5 , τ = 0 . 5 ). The stable steady states are [ • ], unstable steady states are [ ◦], 

stable manifold is [ − − −] and initial conditions are [ + ], with external immunotherapy doses σ1 = 0 . 4 , σ2 = 0 . 1 and parameters given in the table. For 

a particular set of parameters, there are up to four steady states, in the absence of treatments. It is possible that the tumour will result in either an 

equilibrium with (dormancy) or escape from the immune system. 

 

 

 

 

 

 

 

 

 

 

 

 

The third equation represents the rate of change for the concentration of IL-2. Its source is the effector cells that are stim-

ulated by interaction with the tumour and also has Michaelis–Menten kinetics to account for the self-limiting production

of IL-2 and is represented by 
ρ3 E(t) T (t) 
η3 + T (t) 

, ρ3 being the production rate of IL-2 and η3 a half saturation constant. b represents

loss/degraded rate of IL-2 and σ 2 ≥ 0 is a treatment term that represents an external input of IL-2 into the system. One

meaning and parameter values of this model are described in Table 1 . 

According to the values of σ 1 and σ 2 , there are up to four possible cases of external immunotherapy treatments: (i)

no-treatment case ( σ1 = σ2 = 0 ); (ii) adoptive cellular immunotherapy case ( σ 1 > 0, σ2 = 0 ); (iii) Interleukin-2 case ( σ1 =
0 , σ2 > 0 ); (iv) and immunotherapy with both effector cells and IL-2 ( σ 1 > 0 and σ 2 > 0). For a particular set of parameters,

there are up to four (stable and unstable) steady states: tumour-free, low-persistent, medium-persistent or high-persistent

steady state. It is possible that the tumour will result in either an equilibrium with (dormancy) or escape from the immune

system (See Fig. 2 ). 

Remark 1. System (1) is an example of stiff6 model [32] , and needs a special care in the analysis and numerical treatment.

Furthermore, the state variables of these types of models are very sensitive to small perturbations (or changes) in the

parameters that occur in the model. To ease the analysis of numerical treatments and stability of the steady states with
6 One definition of the stiffness is that the global accuracy of the numerical solution is determined by stability rather than local error and implicit 

methods are more appropriate for it. 
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meaningful parameters with less sensitive (or robust) model, we may need to non-dimensionalize the model by re-scaling

the parameters and variables; See [17] . That is, without scaling, or inappropriate scalings, the numerical routines used to

solve these equations will fail. This is due to very large changes in some of the variables over very short ranges of time. 

Remark 2. The formulation the problem is restricted to discrete time-delays. However, ‘distributed’ time-delays, if they are

of interest, can be approximated by a sufficiently large number of discrete time-delays. 

Of course, to solve system (1) , we have to provide positive initial conditions: E(0) = E 0 , T (0) = T 0 and L L (0) = I 0 , E(t) =
ψ 1 (t) , T (t) = ψ 2 (t) for all t ∈ [ −τ∗, 0] , where ψ 1 ( t ) and ψ 2 ( t ) are smooth functions in [ −τ∗, 0] , where τ∗ = max { τ1 , τ2 } .
Next, we study the model with additional (presence) of chemotherapy treatments. 

2.1. Immuno-chemotherapy model 

To add chemotherapy treatment into the immunotherapy model (1) , we should consider two extra variables namely

the amount of chemotherapy, U ( t ) and normal cells, N ( t ) [6,8] . We also assume a homogeneity of the tumour cells and

asynchronous tumour-drug interaction [36] . The modified model is 

dE(t) 

dt 
= μT (t) − δE(t) + 

ρ1 E(t − τ1 ) I L (t − τ1 ) 

η1 + I L (t) 
+ w (t) σ1 − F 1 (U) E(t) , 

dT (t) 

dt 
= α1 T (t) ( 1 − β1 T (t) ) − ρ2 E( t − τ2 ) T ( t − τ2 ) 

η2 + T ( t) 
− c 1 N( t) T ( t) − F 2 (U)) T (t) , 

dI L (t) 

dt 
= 

ρ3 E(t) T (t) 

η3 + T (t) 
− bI L (t) + σ2 , 

dN(t) 

dt 
= α2 N(t)(1 − β2 N(t)) − c 2 T (t) N(t) − F 3 (U) N(t) , 

dU(t) 

dt 
= v (t) − d 1 U(t) . (2)

We assume that the drug kills all types of cells, but that the killing rate differs for each type of cells, such that F i (U) =
a i (1 − e −U ) , i = 1 , 2 , 3 , represents the fraction cells killed due to a given amount of drug, U ( t ), at the tumour site, where a i ,

are the different response coefficients. We assume that chemotherapy has no effect on IL-2. v (t) > 0 and w (t) > 0 represent

the amounts of doses that are injected into the system, while d 1 is the decay rate of the drug once it is injected. In this case,

the quantity that we should control is v (t) . The tumour cells and normal cells are modelled by a logistic growth law, with

parameters αi representing the growth rate of two types of cells: i = 1 identifies the parameter associated with tumour, and

i = 2 identifies the one associated with the normal tissue, β1 and β2 are the reciprocal carrying capacities of tumour cells

and host cells respectively. The two terms −c 1 NT and −c 2 NT represent the competition between the tumour and normal

cells. To ease the analysis, we assume that τ1 = τ2 = τ . 

2.2. Non-negativity of the solutions 

To prove the non-negativity of the solutions of model (2) , let C = C([ −τ, 0] , R 

5 ) be the Banach space of continuous func-

tions mapping the interval [ −τ, 0] into R 

5 with topological uniform convergence. It is easy to show that there exists a

unique solution [ E , T , I L , N , U ] T of system (2) with initial data (E 0 , T 0 , I 0 , N 0 , U 0 ) ∈ C. For biological reasons, we assume that

the initial data of system (2) satisfy E 0 ≥ 0, T 0 ≥ 0, I 0 ≥ 0, N 0 ≥ 0, U 0 ≥ 0. We rewrite the system Eq. (2) in a vector form by

setting [1] 

x (t) = 

[ 
E(t ) T (t ) I L (t ) N(t ) U(t ) 

] 
T ∈ R 

5 
+0 , F (t ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−δ + 

ρ1 I L (t−τ ) 
η1 + I L (t) 

− a 1 (1 − e −U(t) ) 

α1 ( 1 − β1 T (t) ) − ρ2 E(t−τ ) 
η2 + T (t) 

− c 1 N(t) − a 2 (1 − e −U(t) ) 

−b 

α2 (1 − β2 N(t)) − c 2 T (t) − a 3 (1 − e −U(t) ) 
−d 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where F : C + −→ R 

5 , x (0) ≥ 0 and F ∈ C 

∞ (R 

5 
+0 

) . Therefore, from system (2) , we have 

˙ x (t) ≥ F (t ) x (t ) , (3)

where . ≡ d 
dt 

. From system (3) and using [41, Lemma 4] , it is easy to prove that 

x (t) ≥ x (0) exp 

(∫ t 

0 

F (s ) x (s ) ds 

)
> 0 . (4)

Therefore, for positive initials x (0) > 0 the solutions of (2) are positive x (t) ∈ R 

5 
+0 

, for all t > 0. We may refer to [4,38] , for

more details and discussions about the nonnegativity of the solutions of initial value problems. 
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3. Drug-free steady states and stability analysis 

In this Section, we study the qualitative bahaviours of the drug-free model. Stability of the steady states and bifurcation

analysis for the parameter τ which plays an effective role in the model, are important in studying tumour behaviour for

healthy and unhealthy states. To study the stability of the steady states, we linearize system around the steady states and

find the Jacobian matrices. Based on the theory of differential equations, the stability of the steady states is investigated,

where det (Jacobian ) = 0 . If all the eigenvalues of the Jacobian matrix have negative real parts, then the steady state is locally

asymptotically stable. On the other hand, if at least one of the eigenvalues has positive real part, then the steady state is

unstable. 

In the absence of chemotherapy drug, we put U(t) = 0 and w (t) = 1 in model (2) . The modified model has then two

types of steady states: 

(i) Tumour-free steady state, where the tumour cells population is zero, while the normal cells survive, 

E 0 = [ E ∗, 0 , I L ∗, N ∗] , (5) 

where 

E ∗ = 

σ1 (bη1 + σ2 ) 

(bη1 + σ2 ) δ − ρ1 σ2 

> 0 , I L ∗ = 

σ2 

b 
> 0 , N ∗ = 

1 

β2 

> 0 . 

(ii) Persistent-tumour steady state(s) 

E + = [ E ∗, T ∗, I ∗L , N 

∗] T , (6) 

where 

E ∗ = 

[ 
η2 + T ∗) 

ρ2 

] [ 
α1 α2 β2 (1 − β1 T 

∗) − c 1 (α2 − c 2 T 
∗) 

α2 β2 

] 
> 0 , 

I ∗L = 

1 

b 

[ (
ρ3 T 

∗

η3 + T ∗

)(
η2 + T ∗

ρ2 

)(
α1 α2 β2 (1 − β1 T 

∗) − c 1 [ α2 − c 2 T 
∗] 

α2 β2 

)
+ σ2 

] 
> 0 , 

N 

∗ = 

α2 − c 2 T 
∗

α2 β2 

> 0 , T ∗ = 

δE ∗

μ
− ρ1 E 

∗I ∗L 
μ(η1 + I ∗

L 
) 

− σ1 

μ
> 0 . (7) 

The Jacobian matrix for system (2) around the steady state E 0 is then given by 

J E 0 = 

⎛ 

⎜ ⎝ 

−δ + 

ρ1 I L ∗
(η1 + I L ∗) e 

−λτ μ − ρ1 E ∗I L ∗
(η1 + I L ∗) 2 + 

ρ1 E ∗
(η1 + I L ∗) e 

−λτ 0 

0 �∗ 0 0 

0 

ρ3 E ∗
(η3 ) 

−b 0 

0 −c 2 N ∗ 0 α2 − 2 α2 β2 N ∗

⎞ 

⎟ ⎠ 

. (8) 

Here, �∗ = α1 − 2 − c 1 N ∗ − ρ2 E ∗
(η2 ) 

e −λτ ; While Jacobian matrix of system (2) around the steady state E + is given by 

J E + = 

⎛ 

⎜ ⎜ ⎝ 

−δ + 

ρ1 I 
∗
L 

(η1 + I ∗L ) 
e −λτ μ − ρ1 E 

∗I ∗L 
(η1 + I ∗L ) 2 

+ 

ρ1 E 
∗

(η1 + I ∗L ) 
e −λτ 0 

−ρ2 T 
∗

(η2 + T ∗) e 
−λτ �∗ 0 −c 1 T 

∗
ρ3 T 

∗

(η3 + T ∗) − ρ3 E 
∗T ∗

(η3 + T ∗) 2 + 

ρ3 E 
∗

(η3 + T ∗) −b 0 

0 −c 2 N 

∗ 0 α2 − 2 α2 β2 N 

∗ − c 2 T 
∗

⎞ 

⎟ ⎟ ⎠ 

, (9) 

where �∗ = α1 − 2 α1 β1 T 
∗ + 

ρ2 E 
∗T ∗

(η2 + T ∗) 2 
− c 1 N 

∗ − ρ2 E 
∗

(η2 + T ∗) 
e −λτ . 

Let us study stability of the persistent-tumour state(s) E + , given by Eq. (6) , in which the tumour may result in either an

equilibrium with ‘dormancy’ or ‘escape’ from the immune system. After some computations, the characteristic equation of

(9) is 

ϕ(λ, τ ) ≡ λ4 + λ3 P 1 + λ2 P 2 + λP 3 + P 4 + e −λτ (λ3 Q 1 + λ2 Q 2 + λQ 3 + Q 4 ) + e −2 λτ (λ2 K 1 + λK 2 + K 3 ) = 0 , (10) 

where 

K 1 = −F 1 F 4 , K 2 = E 6 F 1 F 4 − E 4 F 2 F 3 − E 3 F 2 F 4 − F 1 F 4 b, K 3 = E 3 E 6 F 2 F 4 + E 4 E 6 F 2 F 3 + E 6 F 1 F 4 b;
P 1 = −E 2 − E 6 + b + δ; P 2 = −E 2 b − E 6 b − E 2 δ − E 6 δ + bδ + E 1 E 3 + E 2 E 6 + E 5 T 

∗c 1 ;
P 3 = −(E 1 E 2 E 3 + E 1 E 3 E 6 − E 2 E 6 b − E 2 E 6 δ + E 2 bδ + E 6 bδ − E 5 T 

∗bc 1 − E 5 T 
∗c 1 δ) ;

P 4 = E 1 E 2 E 3 E 6 + E 2 E 6 bδ + E 5 T 
∗bc 1 δ + E 1 E 3 E 5 T 

∗c 1 ;
Q 1 = F 4 − F 1 ; Q 2 = F 4 b − F 1 b + F 4 δ − F 3 μ + E 2 F 1 − E 3 F 2 + E 6 F 1 − E 6 F 4 ;
Q 3 = E 2 E 3 F 2 + E 1 E 3 F 4 + E 1 E 4 F 3 − E 2 E 6 F 1 + E 3 E 6 F 2 + E 2 F 1 b + E 6 F 1 b − E 6 F 4 b − E 6 F 4 δ + E 6 F 3 μ + F 4 bδ − F 3 bμ − E 5 F 1 T 

∗c 1 ;
Q 4 = −E 2 E 3 E 6 F 2 − E 1 E 3 E 6 F 4 − E 1 E 4 E 6 F 3 − E 2 E 6 F 1 b − E 6 F 4 bδ + E 6 F 3 bμ − E 5 F 1 T 

∗bc 1 − E 3 E 5 F 2 T 
∗c 1 ;
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F 1 = 

ρ1 I 
∗
L 

(η1 + I ∗
L 
) 
, F 2 = 

ρ1 E 
∗

(η1 + I ∗
L 
) 
, F 3 = 

−aT ∗

(η2 + T ∗) 
, F 4 = 

ρ2 E 
∗

(η2 + T ∗) 
, 

E 1 = 

ρ1 E 
∗I ∗L 

(η1 + I ∗
L 
) 2 

, E 2 = α1 − 2 α1 β1 T 
∗ + 

ρ2 E 
∗T ∗

(η2 + T ∗) 2 
− c 1 N 

∗, E 3 = 

ρ3 T 
∗

(η3 + T ∗) 
, 

E 4 = − ρ3 E 
∗T ∗

(η3 + T ∗) 2 
+ 

ρ3 E 
∗

(η3 + T ∗) 
, E 5 = −c 2 N 

∗, E 6 = α2 − 2 α2 β2 N 

∗ − c 2 T 
∗. 

When τ = 0 , we have 

ϕ(λ, 0) = λ4 + (P 1 + Q 1 ) λ
3 + (P 2 + Q 2 + K 1 ) λ

2 + (P 3 + Q 3 + K 2 ) λ + P 4 + Q 4 + K 3 = 0 . (11)

In this case, the steady state E + is locally asymptotically stable if and only if all the roots of the characteristic Eq. (11) have

negative real parts which depends on the numerical values of parameters that are shown in the numerical exploration. This

is based on holding the following Routh–Hurwitz conditions: 

(P 1 + Q 1 ) > 0 , (P 4 + Q 4 + K 3 ) > 0 , D 1 = (P 1 + Q 1 )(P 2 + Q 2 + K 1 ) − (P 3 + Q 3 + K 2 ) > 0 , 

(P 3 + Q 3 + K 2 ) D 1 > (P 1 + Q 1 ) 
2 (P 4 + Q 4 + K 3 ) . 

The following Theorem provides the necessary and sufficient conditions for the persistent-tumour steady state E + , when

τ > 0. 

Theorem 1. The persistent-tumour steady state E + is asymptotically stable for all delay τ ≥ 0 if the real parts of all the roots of

ϕ(λ, τ ) = 0 , described in (10) , are negative. 

Proof. If we Multiply both sides of (10) by e λτ , we get 

e λτ
(
λ4 + λ3 P 1 + λ2 P 2 + λP 3 + P 4 

)
+ (λ3 Q 1 + λ2 Q 2 + λQ 3 + Q 4 ) + e −λτ (λ2 K 1 + λK 2 + K 3 ) = 0 . (12)

Assume that λ = iω, for all ω, and τ > 0, where i = 

√ −1 . Substituting λ = iω (ω > 0) into Eq. (12) and separating the real

and imaginary parts of the equations, yields 

(ω 

4 − ω 

2 P 2 + P 4 − K 1 ω 

2 + K 3 ) cos (ωτ ) + (ω 

3 P 1 + K 2 ω − ω P 3 ) sin (ω τ ) = Q 2 ω 

2 − Q 4 , 

(K 2 ω − ω 

3 P 1 + ω P 3 ) cos (ω τ ) + (ω 

4 − ω 

2 P 2 + P 4 + K 1 ω 

2 − K 3 ) sin (ωτ ) = Q 1 ω 

3 − Q 3 ω. (13)

By computations, we obtain the following equations: 

cos (ωτ ) = 

ω 

6 T 1 + ω 

4 T 2 + ω 

2 T 3 + T 4 
ω 

8 + ω 

6 S 1 + ω 

4 S 2 + ω 

2 S 3 + S 4 
; sin (ω τ ) = 

ω 

7 Q 1 + ω 

5 R 1 + ω 

3 R 2 + ω R 3 

ω 

8 + ω 

6 S 1 + ω 

4 S 2 + ω 

2 S 3 + S 4 
. (14)

where 

T 1 = Q 2 − P 1 Q 1 , T 2 = −Q 4 + K 1 Q 2 − K 2 Q 1 + P 1 Q 3 − P 2 Q 2 + P 3 Q 1 , 

T 3 = −K 1 Q 4 + K 2 Q 3 − K 3 Q 2 + P 2 Q 4 − P 3 Q 3 + P 4 Q 2 , T 4 = −P 4 Q 4 + K 3 Q 4 , 

R 1 = −Q 3 − K 1 Q 1 + P 1 Q 2 − P 2 Q 1 , 

R 2 = K 1 Q 3 − K 2 Q 2 + K 3 Q 1 − P 1 Q 4 + P 2 Q 3 − P 3 Q 2 + P 4 Q 1 , 

R 3 = K 2 Q 4 − K 3 Q 3 + P 3 Q 4 − P 4 Q 3 , 

S 1 = P 2 1 − 2 P 2 , S 2 = −2 P 1 P 3 + P 2 2 + 2 P 4 − K 

2 
1 , 

S 3 = 2 K 1 K 3 − K 

2 
2 − 2 P 2 P 4 + P 2 3 , S 4 = −K 

2 
3 + P 2 4 . 

Using the property sin 2 (ωτ ) + cos 2 (ωτ ) = 1 in Eq. (14) , we have 

ω 

16 + ω 

14 f 1 + ω 

12 f 2 + ω 

10 f 3 + ω 

8 f 4 + ω 

6 f 5 + ω 

4 f 6 + ω 

2 f 7 + f 8 = 0 (15)

where 

f 1 = 2 S 1 − Q 

2 
1 , f 2 = 2 S 2 + S 2 1 − (2 Q 1 R 1 + T 2 1 ) , f 3 = 2 S 1 S 2 + 2 S 3 − (2 Q 1 R 2 + R 

2 
1 + 2 T 1 T 2 ) , 

f 4 = 2 S 4 + 2 S 1 S 3 + S 2 2 − (2 Q 1 R 3 + 2 R 1 R 2 + 2 T 1 T 3 + T 2 2 ) , 

f 5 = 2 S 1 S 4 + 2 S 2 S 3 − (2 R 1 R 3 + R 

2 
2 + 2 T 1 T 4 + 2 T 2 T 3 ) , 

f 6 = 2 S 2 S 4 + S 2 3 − (2 R 2 R 3 + 2 T 2 T 4 + T 2 3 ) , f 7 = 2 S 3 S 4 − (2 T 3 T 4 + R 

2 
3 ) , f 8 = S 2 4 − T 2 4 . 

Therefore, the stability condition of Theorem 1 holds if and only if Eq. (15) has no real positive roots ( ω be pure imaginary).

Assume that m = ω 

2 , then Eq. (15) takes the following form: 

m 

8 + m 

7 f 1 + m 

6 f 2 + m 

5 f 3 + m 

4 f 4 + m 

3 f 5 + m 

2 f 6 + m f 7 + f 8 = 0 . (16)

If f k < 0 (for all k = 1 , . . . , 8 ), then Eq. (15) has at least one positive root. However, If f k > 0 (for all k = 1 , . . . , 8 ), the roots m
must be negative, accordingly ω will be pure imaginary, which completes the proof. �
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3.1. Hopf bifurcation analysis 

We consider the parameter τ as a bifurcation parameter, to find conditions for preservation of unstability or stability of

the system. The bifurcation points help to know the necessary conditions for the coexistence of tumour cells population,

effector cells population and IL-2 as an equilibrium or periodic oscillating state of system. 

From Eq. (14) , we have 

τ ( j) 
k 

= 

1 

ω k 

{
arcsin 

ω 

7 
k 
Q 1 + ω 

5 
k 
R 1 + ω 

3 
k 
R 2 + ω k R 3 

ω 

8 
k 

+ ω 

6 
k 
S 1 + ω 

4 
k 
S 2 + ω 

2 
k 
S 3 + S 4 

+ 2 jπ

}
(17) 

where k = 1 , . . . , 8 and j = 1 , 2 , 3 , . . . , we choose τ0 = min (τ ( j) 
k 

) . To establish the occurrence of Hopf bifurcation at τ = τ0 ,

we need to show that 


 

(
dλ

dτ

)
τ= τ0 

� = 0 . 

By differentiating Eq. (12) with respect to τ , we get 

dλ

dτ
= 

λe −λτ
(
λ2 K 1 + λK 2 + K 3 

)
− e λτ (λ5 + P 1 λ

4 + P 2 λ
3 + P 3 λ

2 + λP 4 ) 

�1 e λτ + �2 τ e τ + (3 λ2 Q 1 + 2 λQ 2 + Q 3 ) + (2 λK 1 + K 2 ) e −λτ − τ e −λτ (λ2 K 1 + λK 2 + K 3 ) 
, 

where �1 = (4 λ3 + 3 λ2 P 1 + 2 λP 2 + P 3 ) , �2 = λ4 + λ3 P 1 + λ2 P 2 + λP 3 + P 4 . 

Then by combining Eq. (12) , we have (
dλ

dτ

)
−1 = 

(3 λ2 Q 1 + 2 λQ 2 + Q 3 ) + e λτ (4 λ3 + 3 λ2 P 1 + 2 λP 2 + P 3 ) + (2 λK 1 + K 2 ) e 
−λτ

λ
(

e −λτ (λ2 K 1 + λK 2 + K 3 ) − e λτ (λ4 + λ3 P 1 + λ2 P 2 + λP 3 + P 4 ) 
) − τ

λ
. (18) 

Substituting λ = iω 0 in Eq. (18) , we have 

(
dλ

dτ

)−1 
∣∣∣∣∣
τ= τ0 

= 

d 1 + id 2 
d 3 + id 4 

− τ

λ

where 

d 1 = (Q 3 − 3 ω 

2 
0 Q 1 ) + (P 3 − 3 ω 

2 
0 P 1 + K 2 ) cos (ω 0 τ0 ) + (4 ω 

3 
0 − 2 ω 0 P 2 + 2 ω 0 K 1 ) sin (ω 0 τ0 ) , 

d 2 = 2 ω 0 Q 2 + (2 ω 0 P 2 − 4 ω 

3 
0 + 2 ω 0 K 1 ) cos (ω 0 τ0 ) + (P 3 − 3 ω 

2 
0 P 1 − K 2 ) sin (ω 0 τ0 ) , 

d 3 = (ω 0 P 4 + ω 

5 
0 − ω 

3 
0 P 2 + ω 0 K 3 − ω 

3 
0 K 1 ) sin (ω 0 τ0 ) + (−ω 

2 
0 K 2 − ω 

4 
0 P 1 + ω 

2 
0 P 3 ) cos (ω 0 τ0 ) , 

d 4 = (ω 0 K 3 − ω 

3 
0 K 1 − ω 0 P 4 − ω 

5 
0 + ω 

3 
0 P 2 ) ω 0 cos (ω 0 τ0 ) + (ω 

2 
0 P 3 − ω 

4 
0 P 1 + ω 

2 
0 K 2 ) sin (ω 0 τ0 ) . 

Thus 

R 

(
dλ

dτ

)−1 
∣∣∣∣∣
τ= τ0 

= 

d 1 d 3 + d 2 d 4 

d 2 
3 

+ d 2 
4 

. 

Notice that 

sign 

(
R 

dλ(t) 

dτ

)∣∣∣
τ= τ0 

= sign 

(
R 

(
dλ

dτ

)−1 )∣∣∣
τ= τ0 

. 

By summarizing the above analysis, we arrive at the following Remark: 

Remark 3. The persistent-tumour steady state E + of the system (2) without chemotherapy is asymptotically stable for

τ ∗ ∈ [0, τ 0 ) and it undergoes Hopf bifurcation at τ ∗ = τ0 . 

4. Optimal control problem with immuno-chemotherapy 

The formulation as an optimal control problem allows us to: 

(i) investigate the dynamical system of interacting cell populations being affected by the (immuno-chemotherapy) treat- 

ments; 

(ii) Optimize the application of the control such that the quantity of the treatments is optimized; and 
(iii) Minimize the tumour size at some of end-time. 
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We aim to design an efficient treatment protocol, where we employ the tools of optimal control theory. This demon-

strates how immunotherapy and chemotherapy might be combined for more effective treatment and to protect the patient

from opportunistic infection, as well as fighting the cancer itself. Unlike chemotherapy, immunotherapy does not kill tumour

cells directly, but it activates and stimulates the growth of immune cells, most importantly T-Cells, and NK Cells, which are

capable of destroying cancer cells directly. Therefore, the main goal of combining immuno-chemotherapy treatment is to

eradicate the tumour cells, with the minimum side-effect, while maintaining adequate amounts of healthy tissues. 

Let us recall the immuno-chemotherapy model [30] 

dE(t) 

dt 
= μT (t) − δE(t) + 

ρ1 E(t − τ1 ) I L (t − τ1 ) 

η1 + I L (t) 
+ w (t) σ1 − a 1 (1 − e −U ) E(t) , 

dT (t) 

dt 
= α1 T (t) ( 1 − β1 T (t) ) − ρ2 E( t − τ2 ) T ( t − τ2 ) 

η2 + T ( t) 
− c 1 N( t) T ( t) − a 2 (1 − e −U ) T (t) , 

dI L (t) 

dt 
= 

ρ3 E(t) T (t) 

η3 + T (t) 
− bI L (t) + σ2 , 

dN(t) 

dt 
= α2 N(t)(1 − β2 N(t)) − c 2 T (t) N(t) − a 1 (1 − e −U ) N(t) , 

dU(t) 

dt 
= v (t) − d 1 U(t) . (19)

The state vector of the modified model (19) of immuno-chemotherapy is given by 

x = (E, T , I L , N, U) ∈ R 

5 . 

In compact form, the system (19) can be written as the DDE 

x ′ (t) = f (t, x (t) , x (t − τ ) , v (t) , w (t)) , t ∈ [0 , t f ] 

x (t) = φ(t) , t ∈ [ −τ, 0] . (20)

The control functions v (t) and w (t) satisfy the following control constraints: 

0 ≤ v (t) ≤ v max < ∞ , and 0 ≤ w (t) ≤ w max < ∞ , t ∈ [0 , t f ] . (21)

The optimal control problem consists in determining control functions (v (·) , w (·)) ∈ L ∞ ([0 , t f ] , R 

2 ) that maximize the objec-

tive functional 

J q (v , w ) = 

∫ t f 

0 

[
E(t) + I L (t) − T (t) − 1 

2 

(B v v (t) q + B w 

w (t ) q ) 
]
dt , q = 1 , 2 . (22)

subject to the DDEs (20) and the control constraints (21) Here, B v and B w 

are weight factors that describe the patient’s

acceptance level of chemotherapy u ( t ) and the amount of external immunotherapy w (t) . For q = 2 we obtain the control-

quadratic objective J 2 (v , w ) of L 2 type which is often used in economic problems. We shall see in Section 5.3 that optimal

controls are continuous functions. For q = 1 , the objective J 1 (v , w ) is control-affine and thus of L 1 type. In a biomedical

framework, the L 1 objective may be more appropriate, since the control penalty in the objective is directly proportional to

the doses administered. 

The functions v (t) and w (t) are called admissible controls if they fulfill the inequality constraints (21) . The set of all

admissible controls is called the admissible set and we refer to it as 

W = { (v , w ) ∈ L ∞ ([0 , t f ] , R 

2 ) | (v (t) , w (t)) satisfy (21) } . (23)

The set of all admissible states X ad , which satisfy the state equations and the state constraint, is called the set of admis-

sible state. The optimal controls, v ∗ and w 

∗, are the functions that optimizes the objective function J q (v , w ) (22) . 

4.1. Boundedness and existence of an optimal solution 

To prove the existence of the optimal solution of (22) , we use the results of Fleming and Rishel [11 , Theorem 4.1, p. 68–

69], and Lukes [23 , Theorem 9.2.1, p. 182]. 

Theorem 2. There exists an optimal solution (x ∗, v ∗, w 

∗) ∈ W 

1 , ∞ ([0 , t f ] , R 

5 ) × L ∞ ([0 , t f ] , R 

2 ) for the optimal control problem

(20) –(22) such that 

J(v ∗, w 

∗) = max 
v ,w ∈ W 

J(v , w ) (24)

where x ∗ = [ E ∗, T ∗, I ∗L , N 

∗, U 

∗] T , if the following conditions are satisfied: 

1. The set of admissible states is nonempty. 

2. The admissible control set W (23) is nonempty, convex and closed. 

3. The right-hand side of the state system is bounded by a linear combination of the state and control variables. 
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4. The integrand, L (E, T , I L , v , w ) = 

(
E(t) − T (t) + I L (t) −

[
B v 
2 [ v (t )] q + 

B w 
2 [ w (t )] q 

])
, of the objective functional is a concave on

W for q = 1 , 2 . 

5. The exist constants h 2 , h 3 > 0 such that L (E, T , I L , v , w ) ≤ h 2 − h 3 ( | v | + | w | ) q for q = 1 , 2 . 

Proof. In order to verify the above conditions, we should first prove the existence of the solution for system (19) . Since
ρ1 I L (t) 
η+ I L (t) 

< ρ1 , v max < ∞ and by neglecting the negative terms in the model, we have 

dE(t) 

dt 
< σ1 + ρ1 E(t − τ ) , 

dT (t) 

dt 
< α1 T , 

dI L (t) 

dt 
< σ2 + ρ3 E(t) , 

dN(t) 

dt 
< α2 N, 

dU(t) 

dt 
< v max . (25) 

System (25) can be rewritten in the vector form as follows: ⎛ 

⎜ ⎜ ⎝ 

E(t) 
T (t) 
I L (t) 
N(t) 
U(t) 

⎞ 

⎟ ⎟ ⎠ 

′ 

< 

⎛ 

⎜ ⎜ ⎝ 

0 0 0 0 0 

0 α1 0 0 0 

ρ3 0 0 0 0 

0 0 0 α2 0 

0 0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

E(t) 
T (t) 
I L (t) 
N(t) 
U(t) 

⎞ 

⎟ ⎟ ⎠ 

+ 

⎛ 

⎜ ⎜ ⎝ 

ρ1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

E(t − τ ) 
T (t − τ ) 
I L (t − τ ) 
N(t − τ ) 
U(t − τ ) 

⎞ 

⎟ ⎟ ⎠ 

+ 

⎛ 

⎜ ⎜ ⎝ 

σ1 

0 

σ2 

0 

v max 

⎞ 

⎟ ⎟ ⎠ 

where ′ = d /d t . This system is linear in finite time with bounded coefficients. Then the solutions of this linear system are

uniformly bounded. Therefore, the solutions of the nonlinear system (19) are bounded and exist [23] . Hence, condition one

is satisfied. 

Clearly, the second condition is satisfied by the definition of W . System (19) is bilinear in the control variables v , w and

can be rewritten as 

f (t, x (t) , x (t − τ ) , v , w ) = α(t, x ) + β1 (t, x (t − τ )) + σ1 + σ2 + v + w (26)

where x (t) = [ E(t ) , T (t ) , I L (t ) , N(t ) , U(t )] T , x (t − τ ) = [ E(t − τ ) , T (t − τ ) , N(t − τ ) , U(t − τ )] T , α and β1 are the vector val-

ued functions of x ( t ) and x (t − τ ) , respectively. The solutions are bounded, and we have 

| f (t, x (t) , x (t − τ ) , v , w ) | ≤ | M 1 x (t) | + | M 2 x (t − τ ) | + | M 3 | + | M 4 | + | M 5 | ≤ h 1 | x | + | σ1 | + | σ2 | + | v | + | w | 
where h 1 depends on the coefficients of the system, and 

M 1 = 

⎛ 

⎜ ⎜ ⎝ 

0 0 0 0 0 

0 α1 0 0 0 

ρ3 0 0 0 0 

0 0 0 α2 0 

0 0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

, M 2 = 

⎛ 

⎜ ⎜ ⎝ 

ρ1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

, 

M 3 = 

⎛ 

⎜ ⎜ ⎝ 

σ1 

0 

0 

0 

0 

⎞ 

⎟ ⎟ ⎠ 

, M 4 = 

⎛ 

⎜ ⎜ ⎝ 

0 

0 

σ2 

0 

0 

⎞ 

⎟ ⎟ ⎠ 

, M 5 = 

⎛ 

⎜ ⎜ ⎝ 

0 

0 

0 

0 

v max 

⎞ 

⎟ ⎟ ⎠ 

. 

We also note that the integrand of J(v , w ) is concave in W . Finally, 

E(t) − T (t) + I L (t) −
[B v 

2 

[ v (t )] q + 

B w 

2 

[ w (t )] q 
]

< E(t) + I L (t) −
[B v 

2 

[ v (t )] q + 

B w 

2 

[ w (t )] q 
]

≤ h 2 − h 3 (| v (t) | q + | w (t) | q ) , 
where h 2 depends on the upper bounds of E(t) + I L (t) , and h 3 = [ B v + B w 

] / 2 . This completes the proof. �

We also conclude that there exist optimal control variables v ∗ and w 

∗. 

4.2. Necessary optimality conditions 

To establish the necessary conditions for the optimal solution of the optimal control problem (20) –(22) , we can use a

Pontryagin type Maximum Principle which has been derived by Göllmann et al. [13,14] for retarded optimal control problems

with mixed control-state constraints. 
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To define the Hamiltonian function we introduce the state variable x τ which is related to the state variable x by x τ (t) =
x (t − τ ) . Then in view of the objective (22) the Hamiltonian is given by 

H(x, x τ , λ, v , w ) = E + I L − T − 0 . 5(B v v q + B w 

w 

q ) + λ f (x, x τ , v , w ) , (27)

where λ = (λ1 , λ2 , λ3 , λ4 , λ5 ) ∈ R 

5 is a row vector denoting the adjoint (costate) variable. Note that the formal variables N τ

and U τ do not appear in the Hamiltonian. 

To formulate the Maximum Principle, we need the indicator function χ[0 ,t f −τ ] of the interval [0 , t f − τ ] defined by 

χ[0 ,t f −τ ] (t) = 

{
1 if t ∈ [0 , t f − τ ] , 
0 otherwise . 

Then the necessary optimality in Pontryagin’s maximum principle [13,14] are given in the the following theorem: 

Theorem 3. Let (x ∗, v ∗, w 

∗) ∈ W 

1 , ∞ ([0 , t f ] , R 

5 ) × L ∞ ([0 , t f ] , R 

2 ) be an optimal solution of (20) –(22) , where x ∗ =
[ E ∗, T ∗, I ∗L , N 

∗, U 

∗] T . Then there exists an adjoint state λ ∈ W 

1 , ∞ ([0 , t f ] , R 

5 ) such that the following conditions are satisfied: 

1. Adjoint equation and transversality condition 

˙ λ(t) = −∂H 

∂x 
(t) − χ[0 ,t f −τ ] (t) 

∂H 

∂x τ
(t + τ ) , λ1 (t f ) = 0 , (28)

where H ( t ) is defined by (27) . 

2. Maximizing controls: 

H(x ∗(t) , x ∗τ (t) , λ(t) , v ∗(t) , w 

∗(t)) 

= max 
v ,w 

{ H(x ∗(t) , x ∗τ (t) , λ(t) , v , w ) | 0 ≤ v ≤ v max , 0 ≤ w ≤ w max } . (29)

When evaluating the adjoint equation (28) , we have to take into account that there is no delay in the state variables N

and U and thus the delayed variables N τ and U τ do not appear in the Hamiltonian (27) . Then the adjoint equations read

explicitly: 

˙ λ1 (t) = −1 + λ1 (t) 
[
δ + a 1 (1 − e −U ∗(t) ) 

]
+ χ[0 ,t f −τ ] (t) λ1 (t + τ ) 

[ 
− ρ1 I 

∗
L (t + τ ) 

η1 + I ∗
L 
(t + τ ) 

] 

+ λ3 (t) 

[
− ρ3 T 

∗(t) 

η3 + T ∗(t) 

]
+ χ[0 ,t f −τ ] (t) λ2 (t + τ ) 

[ 
aT ∗

η2 + T ∗

] 
, 

˙ λ2 (t) = 1 − μλ1 (t) + λ2 (t) 

[
−α1 + 2 α1 βT ∗(t) + c 1 N 

∗(t) − ρ2 E 
∗(t) T ∗(t) 

(η3 + T ∗(t)) 2 
+ a 2 (1 − e −U ∗(t) ) 

]

+ λ3 (t) 
[ 

ρ3 E 
∗(t ) T ∗(t ) 

(η + T ∗ (t)) 2 
− ρ3 E 

∗(t) 

η3 + T ∗(t) 

] 
+ λ4 (t) c 2 N 

∗(t) 

+ χ[0 ,t f −τ ] (t) λ2 (t + τ ) 
[ 

ρ2 E 
∗(t + τ ) 

η2 + T ∗(t + τ ) 

] 

˙ λ3 (t) = −1 + λ1 (t) 
[ ρ1 E 

∗(t ) I ∗L (t ) 

(η1 + I ∗
L 
(t)) 2 

] 
+ χ[0 ,t f −τ ] (t) λ1 (t + τ ) 

[ 
− ρ1 E 

∗(t + τ ) 

(η1 + I ∗
L 
(t + τ )) 

] 
+ bλ3 (t) , 

˙ λ4 (t) = λ2 (t) c 1 T 
∗(t) + λ4 (t) 

[ 
− α2 + 2 α2 β2 N 

∗(t) + c 2 T 
∗(t) + a 3 (1 − e −U ∗(t) ) 

] 
− γ , 

˙ λ5 (t) = λ1 (t) a 1 e 
−U ∗(t) E ∗(t) + λ2 (t) a 2 e 

−U ∗(t) T ∗(t) + λ4 (t) a 3 e 
−U ∗(t) N 

∗(t) + λ5 (t) d 1 . (30)

It is important to note that one is not obliged to integrate the advanced adjoint equations numerically, because a rather

precise approximation of adjoint functions can be obtained from the Lagrange multipliers of the discretized control problem

[13,14] . The state equations for the optimal states and controls (x ∗, v ∗, w 

∗) are given in (19) . The initial conditions for the

state variable x = (E, I L , T , N, U) are given by 

x ∗(t) = x 0 (t) ∀ t ∈ [ −τ, 0] . (31)

For the evaluation of the maximum condition (29) we consider the two cases q = 2 and q = 1 in the objective (22) . In the

control-quadratic case q = 2 , we first determine the so-called free controls v f and w f which are defined by the equations

H v [ t] = −B v v (t) + λ5 (t) = 0 and H w 

[ t] = −B w 

w f (t) + λ1 (t) σ1 = 0 . This yields 

v f (t) = λ5 (t ) /B v , w f (t ) = λ1 (t) σ1 /B w 

. (32)

Then the maximizing controls are obtained by projecting the free control v f (t) onto the interval [0 , v max ] , resp., the free

control w f (t) onto the interval [0 , w max ] . This yields the controls 

v ∗(t) = max { 0 , min { v max , v f (t) }} , w 

∗(t) = max { 0 , min { w max , w f (t) }} , (33)
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Fig. 3. Shows the numerical simulations of immuno-chemotherapy model (19) with drug-free (without control). The parameter values are given in Table 1 . 

The parameter values of the external treatments σ1 = 0 . 4 and σ2 = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In direct optimization methods, these formulas are used as a test of extremal solutions satisfying the necessary conditions.

Namely, by computing the discrete values of the controls v ∗(t) and w 

∗(t) directly and determining the adjoint variables a

posteriori as Lagrange multipliers, the quantities in (33) must match with high accuracy. 

The L 1 objective J 1 (v , w ) in (22) must be handled in a different way. Here, the Hamiltonian (27) is affine in the control

variables. Defining the switching functions 

φv (t) = H v [ t] = −0 . 5 B v + λ5 (t) , φw 

(t) = H w 

[ t] = −0 . 5 B w 

+ λ1 (t) σ1 , (34)

the maximum condition (29) furnishes the control law 

z ∗(t) = 

{
z max if φz (t) > 0 

0 if φz (t) < 0 

}
, z ∈ { v , w } . (35) 

The control z ∈ { v , w } is called bang-bang in an interval I b ⊂ [0, t f ], if the switching function φz ( t ) has only isolated zeros

on I b . The control z ∈ { v , w } is called singular on an interval I s ⊂ [0, t f ], if φz (t) = 0 holds on I s . For weights B v , B w 

≤ 300 ,

our computations show that both controls are bang-bang. But for a larger weight B v , we may also obtain singular arcs of

the control v . In this case, the order of the singular arc is equal to 2 and thus we get a chattering junctions between a

bang-bang arc and a singular arc [18,27] , the example in [21] and Fig. 10 . 

5. Numerical solution of delayed control problem with weights in the objective 

The optimal control problem with DDEs is now studied numerically to see the effect of the discrete time-delays on the

system and combination of immune-chemotherapy treatments. To numerically solve the optimal control problem (20) –(22) ,

we discretize the system and use the Applied Modeling Programming Language AMPL (cf. Fourer et al. [12] ) to formulate

the resulting nonlinear programming problem (NLP); see e.g. Göllmann and Maurer et al. [13–15] . AMPL can be linked to

several optimization solvers. In particular, we use the Interior-Point Optimization Solver IPOPT ; cf. Wächter, Biegler [39] . We

work on a grid of N = 10 0 0 − 20 0 0 grid points with nodes t i = i · h, h = t f /N, i = 0 , 1 , . . . , N, and use either the implicit Euler

method or the trapezoidal rule. 

We choose a different set of parameter values (in stable and unstable regions). In the current simulations, we vary

the three parameters σ 1 , σ 2 , ρ , τ , the rest of the parameters are given in Table 1 . The parameter values of the external

treatments are σ1 = 0 . 4 and σ2 = 0 . 2 . We solve the optimality system to determine the optimal control situation (i.e., the

drug strategy), and predict the evolution of the tumour cells, effector cells, and normal cells of each control strategy in 100

days. 

Fig. 2 shows, for a particular set of parameters, that there are up to four steady states for the tumour-immune system

model DDEs (1) . The top left panel of the Figure shows the trajectories where there is a stable tumour-free equilibrium,

while top right panel a limit cycle around the a persistent-steady state in addition to unstable tumour-free state. The bottom

left panel displays the trajectories where there are three tumour-persistent equilibria (for which one of them is locally stable,

one is stable limit cycles and one, and the third is unstable), and tumour-free equilibrium which is unstable. However, the

bottom right panel shows the trajectories where there are three tumour-persistent equilibria (for which two of them are

locally stable and one is unstable), and the tumour-free equilibrium which is unstable. The Figure shows that it is possible

to get healthy steady state, equilibrium with dormancy or escape from the immune system. Fig. 3 displays the numerical

simulations, for a particular set of parameters, of immuno-chemotherapy model (19) with drug-free (without control). 

In the following computations, we choose the initial conditions and final time, 

E(0) = 10 0 0 , T (0) = 400 , I L (0) = 100 , N(0) = 0 . 9 , U(0) = 0 and t f = 100 , 
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Table 1 

Parameter definitions and estimations used in the manuscript. 

Parameter Description Units Value Source 

μ Antigenicity of tumour day 
−1 

0.103 [17] 

ρ1 Growth rate of effector cells cell 
−1 

day 
−1 

1 [17] 

a 1 Killing rate of effector cells by chemotherapy day 
−1 

0.65 

η1 Half saturation constant Volume 2 × 10 6 [17] 

δ Natural decay rate of effector cells day 
−1 

0.08 [17] 

a 2 Killing rate of tumour cells by chemotherapy day 
−1 

0.45 

α1 Growth rate of tumour cells day 
−1 

0.28 [17] 

c 1 Fractional (non)-ligand-transduced T-cell kill by N-cells. cell 
−1 

day 
−1 

1 × 10 −4 

β1 1/carrying capacity of tumour cells cell 
−1 

day 
−1 

1 ×10 −4 [17] 

ρ2 Decay rate of tumour day 
−1 

1.8 [17] 

η2 Half saturation constant Volume 1 × 10 5 [17] 

b Natural decay rate of IL-2 day 
−1 

20 [17] 

ρ3 Growth rate of IL-2 day 
−1 

1 [17] 

a 3 Killing rate of IL-2 cells day 
−1 

2 × 10 −2 

σi (i = 1 , 2) External treatment terms day 
−1 

[0,40] [17] 

β2 1/carrying capacity of normal cells day 
−1 

1 

η3 Half saturation constant Volume 1 × 10 3 [17] 

α2 Growth rate of normal cells day 
−1 

1.2 

c 2 Normal cell inactivation rate by tumour cells cell 
−1 

day 
−1 

0.0 0 0 05553 

a 3 Killing rate of normal cells by chemotherapy day 
−1 

0.02 

d 1 Decay rate of the drug day 
−1 

1 

 

 

 

 

 

 

 

 

 

and control bounds 

v max = w max = 1 . 

The parameter values of the external treatments are 

σ1 = 40 , σ2 = 20 . 

We next provide numerical simulations for different wights B v and B w 

, that describe the patient’s acceptance level of

chemotherapy u ( t ) and the amount of external immunotherapy w (t) , in the objectives J 2 (v , w ) and J 1 (v , w ) . 

5.1. Weights B v = B w 

= 0 and delay τ = 0 

Here we do not put a penalty on the control variables. The optimal immuno-therapy is w 

∗(t) ≡ 0 as expected. However,

it is a bit surprising that the optimal chemotherapy is not v ∗(t) = 1 but the bang-bang control 

v ∗(t) = 

{
1 for 0 ≤ t ≤ t 1 , 
0 for t 1 < t ≤ t f , 

(36)

with a switch at t 1 = 34 . 6 . The numerical results are 

J 1 (v ∗, w 

∗) = 30 0 01 . 1 , E ∗(t f ) = 562 . 63 , T ∗(t f ) = 220 . 44 , I ∗L (t f ) = 6 . 0191 , 

N 

∗(t f ) = 0 . 99165 , U 

∗(t f ) = 0 . 146 · 10 

−8 . 

The optimal trajectories, controls and switching functions are shown in Fig. 4 . Note that the control law (35) is exactly

satisfied. Moreover, one can show that second-order sufficient conditions in [26] are satisfied. In particular, the switching

functions φv (t) and φw 

(t) satisfy the strict bang-bang property as can be seen from Fig. 4 , bottom row (b), (c). 

5.2. L 2 objective with weights B v = 100 , B w 

= 150 and delay τ = 0 

We obtain the numerical results 

J(v ∗, w 

∗) = 21252 . 0 , E(t f ) = 493 . 97 , T (t f ) = 239 . 01 , I L (t f ) = 5 . 7210 . 

The control-quadratic objective implies that both controls v ∗(t) and w 

∗(t) are continuous , also at the junction points with

the control boundaries. The state trajectories and controls are displayed in Fig. 5 . The chemotherapy control v ∗(t) looks like

the bang-bang control (36) , but in fact is a continuous control with a very steep transition between the control boundaries.

The state trajectories are rather similar to those for B v = B w 

= 0 in Fig. 4 . 

In Fig. 6 , it is demonstrated that both controls v ∗ and w 

∗ satisfy the control law (33) involving the free controls v f and

w f in (32) . 
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Fig. 4. L 1 -objective J 1 (v , w ) (22) with weights B v = B w = 0 and delay τ = 0 . Top row : (left) effector cells E and tumour cells T , (middle) interleukin I L , (right) 

healthy cells N . Bottom row : (left) accumulated chemotherapy U , (middle) chemotherapy control v and scaled switching function φv satisfying the control 

law (35) , (right)) immuno control w and scaled switching function φw satisfying the control law (35) . 
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Fig. 5. L 2 -objective J 2 (v , w ) (22) with weights B v = 100 , B w = 150 and delay τ = 0 . Top row : (left) effector cells E and tumour cells T , (middle) interleukin 

I L , (right) healthy cells N . Bottom row : (left) accumulated chemotherapy U , (middle) chemotherapy control v , (right)) immuno control w . 
5.3. L 1 objective J 1 (v , w ) (22) with weights B v = 100 , B w 

= 150 : comparison of controls for delays τ = 0 and τ = 5 

Both controls are bang-bang: 

v ∗(t) = 

{
1 for 0 ≤ t ≤ t 1 , 
0 for t 1 < t ≤ t f , 

}
, w 

∗(t) = 

{
1 for 0 ≤ t ≤ t 2 , 
0 for t 2 < t ≤ t f , 

}
(37) 
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Fig. 6. L 2 -objective J 2 (v , w ) (22) with q = 2 with weights B v = 100 , B w = 150 and delay τ = 0 . (left) control v and free control v f satisfying the control law 

(33) , (right) control w and free control w f satisfying the control law (33) . 

Fig. 7. L 1 -objective J 1 (v , w ) (22) with weights B v = 100 , B w = 150 : comparison of controls and switching functions for delays τ = 0 and τ = 5 . Top row : 

Delay τ = 0 : (left) control v and scaled switching function φv satisfying the control law (35) , (right) control w and scaled switching function φw satisfying 

the control law (35) . Bottom row : Delay τ = 5 : (left) control v and scaled switching function φv satisfying the control law (35) , (right) control w and scaled 

switching function φw satisfying the control law (35) . 

 
with switching times t 1 = 36 . 2 , t 2 = 97 . 9 for τ = 0 and t 1 = 34 . 5 , t 2 = 98 . 0 for τ = 5 . Numerical results for the state variables

are 

τ = 0 : J 1 (v ∗, w 

∗) = 20760 . 8 , E(t f ) = 495 . 11 , T (t f ) = 247 . 46 , I L (t f ) = 5 . 8663 , 

τ = 5 : J 1 (v ∗, w 

∗) = 21638 . 5 , E(t f ) = 493 . 15 , T (t f ) = 244 . 52 , I L (t f ) = 5 . 7995 . 

We have N 

∗( t f ) ≈ 1 and U 

∗( t f ) ≈ 1 for τ = 0 and τ = 5 . 
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Fig. 8. L 1 objective J 1 (v , w ) (22) with weights B v = 100 , B w = 300 and delay τ = 5 . (left) control v and scaled switching function φv satisfying the control 

law (35) , (right) control w and scaled switching function φw satisfying the control law (35) . 

Fig. 9. L 2 objective J 2 (v , w ) (22) with weights B v = 10 0 0 , B w = 30 0 and delay τ = 5 . (left) control v and free control v f (32) satisfying the control law (33) , 

(right) control w and free control v f (32) satisfying the control law (33) . 

 

 

 

 

 

 

 

 

 

 

5.4. L 1 objective J 1 (v , w ) (22) with weights B v = 100 , B w 

= 300 and delay τ = 5 

Both controls are bang-bang: v ∗(t) has only one switch at t 2 while w 

∗(t) has two switches at t 1 and t 3 (See Fig. 8 ): 

(v ∗(t) , w 

∗(t)) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(0 , 1) for 0 ≤ t ≤ t 1 , 
(1 , 1) for t 1 < t ≤ t 2 , 
(0 , 1) for t 2 < t ≤ t 3 , 
(0 , 0) for t 3 < t ≤ t f . 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, t 1 = 33 . 1 , t 2 = 35 . 6 , t 3 = 95 . 6 . (38)

Numerical results for the state variables 

J(v ∗, w 

∗) = 16061 . 2 , E(t f ) = 409 . 62 , T (t f ) = 213 . 67 , I L (t f ) = 4 . 5705 . 

5.5. L 2 objective J 2 (v , w ) and L 1 objective J 1 (v , w ) for weights B v = 10 0 0 , B w 

= 30 0 

Finally, we consider the rather large weights B v = 10 0 0 and B w 

= 30 0 . For the L 2 objective J 2 (v , w ) and delay τ = 5 , we

find the controls shown in Fig. 9 . Despite the larger weights, the state trajectories are very similar to those for the weights

B v = 100 , B w 

= 150 and τ = 0 in Fig. 5 and thus are not shown here. We get the numerical results: 

J(v ∗, w 

∗) = 4806 . 84 , E(t f ) = 428 . 45 , T (t f ) = 348 . 23 , I L (t f ) = 6 . 4883 . 

Due to the large weight B v = 10 0 0 , the control v ∗(t) does not attain anymore its upper bound v max = 1 . The control v ∗(t)

has the same structure as for the weights B v = 100 , B w 

= 300 ; See Fig. 5 . 

Now we consider the L 1 objective J 1 (v , w ) (22) . Here, we can expect that the v ∗(t) is no longer a simple bang-bang

control but has singular arcs. Due to the pharmacological equation 

˙ U (t) = v (t) − d 1 U(t) , singular arcs have order two, i.e.,

the control v appears in the 4th derivative of the switching function for the first time. This implies that the junction between

a bang-bang arc and a singular arc is a chattering junction ; cf. [27] and the combination therapies of cancer treated in

Ledzewicz, Maurer, Schättler [21] . Fig. 10 displays the controls for τ = 0 . One can recognize the chattering junctions. 

Finally, Fig. 11 presents the evolution of system ( 30 –34 ) before and after treatments, when τ = 7 . 82 . The parameters val-

ues are chosen in the stable region. We note that the presence of immuno-chemotherapy with optimal control, the effector
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Fig. 10. L 1 -objective J 1 (v , w ) (22) with weights B v = 10 0 0 , B w = 30 0 and delay τ = 0 . (left) control v , (right) control w . 
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Fig. 11. Shows the numerical simulations of the optimal problem (20) –(22) with τ = 7 . 82 , in the stable region, before and after the treatments. The optimal 

treatment strategies reduce the tumour cells load and the immune cells approach to the normal levels in the end of time-interval. 

 

 

 

 

 

 

cells population and IL-2 decrease gradually to the normal levels. The tumour cells population decreases and is almost erad-

icated in the end of the time period. In the meantime, the normal cells population grow up and remain over the average

level. 

Remark 4. It can be said that the above finding sheds some light on immuno-chemotherapy strategy and can be helpful to

medical practitioners, experimental scientists and others to control this killer disease of cancer. An extension along this line

of work can be done to examine the effect of other cytokines such as interferon-alpha (INF- α), which are involved in the

cellular dynamics of the immune system response to tumour invasion and how these cytokines affect the dynamics of the
system. 
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6. Concluding remarks 

In this paper, we studied an optimal control problem of DDEs to describe the interactions of tumour-immune system in

presence treatment of immuno-chemotherapy. Pontryagin’s Maximum Principle is used to determine the representation of 

the control through the calculation of the adjoint system that is coupled with the state system. The model is an extension

to the one presented by Kirschner and Panetta [17] by assuming the homogeneity of the tumour cells. We presented the

non-negativity and boundedness of solutions, existence of steady states of our model. The model exhibits periodic solutions

around the tumour-persistent steady state due to a Hopf bifurcation. In the absence of the chemotherapy, we deduced a

delay threshold τ ∗ below which the persistent-tumour steady state is asymptotically stable and the system undergoes Hopf

bifurcation at the threshold. 

Control variables are introduced into the originally uncontrolled model and considered L 1 and L 2 type objective func-

tionals to maximize the effector cells and IL-2 concentration, and minimize the tumour cells with low side-effect of the

chemotherapy. We showed that an optimal control exists for this problem. We derived the necessary optimality conditions

as a Pontryagin type Minimum Principle. We estimated the optimality system to determine the optimal control situation (i.e.,

the drug strategy), and predict the evolution of the tumour cells, effector cells, and normal cells of each control strategy in

100 days. The numerical simulations displayed in the Figures validate the existence of optimality of the control variables

and show that the combination of immuno-chemotherapy protocol reduces the tumour load in a few months of therapy.

Careful determination of the inclusion of the delay in the optimal control setting for the forward and backward oriented

system in the numerical setting is needed. 

Sensitivity analysis with respect to the parameters of the model is desirable, which will be considered in future research.

It is useful to investigate how a small shift (change) in the input parameters would change the stability of the tumour-free

equilibrium, and detect the most significant parameter that has a major impact on the model dynamics. 
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Appendix. Numerical algorithm 

Most of optimal control problems can not be solved analytically and consequently, reliable numerical methods are essen-

tially required. Direct and indirect approaches are usually used to solve the optimal control problems. In the direct approach,

the optimal control problem is transformed into a nonlinear programming problem. The algorithm of solving the optimal

control problem (20) –(22) is roughly based on the following steps: 

Step 1. Provide the initial guess for the control parameters v 0 and w 0 over the interval, and Declare the parameters. 

tep 2. Set the initial conditions for the state variables x 0 ( t ) with the stored values of v 0 and u 0 and solve the state system

forward in time, using any DDEs solver. 

tep 3. Use the transversality condition λ(t f ) = 0 the stored values v 0 and u 0 and x ( t ) and solve the adjoint system backward

in time. 

tep 4. Check the control by entering the new values of the state and the adjoint state into the characterization of the

optimal control. 

tep 5. Verify for convergence. If values of the variables in this iteration and the latest iteration are not negligible small,

output the current values as solutions. If values are not small, return to Step 2. 
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