
Computer Networks xxx (2014) xxx–xxx

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Improving the performance of load balancing in
software-defined networks through load variance-based
synchronization
http://dx.doi.org/10.1016/j.comnet.2013.12.004
1389-1286/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 6467094105.
E-mail addresses: guolizihao@hotmail.com (Z. Guo), msu01@students.

poly.edu (M. Su), yangxu@poly.edu (Y. Xu), zhemind@nwpu.edu.cn (Z. Duan),
lwang12@students.poly.edu (L. Wang), shufeng.hui@nyu.edu (S. Hui), chao@
poly.edu (H.J. Chao).

Please cite this article in press as: Z. Guo et al., Improving the performance of load balancing in software-defined networks throu
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.org/10.1016/j.comnet.2013.12.004
Zehua Guo a,⇑, Mu Su b, Yang Xu b, Zhemin Duan a, Luo Wang b, Shufeng Hui c,
H. Jonathan Chao b

a School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China
b Department of Electrical and Computer Engineering, New York University Polytechnic School of Engineering, NY 11201, USA
c Department of Computer Science and Engineering, New York University Polytechnic School of Engineering, NY 11201, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 May 2013
Received in revised form 7 November 2013
Accepted 4 December 2013
Available online xxxx

Keywords:
Software-Defined Networking
Load balancing
Multiple controllers
Controller state synchronization
Software-Defined Networking (SDN) is a new network technology that decouples the con-
trol plane logic from the data plane and uses a programmable software controller to man-
age network operation and the state of network components. In an SDN network, a
logically centralized controller uses a global network view to conduct management and
operation of the network. The centralized control of the SDN network presents a tremen-
dous opportunity for network operators to refactor the control plane and to improve the
performance of applications. For the application of load balancing, the logically centralized
controller conducts Real-time Least loaded Server selection (RLS) for multiple domains,
where new flows pass by for the first time. The function of RLS is to enable the new flows
to be forwarded to the least loaded server in the entire network. However, in a large-scale
SDN network, the logically centralized controller usually consists of multiple distributed
controllers. Existing multiple controller state synchronization schemes are based on Peri-
odic Synchronization (PS), which can cause undesirable situations. For example, frequent
synchronizations may result in high synchronization overhead of controllers. State desyn-
chronization among controllers during the interval between two consecutive synchroniza-
tions could lead to forwarding loops and black holes. In this paper, we propose a new type
of controller state synchronization scheme, Load Variance-based Synchronization (LVS), to
improve the load-balancing performance in the multi-controller multi-domain SDN net-
work. Compared with PS-based schemes, LVS-based schemes conduct effective state syn-
chronizations among controllers only when the load of a specific server or domain
exceeds a certain threshold, which significantly reduces the synchronization overhead of
controllers. The results of simulations show that LVS achieves loop-free forwarding and
good load-balancing performance with much less synchronization overhead, as compared
with existing schemes.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Software-Defined Networking (SDN) is a promising net-
working technology that provides network operators more
control of the network infrastructure. SDN technology
decouples the control plane logic from the data plane by
gh load

http://dx.doi.org/10.1016/j.comnet.2013.12.004
mailto:guolizihao@hotmail.com
mailto:msu01@students.poly.edu
mailto:msu01@students.poly.edu
mailto:yangxu@poly.edu
mailto:zhemind@nwpu.edu.cn
mailto:lwang12@students.poly.edu
mailto:shufeng.hui@nyu.edu
mailto:chao@poly.edu
mailto:chao@poly.edu
http://dx.doi.org/10.1016/j.comnet.2013.12.004
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.comnet.2013.12.004

1 We use the terms synchronization overhead of controllers and the
number of synchronizations interchangeably in this paper.

2 Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
moving networking control functions from forwarding de-
vices (e.g., switches, routers) to a logically centralized con-
troller so that the networking functions can be
implemented by software. One enabler of SDN technology
is OpenFlow [1], which provides global visibility of flows in
the network by enabling flow-level control over Ethernet
switching. Currently, many companies and organizations
are working on deploying OpenFlow on backbone and
campus networks, such as Internet2 [2], Global Environ-
ment for Network Innovation (GENI) [3], and Google’s
WAN-B4 [4].

Typically, an SDN network relies on a logically central-
ized controller using the global network knowledge to
operate the network. In the SDN network, the controller
conducts packet processing by matching forwarding rules,
which can be installed in the flow tables of switches either
reactively (e.g., when a new flow arrives) or proactively
(e.g., controller installs rules in advance). When a new flow
traverses a domain for the first time, the controller selects
a forwarding path for the new flow based on the current
global network status and configures the forwarding path
by reactively installing rules on related switches. The reac-
tive operation using the current global network status
makes the improvement of applications possible. For the
application of load balancing, when a new flow enters a
domain for the first time, the controller conducts Real-time
Least loaded Server selection (RLS) for this domain to select
the current least loaded server as the destination server of
the new flow based on the current network status. After a
series of RLSs for related domains, the new flow’s forward-
ing path to the least loaded server is determined, and the
packets of this flow are forwarded via this path. The detail
of RLS are elaborated in Section 2.

However, having one centralized controller creates
problems including poor scalability, responsiveness, and
reliability, which have significantly hindered and detained
the deployment of SDN technology in large-scale produc-
tion and data center networks [5,6]. To overcome the
above problems, a simple solution is to use multiple dis-
tributed controllers working together to achieve the func-
tion of the logically centralized controller (e.g., HyperFlow
[5] and ASIC [6]), which can benefit from the scalability
and reliability of the distributed architecture while pre-
serving the simplicity of the centralized system. In a mul-
ti-controller multi-domain SDN network, each controller
runs one domain simultaneously, and it only handles the
local area switches in its domain. Currently, most of the
controllers applied in the SDN network can be categorized
as Local State-aware Controllers (LSCs). An LSC could, in real-
time, acquire the state of servers in its controlled domain
by pulling statistics from edge switches of its domain.
However, the LSC obtains the state of servers in domains
managed by other controllers through controller state syn-
chronization. The LSC stores the state of servers in its Net-
work Information Base (NIB) and uses its NIB to make
forwarding decisions for new flows [7]. A NIB may contain
different contents based on the need of network applica-
tions [7–9]. In this paper, we focus on the flow-based,
web load balancing, where the NIB of each controller con-
tains the load of each server (e.g., the utilization of the link
connecting with each server [7]).
Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
One of the major challenges when using multiple con-
trollers in the SDN network is to synchronize the state
among controllers. The state desynchronization among
controllers significantly degrades the performance of the
application. Levin et al. [7] study the controller state syn-
chronization problem for the application of load balancing
in the SDN network and propose two controller state syn-
chronization schemes based on Periodic Synchronization
(PS): Link Balancer Controller (LBC) and Separate State Link
Balancer Controller (SSLBC). Both of these schemes initiate
state synchronization among controllers within a fixed
period. Using LBC, each controller directs newly arrived
flows to the current least loaded server in the entire net-
work based on its NIB, which is updated and synchronized
periodically by controller state synchronizations. However,
good load-balancing performance using LBC requests fre-
quent synchronizations, which overly burden controllers.
To achieve good performance with less synchronization
overhead of controllers,1 SSLBC is further developed. In
SSLBC, each controller divides its NIB into two parts: the lo-
cal NIB containing the load of servers in the local domain
and the remote NIB containing the load of servers in do-
mains except the local domain. Using SSLBC, the remote
NIB is updated periodically by controller state synchroniza-
tions, while the local NIB is updated in real time. The local
domain’s controller is aware of the real-time load variation
of servers in the local domain by the real-time updated local
NIB, which enables the controller to select the least loaded
server based on accurate local domain status. Thus, SSLBC
achieves better load-balancing performance with the same
number of synchronizations as LBC. However, as will be de-
tailed in Section 3, SSLBC may lead to several undesired
exceptional situations (e.g., forwarding loops [7,10–12] and
black holes [7,10,11]) due to state desynchronization among
controllers.

In this paper, we investigate the application of load bal-
ancing in the SDN network with multiple domains man-
aged by multiple controllers. We propose a new type of
controller state synchronization scheme, Load Variance-
based Synchronization (LVS), to improve load-balancing
performance by eliminating forwarding loops and to lower
synchronization frequency. We first introduce load balanc-
ing in the SDN network in detail and differentiate it from
load balancing in the IP network. Based on the description,
we analyze two problems in existing PS-based schemes:
the high controller synchronization overhead problem
caused by frequent synchronizations and the forwarding-
loop problem caused by state desynchronization among
controllers during the interval between two consecutive
synchronizations. Then, we solve the two problems with
two specific LVS-based schemes: Least loaded Server
Variation Synchronization (LSVS) and Least loaded Domain
Variation Synchronization (LDVS). Compared with PS-based
schemes, LVS-based schemes achieve low synchronization
frequency by conducting effective controller state synchro-
nizations only when the load of a specific server or domain
exceeds a certain threshold. The results of simulations
nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx 3

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
show that LVS-based schemes achieve loop-free
forwarding and good load balancing performance with
much fewer synchronizations as compared with existing
schemes.

The rest of the paper is organized as follows. Section 2
distinguishes load balancing in the SDN network from load
balancing in the IP network. Section 3 presents the prob-
lems of existing PS-based schemes. Section 4 proposes
two specific LVS-based schemes to improve the load-
balancing performance by addressing the problems
presented in Section 3. Section 5 compares two proposed
LVS-based schemes with the existing PS-based schemes.
Section 6 discusses a practical issue in LVS-based schemes
implementation. Section 7 concludes the paper.

2. Problem background

2.1. Notations

We first summarize notations used in this paper in
Table 1.

2.2. Load balancing in the IP network

Load balancing [6,7,13,14] is a typical network applica-
tion. The goal of load balancing is to enable the load of each
server to approach the global optimal balanced server load
Uglobal opt by dynamically dispatching new flows to multiple
servers in the network. Uglobal opt is expressed as follows:
Table 1
Notations.

N Number of domains
Mi Number of servers in domain i
T Synchronization period
Di Domain i ð1 6 i 6 NÞ
CLC Logically centralized controller of an SDN network
Ci Controller of domain i
fnew Newly arrived flow
pnew Packet of fnew

Si;j j-th server of domain i ð1 6 j 6 MÞ
Sleast Least loaded server selected by the controller of the

domain a flow just passed by
S0least Least loaded server selected by the controller of the

current domain
Ui;j Load of Si;j

UCk
i;j

Load of Si;j stored in Ck

Uleast Load of Sleast

Uglobal opt Global optimal load

UD
i

Load of Di

Dleast Least loaded domain

UD
least

Load of Dleast

THS Threshold of LSVS
THD Threshold of LDVS
Sthd A specific server used in THS

Dthd A specific domain used in THD

Uthd Load of Sthd

UD
thd

Load of Dthd

Sm
least m-th least loaded server in the SDN network

ð2 6 m 6 NMiÞ
Dl

least
l-th least loaded domain in the SDN network ð2 6 l 6 NÞ

DU Load margin

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
Uglobal opt ¼
PN

i¼1

PMi
j¼1Ui;j

NMi
ð1Þ

where N denotes the number of domains, Mi ð1 6 i 6 NÞ
denotes the number of servers in domain i, and Ui;j

ð1 6 j 6 Mi;0 6 Ui;j � 1Þ denotes the load of the j-th server
in domain i.

In the traditional IP network, the function of load
balancing is achieved by the Load Balancing Router (LBR).
Specifically, when a new flow fnew enters the network,
fnew will first go through LBR. In LBR, a specific server
(e.g., the least loaded server) is selected as the destination
server of fnew based on the current network status. The IP
address of the destination server is then written into the
header of pnew (i.e., the packet of fnew). Subsequently, pnew

will be strictly forwarded to its destination server via the
path calculated by routing protocols (e.g., OSPF). Obvi-
ously, in the IP network, the forwarding decision is made
only based on the network status at the time of selecting
the destination server. However, the network status may
change over time. In such conditions, during the forward-
ing process, there might be some servers that are more
suitable than the destination server selected by LBR before.
Therefore, the load-balancing performance in the IP
network is not optimal.

2.3. Load balancing in the SDN network

In an SDN network, a series of Real-time Least loaded
Server selections (RLSs) is conducted by the controller to
achieve load balancing. RLS is used to determine a new
flow’s destination server and to calculate a path heading
to the destination server when the new flow enters a do-
main for the first time. The intuition behind RLS is to make
the forwarding decision for each new flow based on a time-
varying network status. Specifically, assume a new flow
fnew enters the SDN network from a domain D. Since fnew en-
ters D for the first time, it does not match any rules in the
flow tables of switches in D and the controller cannot find
fnew’s forwarding path. Thus, similar to the IP network, RLS
is conducted to select the destination server of fnew. In RLS,
the controller uses its current NIB to select the least loaded
server Sleast in the entire network as the destination server
of fnew. Unlike in the IP network where LBR writes the IP ad-
dress of Sleast into the header of fnew’s packets, the controller
only configures a forwarding path to direct fnew from the
current domain D to the domain D0, which is closer to
Sleast . If fnew arrives at D0 and the controller cannot find its
forwarding path in D0, the controller also activates RLS to
select the destination server of fnew based on its current
NIB. The result of RLS is S0least . Because the network status
varies over time, S0least could be different from Sleast . If so,
fnew is directed to a domain that is closer to S0least via a
new calculated path and Sleast is updated to S0least . Otherwise,
fnew is forwarded to the next domain that is closer to origi-
nal Sleast . Once a packet of fnew arrives at the destination ser-
ver, subsequent packets of fnew will be strictly forwarded
via the same path to the same destination server until
the path is removed by the timeout scheme or the control-
ler. RLS enables the controller to make better forwarding
decisions for new flows using real-time network status,
nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

4 Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
as compared with the forwarding decision only based on
the network status at the time of selecting the destination
server in the IP network. In [7], SSLBC applies RLS and im-
proves load-balancing performance.

Fig. 1 illustrates how RLS works for a new flow in a do-
main of an example SDN network. In the figure, the SDN
network is composed of N isolated domains ðD1 . . . DNÞ
and is controlled by a logically centralized controller CLC .
In each domain, edge switches connect with web servers,
which provide web services to users outside the SDN net-
work. Let Si;j denote the j-th server in domain i and Sleast

denote the least loaded server of the entire SDN network.
RLS processing includes seven steps. When a new flow
fnew enters D1 for the first time, the first switch receiving
fnew asks CLC where to forward fnew, as shown by steps 1
and 2. After searching its global NIB, CLC finds that Si;j is
the current Sleast and then determines fnew’s path to Sleast

by looking up its routing table, as shown by steps 3, 4,
and 5. In the next step, CLC sets up fnew’s path to Sleast by
installing rules in the flow tables of related switches in
D1. Finally, fnew is directed to the next domain that is closer
to Sleast via the configured path.

The description above is based on the assumption that
an SDN network only contains a centralized controller,
which stores the entire network status and conducts pack-
et possessing for all new flows. However, in the real
deployment, the centralized controller is usually imple-
mented by multiple distributed controllers to improve lim-
ited scalability, responsiveness, and reliability over using
Fig. 1. Example of Real-time Least loaded Se

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
one controller. Fig. 2 shows the deployment of multiple
distributed controllers in a large-scale SDN network. In this
figure, CLC is physically composed of multiple distributed
controllers Ci, which manages domain Di and maintains
the NIB stored in Ci. The combination of Ci works together
to achieve the function of CLC . When a new flow fnew enters
the network from D1; C1 is queried by the first switch of D1

receiving fnew, and Sleast is selected as the destination server
of fnew based on the NIB of C1. If Sleast is located in D1; C1

configures the related switches in D1 with a path to Sleast

and forwards fnew via this path. Otherwise, C1 uses routing
protocols to calculate a path, which directs fnew to the next
domain heading to Sleast , and configures the related
switches in D1 with this path. In the rest of this paper, con-
troller is short for distributed controller, unless stated
otherwise.
3. Problems of existing schemes

In the above discussion, load balancing in the SDN net-
work is achieved by selecting the forwarding paths for
new flows based on controllers’ NIBs. The update of control-
lers’ NIBs is determined by the controller state synchroniza-
tion scheme, which significantly impacts load-balancing
performance. The existing PS-based controller state syn-
chronization schemes have two major problems: the high
synchronization overhead of controllers and the forwarding
loop, which will be detailed in the following subsections.
rver selection (RLS) in a SDN network.

nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx 5

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
3.1. Term definitions

For ease of understanding the proposed schemes in this
paper, we highlight several important terms. All terms are
defined from the view of Ci.

Local domain: the domain controlled by Ci, i.e., Di.
Remote domain: the domain controlled by a controller

except Ci.
Local NIB: a part of Ci’s global NIB, which stores the

load of servers in Di.
Remote NIB: a part of Ci’s global NIB, which stores the

load of servers in the remote domains of Ci.
Update: the action to obtain the real-time load of serv-

ers in the specific domain(s) and to store those loads into a
specific part of the NIB.

Update of local NIB: the action to get the real-time load
of servers in Di by pulling the statistics from edge switches
of Di and to store those loads in the local NIB of Ci.

Update of remote NIB: the action to get the real-time
load of servers in the remote domains of Ci by controller
state synchronization and to store those loads in the re-
mote NIB of Ci.

Synchronize: the action to conduct the update of the
local and remote NIBs.
3.2. High synchronization overhead of controllers

LBC [7] is a PS-based controller state synchronization
scheme. Several current works are based on LBC, such as
consensus routing [15] and consensus algorithms [16].
Fig. 2. Deployment of multiple distributed co

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
Using LBC in the SDN network, both the local and remote
NIBs are updated and synchronized periodically and simul-
taneously. We illustrate the impact of LBC on load-balanc-
ing performance by the load variation of servers in an
interval between two consecutive synchronizations under
a specific topology named SimSDN1. Similar to the simula-
tion topology in [7], SimSDN1 is a simple case of Fig. 2.
SimSDN1 contains two domains D1 and D2, each of which
is composed of one edge switch connecting with one ser-
ver. Figs. 3, 4, 7 show the load variation of servers when
different schemes are used for synchronizing the state
among controllers. In those figures, U1;1 and U2;1, respec-
tively, denote the real-time loads of S1;1 and S2;1. UC1

1;1 and
UC1

2;1, respectively, denote the estimated loads of S1;1 and
S2;1, which are stored in C1 and updated by the specific syn-
chronization scheme. For C1; UC1

1;1 belongs to the local NIB
of C1, while UC1

2;1 belongs to the remote NIB of C1. The
synchronization period of LBC is T seconds, so that the con-
trollers’ NIBs are only updated and synchronized at t0 þ nT
ðn 2 NÞ. In Fig. 3, we assume that S1;1 and S2;1 are homoge-
neous servers, and the loads of S1;1 and S2;1 are 50% and 70%
before t0, respectively. Two new flows f1 with the load of
10% and f2 with the load of 20%, respectively, enter SimS-
DN1 at t1 and t2. Two existing flows f3 with the load of
10% and f4 with the load of 30%, respectively, terminate
at t3 and t4. Using LBC, at t0 and t0 þ T; UC1

1;1 is updated
by pulling U1;1 from the edge switch connected with S1;1,
and UC1

2;1 is updated by synchronizing U2;1 from C2. At any
time between t0 and t0 þ T , the local and remote NIBs of
C1 do not change even if the load of servers in D1 and D2
ntrollers in a large-scale SDN network.

nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

Fig. 4. Load variation of servers in SimSDN1 using SSLBC.

6 Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
change. C2 works exactly as C1. The states of C1 and C2 are
always consistent with their NIBs updated at the last
synchronization.

Obviously, by applying LBC, load-balancing perfor-
mance depends on T. If T ¼ 0, the real-time state synchro-
nization among controllers enables good load-balancing
performance, but it also incurs a large number of synchro-
nizations. Due to the direct proportional relationship
between the synchronization overhead of controllers and
the number of synchronizations [7], controllers conse-
quently suffer from high synchronization overhead. If T is
large (e.g., 16 s), the load variation of servers in one domain
cannot be timely updated and synchronized to other con-
trollers in the SDN network. Thus, in the interval between
two consecutive synchronizations, controllers make
consistent forwarding decisions for new flows based on
the out-of-date NIBs, which would degrade load-balancing
performance and, even worse, lead to packet loss. For
example, new flows are forwarded to Sleast even if Sleast

reaches 100% load, and some new flows are dropped. This
phenomenon could be exacerbated when a large number
of new flows enter the network in a short period.

3.3. Forwarding loop

In [7], SSLBC is proposed to improve load-balancing per-
formance with the same synchronization overhead of LBC.
Compared with the eventual consistency of LBC, SSLBC is
an inconsistent PS-based controller state synchronization
scheme. In SSLBC, the load of servers in the remote NIB is
updated every T seconds by synchronization, while the
load of servers in the local NIB is updated in real time.
The real-time update of the local NIB mitigates load unbal-
ancing among severs caused by a time gap between two
consecutive synchronizations. Fig. 4 shows the load varia-
tion of servers under the same network and flow configu-
ration described in Section 3.2 when SSLBC is used as the
controller state synchronization scheme. In Fig. 4, for
C1; UC1

1;1 is strictly consistent with U1;1 at t1; t2, and t4 due
to the real-time update of the local NIB. For C2; UC2

2;1 is also
updated at t3 to reflect the real-time value of U2;1.

However, the real-time update of the local NIB could in-
cur temporary state inconsistency among controllers. Thus,
Fig. 3. Load variation of servers in SimSDN1 using LBC.

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
in the interval between two consecutive synchronizations,
different controllers may have different understandings on
the current least loaded server in the network, which could
cause forwarding loops. In Fig. 4, during the interval
between t2 and t4; C1 thinks that S2;1 is Sleast of the two do-
mains since the inquiry result of C1’s NIB shows UC1

1;1 > UC1
2;1.

However, in D2; S1;1 is recognized as Sleast of the two do-
mains by C2 because the NIB of C2 shows UC2

2;1 > UC2
1;1. If a

new flow fnew enters the network during this interval, fnew

will be pushed back and forth among the two domains.
The loop forms. After a certain period of time, the packets
of fnew are dropped and packet loss occurs.

In the traditional IP network, the forwarding loop can
be eliminated after the NIBs of controllers become consis-
tent again (e.g., after t0 þ T in Fig. 4). This is because pack-
ets in the IP network are routed individually, and the new
NIB will become effective for all newly arrived packets.
However, in the SDN network, once the forwarding rules
are installed in the flow tables of switches, flows are
strictly forwarded until the rules are removed by the time-
out scheme or controllers. The forwarding loops may last
tens of seconds, which could cause significant packet loss
and communication disruptions.

If an SDN network only contains two domains, this for-
warding-loop problem can be easily solved. For example,
we can forbid sending pnew back to the port where pnew

comes from. However, the forwarding-loop problem be-
comes complicated if an SDN network is composed of three
or more domains since controllers have no idea which do-
mains pnew went through except the domain pnew just
passed by. Fig. 5 describes the forwarding-loop problem
in the SDN network containing three domains. When fnew

enters the network from D1; C1 searches its current NIB
and finds that S2;2 is Sleast . Then, C1 configures switches in
D1 to forward fnew heading to S2;2 via the configured path.
When D2 receives fnew sent from D1; C2 finds that fnew does
not match any rules in the flow tables of switches in D2.
Thus, C2 selects S3;1 as S0least based on its current NIB. Since
S0least is different from Sleast; Sleast is updated to S3;1, and fnew

is directed to S3;1 by configuring the related switches in D2.
When D3 receives fnew sent from D2; C3 acts similarly to C1

and C2, and selects S0least based on its current NIB. Unfortu-
nately, S1;3 is selected by C3 as S0least , so that C3 updates Sleast
nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx 7

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
to S1;3 and makes the forwarding configuration on switches
in D3 to direct fnew heading to S1;3. As a result, fnew is sent
back to D1, where fnew comes from, and the forwarding loop
forms. In this example, even if a packet is forbidden to be
sent back to the port where it comes from, C3 also sends
fnew back to C1. This is because C3 only knows that fnew

comes from C2, but has no idea about other domains that
fnew went through before.
4. Load variance-based synchronization

The forwarding loop is caused by the inconsistent infor-
mation of the least loaded server among controllers, which
could lead to significant packet loss and communication
disruptions. In this section, we propose two specific LVS-
based schemes to eliminate forwarding loops and to
achieve good load-balancing performance with low syn-
chronization overhead.
4.1. Least loaded server variation synchronization (LSVS)

LVS is a trigger-based synchronization. The intuition be-
hind LVS are two points: (i) make sure that new flows are
forwarded heading to the same least loaded server/domain
and (ii) use as few synchronizations as possible to update
all controllers with the crucial variance of network status
that could lead to forwarding loops. The first point enables
Fig. 5. Example of the forwarding loop problem in

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
loop-free forwarding. The second point trades off load-bal-
ancing performance and the synchronization overhead of
controllers.

In LSVS, there are two roles for each controller: Active
Controller (AC) and Passive Controller (PC). An SDN network
only contains one AC, which manages the domain contain-
ing the least loaded server Sleast selected at the last syn-
chronization. The remaining domains of the SDN network
are managed by PCs. In the role of PC, the controller is as-
sumed to update its local NIB in real time by pulling statis-
tics from underlying switches in its local domain. AC not
only updates its local NIB in real time but also activates
synchronizations to update the current network status to
all controllers when the load of Sleast (i.e., Uleast) exceeds
the threshold THS. THS is set as the load of a specific server
Sthd (i.e., Uthd) plus a fixed load margin DU, that is
THS ¼ Uthd þ DU. The load margin is used to prevent fre-
quent synchronizations when the difference between
Uleast and Uthd is very small.

LSVS can be explained through the process of controller
role exchange mechanism. Specifically, after the last syn-
chronization, one controller becomes the AC because one
of its servers is selected as Sleast of the entire network, and
the remaining controllers are PCs. Each controller is aware
of the load variation of servers in its local domain by updat-
ing its local NIB in real time. When Uleast exceeds THS, AC ini-
tiates a synchronization to update the current network
status to all the controllers. During this synchronization,
the SDN network containing three domains.

nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

8 Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
the previous AC changes its role to a PC. If a server in a do-
main managed by a previous PC becomes the new Sleast , the
controller of this domain changes its role from a PC to the
new AC. After this synchronization, there is still one AC in
the SDN network, and new flows will be forwarded to the
new Sleast until the next synchronization occurs. Fig. 6
shows the controller role exchange in LSVS. The controller
role exchange mechanism ensures that one SDN network
only contains one AC, and all the controllers have the con-
sistent information of the least load server. Compared with
PS-based schemes, LSVS conducts effective synchroniza-
tions and eliminates the forwarding loop by controller role
exchange mechanism. Note that the proposed controller
role exchange mechanism can incorporate any signaling
protocols.

Fig. 7 shows the load variation of servers under SimS-
DN1 with the same flow arrival configuration in Section 3.2
when LSVS is used as the controller state synchronization
scheme. We assume DU ¼ 5%, THS is set as the load of
the second least loaded server in the last synchronization
plus DU. In Fig. 7, before t1; C1 is AC, S1;1 is Sleast , and THS

is 75% ðTHS ¼ UC1
2;1 þ DU ¼ 70%þ 5% ¼ 75%Þ. At t1; S1;1 re-

ceives f1, and both U1;1 and UC1
1;1 increase to 60%. At t2; S1;1

receives f2, and both U1;1 and UC1
1;1 increase to 80%. Hence, a

synchronization is initiated by C1 since UC1
1;1 is larger than

the current THS. During the synchronization, S2;1 is selected
as the new Sleast; C2 becomes the new AC, C1 changes to a
PC, and THS is updated to 85%
ðTHS ¼ UC2

1;1 þ DU ¼ 80%þ 5% ¼ 85%Þ. C1 and C2 update
Sleast , AC, and THS by calculating the three variables using
their updated NIBs. At t3; U2;1 decreases to 60% when f3

terminates, and UC2
2;1 is updated accordingly. At t4; U1;1 de-

creases to 50% when f4 terminates, and UC1
1;1 is updated

accordingly. The next synchronization will not occur until
U2;1 exceeds 85%. Thus, if a new flow fnew enters the net-
work from either D1 or D2 during the interval between t2

and t4; f new is forwarded to S2;1 because both C1 and C2

think that S2;1 is Sleast in the entire network. The forwarding
is loop-free. Since LSVS only initiates necessary synchroni-
zations to eliminate forwarding loops, the synchronization
is effective.

To achieve good load-balancing performance, LSVS also
uses RLS. As Section 2.3 explains, when RLS is applied, a
new flow fnew could be dynamically absorbed by a server
S0least , which is in the domain on the forwarding path to
Sleast , only if U0least is less than Uleast . Specifically, when fnew

enters the network from Dd ð1 6 d 6 NÞ; Cd selects Sleast

based on its current NIB and directs fnew heading to Sleast .
During the procedure of fnew forwarding, if fnew traverses
Fig. 6. Controller role exchange during a synchronization using LSVS.

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
De ð1 6 e 6 N; e – dÞ for the first time and the real-time
load of S0least selected by Ce is the least one in Ce’s local
and remote NIBs, fnew is absorbed by S0least . In Fig. 7, after
t4; C2 is still AC and S2;1 is still Sleast since no synchroniza-
tion occurs. However, in the NIB of C1; UC1

2;1 is larger than
UC1

1;1, that is UC1
2;1 > UC1

1;1. Thus, if a new flow fnew enters D1

after t4; C1 directs fnew to S1;1 rather than to S2;1. After a per-
iod of time, UC1

1;1 exceeds UC1
2;1, and then new flows will start

to be forwarded to S2;1 again. By applying RLS, a controller
directs a new flow either to a server, which is in the local
domain managed by this controller, or to Sleast , which is
selected by all controllers during the last synchronization
and will not be changed until the next synchronization oc-
curs. Thus, the combination of LSVS and RLS does not cause
any forwarding loops. RLS enables controllers to make for-
warding decisions for new flows considering the real-time
load variation of servers in those controllers’ local
domains, which further improves load-balancing
performance.

4.2. Least loaded domain variation synchronization (LDVS)

LSVS solves the forwarding-loop problem, but it triggers
synchronizations based on the load variation of a single
server, which could also overly burden controllers with
frequent synchronizations under specific cases. For exam-
ple, due to the limited processing capacity of a single ser-
ver, when a large number of new flows enter the
network in a short period of time, Sleast could easily exceed
the threshold THs, and frequent synchronizations will be
activated to select the new Sleast . In addition, if the load of
certain servers belonging to different domains is very close
to Uleast , a large number of synchronizations will also be
initiated to frequently select the new AC. The number of
synchronizations can be decreased by using a large DU,
but load-balancing performance would be inevitably de-
graded, as shown by simulation results in Section 5. The
high synchronization overhead of controllers could in-
crease the packet forwarding latency, reduce the synchro-
nization accuracy, and lead to some inevitable loops [17].

To reduce the synchronization overhead of controllers
as well as to maintain good load-balancing performance,
we further propose LDVS, the controller state synchroniza-
Fig. 7. Load variation of servers in SimSDN1 using LSVS.

nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx 9

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
tion scheme based on the load variation of a domain. In
LDVS, domain Di’s load (i.e., UD

i) is defined by the average
load of servers in Di, that is:

UD
i ¼

PMi
j¼1Ui;j

Mi
ð2Þ

The domain with the least domain load is defined as the
least loaded domain Dleast . The load of Dleast is UD

least . Using
LSVS, an SDN network still contains one AC and multiple
PCs. AC controls Dleast , and PCs control other domains ex-
cept Dleast . In the interval between two consecutive syn-
chronizations, all new flows are forwarded heading to
Dleast . To maintain good load-balancing performance, AC
further distributes new flows received by Dleast to different
servers in Dleast based on its real-time updated local NIB.
The controller state synchronization only occurs when
UD

least exceeds the threshold THD, which is set as the load
of a specific domain Dthd (i.e., UD

thd) plus a fixed load margin
DU, that is THD ¼ UD

thd þ DU. Obviously, Dleast receives more
new flows than Sleast does before a synchronization is acti-
vated. Thus, the interval between two consecutive syn-
chronizations of LDVS would be longer than that of LSVS.
For a certain period, the number of synchronizations using
LDVS is reduced, as compared with using LSVS.

We illustrate an example to differentiate LSVS and LDVS
under a topology SimSDN2. SimSDN2 is another simple
SDN network similar to that in Fig. 2. SimSDN2 contains
two domains, and each of the two domains is composed
of one switch connecting with three servers. In this exam-
ple, THS is set as the load of the second least loaded server
in the last synchronization plus a fixed load margin DU,
and DU ¼ 5%. The network and flow arrival configuration
are listed as follows: at t5, the load of each server is 60%
and C1 is AC; at t5 þ 1, the existing flows fex1 with the load
of 45%, fex2 with the load of 39%, and fex3 with the load of
42%, respectively, terminate from S1;1; S1;2, and S2;1; the
new flows fnew1 with the load of 9% and fnew2 with the load
of 9%, respectively, enter the network at t5 þ 2 and t5 þ 3.
Table 2 shows the variation of server load and the thresh-
old THS when LSVS is used as the controller state synchro-
nization scheme under the above network and flow arrival
setup. Specifically, LSVS works as follows: at t5 þ 1, the
three existing flows fex1; f ex2, and fex3 terminate, U1;1; U1;2,
and U2;1, respectively, decrease to 15%, 21%, and 18%, THS

changes to 23% ðU2;1 þ DU ¼ 18%þ 5%Þ. At t5 þ 2, when
fnew1 enters D1, it is forwarded to S1;1 since S1;1 is Sleast in
the entire network. Then, U1;1 increases to 24%, and a syn-
chronization is initiated by C1. After the synchronization,
S2;1 becomes Sleast; C2 becomes AC, and THS changes to
26% ðU1;2 þ DU ¼ 21%þ 5%Þ. At t5 þ 3; S2;1 receives fnew2

and U2;1 increases to 27%. Thus, C2 initiates a
synchronization, in which S1;2 becomes Sleast; C1 becomes
Table 2
Load variation of servers in SimSDN2 using LSVS.

Time State (%)

U1;1 U1;2 U1;3 U2;1 U2;2 U2;3 THS

t5 þ 1 15 21 60 18 60 60 23
t5 þ 2 24 21 60 18 60 60 26
t5 þ 3 24 21 60 27 60 60 29

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
AC, and THS changes to 29% ðU1;1 þ DU ¼ 24%þ 5%Þ. In
the last two seconds, two synchronizations occur when
using LSVS.

However, LDVS could not incur any synchronizations
during the same time interval. In this example, THD is set
as the load of the second least loaded domain in the last
synchronization plus a fixed load margin DU (DU ¼ 5%).
Table 3 shows the variation of domain load and the thresh-
old THD when LDVS is used as the controller state synchro-
nization scheme under the same network and flow arrival
setup as Table 2. Specifically, LDVS works as follows: at
t5 þ 1; UD

1 equals 32% ð½U1;1 þ U1;2 þ U1;3�=3 ¼ ½15%þ
21%þ 60%�=3Þ, and UD

2 equals 46% ð½U2;1 þ U2;2 þ U2;3�=3
¼ ½18%þ 60%þ 60%�=3Þ. Since UD

1 is less than UD
2 ; D1 is

Dleast; C1 is AC, and THD is 51% ðUD
2 þ DU ¼ 46%þ 5%Þ. At

t5 þ 2; D1 receives fnew1 and UD
1 increases to 35%

(32% + 9%/3). At t5 þ 3, since D1 is still Dleast; f new2 is still
forwarded to D1 and UD

1 increases to 38% (35% + 9%/3). By
applying LDVS, no synchronization occurs in the interval
between t5 þ 1 and t5 þ 3, and the synchronization will
not be initiated until UD

1 exceeds THD. Thus, using the do-
main load as the trigger variable of synchronization en-
ables the reduction on the synchronization overhead of
controllers.

In addition, LDVS could use few synchronization infor-
mation. In LDVS, the forwarding decision of a new flow
fnew includes two steps: (1) fnew is first forwarded to Dleast

based on the load of domains and (2) fnew is then forwarded
to a server in Dleast based on the local NIB of Dleast . Since the
two steps do not use the load of servers in the remote do-
mains, LDVS could reduce synchronization information by
using two types of NIBs: the domain NIB and the server
NIB. The server NIB stores and updates the load of servers
in the local domain in real time, but the domain NIB only
stores the load of local and remote domains. The load of
the local domain is calculated in real time and updated
from the server NIB, while the loads of remote domains
are updated by the controller state synchronization. Using
the domain NIB, a controller only synchronizes its local do-
main load instead of the load of servers in its local domain
to other controllers during the controller state synchroni-
zation, which reduces the amount of synchronization
information.
5. Simulation

5.1. Simulation setup

In this section, we evaluate the performance of different
controller state synchronization schemes for the SDN net-
work. We assume that one SDN contains N domains, and
each domain is composed of M servers connected by edge
Table 3
Load variation of domains in SimSDN2 using LDVS.

Time State (%)

UD
1 UD

2
THD

t5 þ 1 32 46 51
t5 þ 2 35 46 51
t5 þ 3 38 46 51

nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

Table 4
Parameters of simulation.

Case Number of
domain (N)

Number of
server (M)

Flow arrival rate and
flow durations

1 2 6 Deterministic
2 6 10 Poisson (k ¼ 80)
3 6 50 Poisson (k ¼ 400)

2 For interpretation of color in Fig. 8(b), Fig. 9, Fig. 10, Fig. 11, and Fig. 12,
the reader is referred to the web version of this article.

10 Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
switches. Each server has approximately the same process-
ing ability. The controller state synchronization is achieved
by a method similar to [18]. Each controller maintains a
communication channel with every other controller. A
controller sends its local information to other controllers
through these communication channels during synchroni-
zations. We conducted the simulation experiments in two
modes: packet mode and flow mode. In the simulation, we
evaluate three performance metrics: the packet loss rate,
the load-balancing performance, and the synchronization
overhead of controllers.

We simulate three specific cases for the two modes:
Case 1 for the packet model, Cases 2 and 3 for the flow
model. In the packet-model simulation, we use Mininet
[19] to build the SDN network and use POX [20] to simu-
late multiple controllers. With the packet-mode simula-
tion, we are able to obtain the three performance
metrics. However, because of its long simulation time, only
relatively small SDN networks can be evaluated in a rea-
sonable period. In Case 1, similar to the simulation topol-
ogy in [7], the SDN network consists of two domains, and
each domain contains two switches connecting with three
servers. The traffic load with the deterministic amount (i.e.,
10% of a load server) randomly ingresses one of the two do-
mains. For Case 1, we ran our simulation 100 times with a
duration of 240 s for each scheme.

Flow-mode simulation captures flow arrival and termi-
nation events without injecting packets as in the packet
mode. Specifically, in flow-mode simulation, a realistic
workload is used. New flows randomly enter different do-
mains, and the arrival rate and durations of each flow are
driven by a Poisson distribution with the parameter k.
Due to its coarser granularity, flow-mode simulation can
be used to evaluate the load-balancing performance and
the synchronization overhead of controllers for large-scale
SDN networks with high traffic loads. In Case 2, we expand
the network to six domains, each of which contains five
switches connecting with two servers. In Case 3, we simu-
late a more complex scenario: the SDN network still
contains six domains, and each domain contains five
switches. However, in each domain, one switch connects
with ten servers. Compared with Case 2, the number of
traffic flows in Case 3 increases as the network scales. k
equals 80 and 400 for Cases 2 and 3, respectively. In
flow-mode simulation, we use two types of flows: mice
flows and elephant flows. For Cases 2 and 3, 80% of the
flows are mice flows, whose sizes randomly vary in the
range of 0.01% and 0.1% of a server load, and 20% of the
flows are elephant flows, whose sizes randomly vary in
the range of 0.1% and 1% of a server load. For Cases 2 and
3, we ran our simulation 100 times with a duration of
24,000 s for each scheme. Table 4 shows the parameters
of the three cases in detail.

For PS-based schemes, we evaluate the impact of differ-
ent synchronization periods on the three performance
metrics. In Section 5.2.1, five different synchronization
periods are used. In Sections 5.2.2 and 5.2.3, three synchro-
nization periods are used. For LVS-based schemes, we first
use one specific threshold for each scheme to compare
with PS-based schemes, and then evaluate the impact of
different thresholds on performance metrics. In Sections
Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
5.2.1, 5.2.2, and 5.2.3, THS is set as the load of the second
least loaded server in the last synchronization plus a fixed
load margin DU, and THD is set as the load of the second
least loaded domain in the last synchronization plus a fixed
load margin DU. In Section 5.2.4, six specific servers, three
specific domains, and six load margins are used. In our
simulations, we use star topology for the intra-domain
connectivity and ring topology for the inter-domain con-
nectivity. The simulations we ran on the line and ring
topologies for the intra-domain connectivity exhibit very
similar behavior.
5.2. Simulation results

First, we validate our simulation environment by
matching the results of LBC and SSLBC reported in [7]
under the similar network and workload configuration.
Then, we compare the proposed LVS-based schemes
against PS-based schemes with the performance metrics
under deterministic workload and Poisson distribution
workload. We also evaluate the impact of different thresh-
olds on the performance of LVS-based schemes. For ease of
reading, PS-based schemes plus synchronization periods
are short for PS-based schemes with synchronization peri-
ods. For example, LBC-4s is short for LBC with a synchroni-
zation period of 4 seconds.
5.2.1. Case 1
In Case 1, we evaluate the ideal scheme (i.e., LBC-0s),

two LVS-based schemes (i.e., LSVS and LDVS) and two
PS-based schemes with different synchronization periods
(i.e., LBC-1s, LBC-2s, LBC-4s, LBC-16s, and SSLBC-16s).
Table 5, Fig. 8(a), and (b), respectively, show the average
number of synchronizations per minute, the packet loss
rate, and the load-balancing performance of these schemes
under Case 1. In Fig. 8(a), SSLBC causes packet loss and the
packet loss rate increases as the synchronization period
increases. In contrast, LSVS and LDVS do not cause any
packet loss since they eliminate forwarding loop.

The load-balancing performance is evaluated by server
Root Mean Squared Error (RMSE) of all the servers in the
entire network [7]. A smaller RMSE means a better perfor-
mance. If all the servers have the same load, RMSE will be
0. Fig. 8(b) describes the server RMSE for different control-
ler synchronization schemes with different synchroniza-
tion periods in the form of box-plot. In Fig. 8(b)2, the box
represents the center half of the data and the red line repre-
sents the median data. The whiskers include 95% data while
nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

Table 5
The average number of synchronizations per minute for different controller
state synchronization schemes.

Case Scheme

LBC-1s LBC-2s LBC-4s LSVS LDVS

1 60 30 15 14 11
2 60 30 15 22 18
3 60 30 15 23 18

LSVS LDVS LBC−1s LBC−2s LBC−4s
0

1

2

3

4

5

Scheme

Se
rv

er
 R

M
SE

Fig. 9. Load-balancing performance of different controller state synchro-
nization schemes under Case 2.

Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx 11

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
the 5% outliers are drawn as separate red crosses. The ideal
theoretical performance is shown by LBC-0s in which each
controller distributes new flows based on the real-time up-
dated local and remote NIBs. The load-balancing perfor-
mance using PS-based schemes is represented by LBC-1s,
LBC-2s, LBC-4s, LBC-16s, and SSLBC-16s. LBC-1s performs
better than other schemes, but it synchronizes 60 times
per minute. LBC-4s synchronizes the approximately same
times as LSVS and LDVS do, but it performs much worse than
those two schemes. The server RMSE of LBC-16s is much
worse than other schemes because the long synchronization
period significantly degrades the load-balancing perfor-
mance. The server RMSE of SSLBC-16s is close to the ideal
one, but it is not practical due to the packet loss caused by
forwarding loops. LSVS and LDVS achieve the mean RMSE
comparable to the ideal one (LBC-1s), but they only initiate
14 and 11 synchronizations per minute on average, respec-
tively. Since the synchronization overhead of controllers is
proportional to the number of synchronizations, LSVS and
LDVS achieve good load-balancing performance with much
less synchronization overhead, as compared with LBC-1s.
Thus, under the deterministic workload, the proposed LSVS
and LDVS eliminate the packet loss caused by forwarding
loops and achieves the trade-off between the load-balancing
performance and the synchronization overhead of
controllers.
5.2.2. Case 2
In Case 2, we evaluate LSVS, LDVS, LBC-1s, LBC-2s, and

LBC-4s. The average number of synchronizations per min-
ute and the load-balancing performance of these schemes
1 2 4 8 16

0

5

10

15

20

25

30

35

40

Period (s)

Pa
ck

et
 L

os
s

R
at

e
(%

)

SSLBC

↓

LBC,LSVS,LDVS

↓

LBC
SSLBC
LSVS
LDVS

Se
rv

er
 R

M
SE

Fig. 8. Performance of different controller state

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
under Case 2 are shown in Table 5 and Fig. 9, respectively.
In Fig. 9, the load-balancing performance of LBC improves,
as compared with Case 1. There are three reasons. First,
Case 2 simulates much longer than Case 1, which enables
the collection of more precise statistical characteristics.
Second, the workload of Case 2 varies more frequently than
Case 1, which makes a more balanced load on servers pos-
sible. Third, the SDN network of Case 2 contains many
more servers than that of Case 1. Thus, more servers can
be candidates for Sleast .

However, LVS-based schemes perform much better
than PS-based schemes. The server RMSEs of LSVS and
LDVS is very small, as compared with the server RMSE of
LBC in Case 2. LSVS and LDVS update the local NIB in real
time and update the remote NIB only when the load of
Sleast=Dleast exceeds THS=THD. The NIB update scheme en-
ables each controller to make forwarding decisions for
new flows based on the real-time load status of the local
domain. In addition, as the number of servers in the net-
work increases, the function of RLS becomes more effec-
tive. It is worth noting that in this case, even the
performance of LBC-1s is not comparable with the perfor-
mance of LSVS and LDVS. Thus, under a realistic Poisson
LSVS LDVS LBC−0s LBC−1s LBC−2s LBC−4s LBC−16sSSLBC−16s
0

1

2

3

4

5

6

7

Scheme

synchronization schemes under Case 1.

nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

12 Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
distribution workload, LSVS and LDVS achieve good load-
balancing performance with low synchronization
overhead.

5.2.3. Case 3
In Case 3, we evaluate LSVS, LDVS, LBC-1s, LBC-2s, and

LBC-4s. The average number of synchronizations per min-
ute and the load-balancing performance of these schemes
under Case 3 are shown in Table 5 and Fig. 10, respectively.
Compared with Case 2, the load-balancing performance of
LBC degrades significantly because of the use of out-of-
date NIBs to make consistent forwarding decisions for
new flows. In the interval between two consecutive syn-
chronizations, new flows are forwarded to Sleast . However,
the network status varies over time. For example, a server’s
real-time load could be much less than Uleast if some flows
terminate from this server. Sleast could reach 100% load
after it receives a large number of new flows. Without con-
sidering those critical changes, consistently forwarding
new flows to Sleast significantly degrades the load-balancing
performance and, even worse, leads to packet loss. Com-
pared with Case 2, the number of traffic flows in Case 3 in-
creases as the network scales. Thus, the problem of using
out-of-date NIBs is exacerbated.

In contrast, both LSVS and LDVS outperform LBC-1s,
LBC-2s, and LBC-4s on server RMSE. As the number of serv-
ers increases, the advantage of RLS becomes more obvious.
During the procedure of flow forwarding, more flows are
absorbed by the current least loaded server, which is se-
lected by controllers using those controllers’ real-time up-
dated local NIB. As a result, LSVS and LDVS not only
prevent a server from being fully loaded in a short period,
but also do not significantly increase the number of syn-
chronizations. Therefore, LSVS and LDVS achieve good
load-balancing performance with low synchronization
overhead in the large-scale SDN network with high traffic
loads.

5.2.4. The impact of threshold
In LVS-based schemes, the thresholds TH S/TH D are

composed of two components: Sthd’ load/Dthd’ load
LSVS LDVS LBC−1s LBC−2s LBC−4s
0

1

2

3

4

5

Scheme

Se
rv

er
 R

M
SE

Fig. 10. Load-balancing performance of different controller state syn-
chronization schemes under Case 3.

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
(Uthd=UD
thd) and load margin DU. The selection of compo-

nents impacts the performance of schemes. In the follow-
ing subsections, we evaluate the impact of the two
components on the load-balancing performance and the
average number of synchronizations under Case 2.

First, we set DU ¼ 0 and use different specific servers/
domains for the two proposed LVS-based schemes. For
LSVS, we use the second, sixth, tenth, twentieth, fortieth,
and fiftieth least loaded server (i.e., S2

least; S6
least;

S10
least; S20

least; S40
least , and S50

least) as Sthd. For LDVS, we use the sec-
ond, third, and fourth least loaded domain (i.e., D2

least; D3
least ,

and, D4
least) as Dthd. Obviously, a server/domain with a larger

superscript has a larger load. Tables 6 and 7, respectively,
show the average number of synchronizations per minute
for LSVS/LDVS using different Sthd/Dthd under Case 2. Fig. 11
shows the load-balancing performance of LSVS/LDVS using
different Sthd=Dthd under Case 2. For LSVS, when Sthd varies
from S2

least to S40
least , the load-balancing performance de-

grades very slightly and the average number of synchroni-
zations per minute decreases slightly, as shown in
Fig. 11(a). The reason is by applying LSVS the load differ-
ence among those servers is very small. However, the load
of S50

least is much larger than the load of S40
least . If S50

least is used in
Sthd; Sleast receives more flows before it reaches THS, as
compared with using S40

least . Thus, when using S50
least in Sthd,

the average number of synchronizations per minute de-
creases significantly, which degrades the load-balancing
performance degrades as compared with using S40

least . The
selection of using the specific server in THS trades off the
load-balancing performance and the synchronization over-
head of controllers. For LDVS, as the load of Dthd increases,
the load-balancing performance varies very slightly and
the synchronization overhead of controllers decreases very
slightly. This is because by applying LDVS the load differ-
ence among domains is very small.

Second, we set Sthd ¼ S2
least and Dthd ¼ D2

least and use six
different load margins for the two proposed LVS-based
schemes. Table 8 and Fig. 12, respectively, show the aver-
age number of synchronizations per minute for LSVS/LDVS
and the load-balancing performance of LSVS/LDVS using
different load margins under Case 2. For both LSVS and
LDVS, as DU increases, the number of synchronizations
per minute decreases, and the load-balancing performance
degrades. For the same load margin, LSVS outperforms
Table 6
The average number of synchronizations per minute for LSVS using
different Sthd in the threshold under Case 2.

Scheme Sthd

S2
least S6

least S10
least S20

least S40
least S50

least

LSVS 22 21 20 18 14 8

Table 7
The average number of synchronizations per minute for LDVS using
different Dthd in the threshold under Case 2.

Scheme Dthd

D2
least D3

least D4
least

LDVS 18 18 17

nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

0

0.01

0.02

0.03

0.04

0.05
Se

rv
er

 R
M

SE

Sleast
2 Sleast

6 Sleast
10 Sleast

20 Sleast
40 Sleast

50

Sthd

0

0.01

0.02

0.03

0.04

0.05

Se
rv

er
 R

M
SE

Dleast
2 Dleast

3 Dleast
4

Dthd

Fig. 11. Load-balancing performance of LVS schemes using different Sthd/Dthd in the threshold under Case 2.

Table 8
The average number of synchronizations per minute for LSVS/LDVS using
different load margins in the threshold under Case 2.

Scheme DU

0 1% 3% 5% 8% 10%

LSVS 22 19 15 9 6 5
LDVS 18 13 10 7 5 4

Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx 13

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
LDVS in the metric of server RMSE, but it requires more
synchronizations. The selection of DU depends on the
trade-off between the expected load-balancing perfor-
mance and the synchronization overhead of controllers.

6. Discussion

In this section, we discuss a practical issue in the LVS-
based schemes implementation.

6.1. Forwarding loop in the procedure of synchronization

LVS-based schemes ensure that all controllers have con-
sistent information about the least loaded server/domain
0 1% 3% 5% 8% 10%0

0.05

0.1

0.15

0.2

0.25

0.3

Load margin

Se
rv

er
 R

M
SE

Se
rv

er
 R

M
SE

Fig. 12. Load-balancing performance of LVS schemes using

Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
during the interval between two consecutive synchroniza-
tions. However, in the procedure of synchronization, some
undesirable situations could occur. For example, during the
procedure of synchronization, the latest network status is
propagated to all controllers in the SDN network. Due to
the network congestion and controllers’ different locations,
different controllers could update their NIBs at different
times. Thus, some controllers use the new NIB to make for-
warding decisions for new flows, while others still use the
old NIB to decide where to forward new flows. The incon-
sistent network status of the controllers could cause the
forwarding loop. This forwarding-loop problem can be
solved by applying per-packet consistency [17]. In per-
packet consistency, the old NIB and new NIB are separately
stored in two tables. Each table is specified with a unique
configuration version number. At ingress switches, packets
are stamped with their configuration version numbers.
When a packet enters a domain, the version number of this
packet is tested to select which table to use. The per-packet
consistency guarantees that each packet flowing through
the network is processed according to a single network sta-
tus - either the old NIB before to the update, or the new NIB
after the update, but not a mixture of the old and new NIBs
0 1% 3% 5% 8% 10%0

0.05

0.1

0.15

0.2

0.25

0.3

Load margin

different load margins in the threshold under Case 2.

nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

14 Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
[17]. Thus, per-packet consistency prevents the forwarding
loop.

7. Conclusion

In this paper, we investigate the controller state syn-
chronization issue under the application of load balancing
in the SDN network. We propose two LVS-based schemes
to solve the forwarding-loop problem and reduce the syn-
chronization overhead of controllers. LVS conducts the
effective controller state synchronizations only when the
load of a specific server or domain exceeds a certain
threshold. Simulation results show our proposed two spe-
cific LVS-based schemes, LSVS and LDVS, achieve loop-free
forwarding and good load-balancing performance with
much less synchronization overhead of controllers, as com-
pared with existing PS-based schemes. In our future work,
we plan to evaluate two proposed LVS-based schemes in a
real testbed. We also plan to extend the LVS-based
schemes to further reduce the synchronization overhead
of controllers while maintaining reasonable load-balancing
performance.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, J. Turner, Openflow: Enabling Innovation in
Campus Networks.

[2] INTERNET2. <http://www.internet2.edu/presentations/2012/
20120312-CENIC-Vietzke-SDN.pdf>.

[3] GENI. <http://engineering.stanford.edu/news/open-networking-
summit-explore-software-defined-networking>.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, et al., B4: experience with a globally-
deployed software defined wan, in: Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, ACM, 2013, pp. 3–14.

[5] A. Tootoonchian, Y. Ganjali, Hyperflow: a distributed control plane
for openflow, in: INM/WREN’10, USENIX Association, 2010.

[6] P. Lin, J. Bi, H. Hu, Asic: an architecture for scalable intra-domain
control in openflow, in: CFI ’12, ACM, 2012.

[7] D. Levin, A. Wundsam, B. Heller, N. Handigol, A. Feldmann, Logically
centralized? State distribution trade-offs in software defined
networks, in: HotSDN’12, ACM, 2012.

[8] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R.
Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al., Onix: a distributed
control platform for large-scale production networks, in:
Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, USENIX Association, 2010, pp. 1–6.

[9] C.E. Rothenberg, M.R. Nascimento, M.R. Salvador, C.N.A. Corrêa, S.
Cunha de Lucena, R. Raszuk, Revisiting routing control platforms
with the eyes and muscles of software-defined networking, in:
Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, ACM, 2012, pp. 13–18.

[10] A. Khurshid, W. Zhou, M. Caesar, P. Godfrey, Veriflow: verifying
network-wide invariants in real time, in: Proceedings of the First
Workshop on Hot Topics in Software Defined Networks, ACM, 2012,
pp. 49–54.

[11] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, D. Walker,
Abstractions for network update, in: Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, ACM,
2012, pp. 323–334.

[12] A.R. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S.
Banerjee, Devoflow: scaling flow management for high-performance
networks, SIGCOMM-Comput. Commun. Rev. 41 (4) (2011) 254.
Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
[13] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, R. Johari, Plug-
n-Serve: Load-Balancing Web Traffic Using Openflow, ACM
SIGCOMM Demo.

[14] R. Wang, D. Butnariu, J. Rexford, Openflow-based server load
balancing gone wild, in: Hot-ICE’11, USENIX Association, 2011.

[15] J.P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, A.
Venkataramani, Consensus routing: the internet as a distributed
system, in: NSDI’08, 2008.

[16] L. Lamport, The part-time parliament, ACM TOCS 16 (2) (1998) 133–
169.

[17] M. Reitblatt, N. Foster, J. Rexford, D. Walker, Consistent updates for
software-defined networks: change you can believe in! in:
HotNets’11, 2011.

[18] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, R. Kompella, Towards an
elastic distributed sdn controller, in: Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ACM, 2013, pp. 7–12.

[19] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid
prototyping for software-defined networks, in: HotNets’10, ACM,
2010.

[20] POX. <https://github.com/noxrepo/pox>.

Zehua Guo is currently a Ph.D. candidate at
School of Electronics and Information of
Northwestern Polytechnical University. He
has been worked as a Visiting Scholar in
Department of Electrical and Computer Engi-
neering at New York University Polytechnic
School of Engineering since 2011. He received
his M.S. from Xidian University, in 2010, and
his B.S. from Northwestern Polytechnical
University, in 2007. His research interests
include Data Center Network, Software-
Defined Networking, Network Resilience,

High Speed Networks, and Signal Analysis.
Mu Su is Software Developer at Cisco Sys-
tems. He was a Graduate Assistant at High
Speed Network Lab of New York University
Polytechnic School of Engineering. His
research interests include SDNs, network
security, and network debugging. He received
his Master of Science degree at Department of
Electrical and Computer Engineering of New
York University Polytechnic School of Engi-
neering in 2013 and his Bachelor of Science
degree at Beijing University of Technology in
2010.
Yang Xu (IEEE Member, 2005) is a Research
Assistant Professor in the Department of
Electrical and Computer Engineering in New
York University Polytechnic School of Engi-
neering, where his research interests include
Data Center Network, Network on Chip, and
High Speed Network Security. From 2007–
2008, he was a Visiting Assistant Professor in
NYU-Poly. Prior to that, he completed a Ph.D.
in Computer Science and Technology from
Tsinghua University, China in 2007. He
received the Master of Science degree in

Computer Science and Technology from Tsinghua University in 2003 and
Bachelor of Engineering degree from Beijing University of Posts and
Telecommunications in 2001.
nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://www.internet2.edu/presentations/2012/20120312-CENIC-Vietzke-SDN.pdf
http://www.internet2.edu/presentations/2012/20120312-CENIC-Vietzke-SDN.pdf
http://engineering.stanford.edu/news/open-networking-summit-explore-software-defined-networking
http://engineering.stanford.edu/news/open-networking-summit-explore-software-defined-networking
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0080
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0080
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0080
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0085
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0085
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0085
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0085
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0090
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0090
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0090
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0095
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0095
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0100
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0100
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0100
http://refhub.elsevier.com/S1389-1286(14)00081-4/h0100
http://https://github.com/noxrepo/pox
http://dx.doi.org/10.1016/j.comnet.2013.12.004

Z. Guo et al. / Computer Networks xxx (2014) xxx–xxx 15

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
Zhemin Duan is a Professor at School of
Electronics and Information of Northwestern
Polytechnical University. His research inter-
ests include Signal Processing, IC Analysis and
Design, Networking, Data Center Network,
and Software-Defined Networking. He has
published more than 80 journal and confer-
ence papers. He received National Teaching
Master Award in 2011. He received his M.S.
from Xi’an Jiaotong University and B.S. from
Northwestern Polytechnical University.
Luo Wang is Software Developer at Barracuda
Networks. He was a Graduate Assistant at
High Speed Network Lab of New York Uni-
versity Polytechnic School of Engineering. His
research interests include SDNs, network
security, and network debugging. He received
his Master of Science degree at Department of
Electrical and Computer Engineering of New
York University Polytechnic School of Engi-
neering in 2013 and his Bachelor of Science
degree at Beijing University of Posts and
Telecommunications in 2011.
Please cite this article in press as: Z. Guo et al., Improving the performa
variance-based synchronization, Comput. Netw. (2014), http://dx.doi.or
Shufeng Hui is a Graduate Assistant at High
Speed Network Lab of New York University
Polytechnic School of Engineering. His
research interests include SDNs and big data
management. He is now pursuing his Master
of Science degree at Department of Computer
Science and Engineering of Polytechnic Insti-
tute of New York University. He received his
Bachelor of Engineering degree from North-
eastern University Neusoft Institute of Infor-
mation, China.
H. Jonathan Chao is Department Head and
Professor of Electrical and Computer Engi-
neering at New York University Polytechnic
School of Engineering. He is a Fellow of the
IEEE for his contributions to the architecture
and application of VLSI circuits in high-speed
packet networks. He holds 46 patents with 11
pending and has published more than 200
journal and conference papers. He has also
served as a consultant for various companies,
such as Huawei, Lucent, NEC, and Telcordia,
and an expert witness for several patent liti-

gation cases. His research interests include high-speed networking, data
center network designs, terabit switches/routers, network security, net-
work on chip, and medical devices. He received his B.S. and M.S. degrees

in electrical engineering from National Chiao Tung University, Taiwan,
and his PhD degree in electrical engineering from Ohio State University.
nce of load balancing in software-defined networks through load
g/10.1016/j.comnet.2013.12.004

http://dx.doi.org/10.1016/j.comnet.2013.12.004

	Improving the performance of load balancing in software-defined networks through load variance-based synchronization
	1 Introduction
	2 Problem background
	2.1 Notations
	2.2 Load balancing in the IP network
	2.3 Load balancing in the SDN network

	3 Problems of existing schemes
	3.1 Term definitions
	3.2 High synchronization overhead of controllers
	3.3 Forwarding loop

	4 Load variance-based synchronization
	4.1 Least loaded server variation synchronization (LSVS)
	4.2 Least loaded domain variation synchronization (LDVS)

	5 Simulation
	5.1 Simulation setup
	5.2 Simulation results
	5.2.1 Case 1
	5.2.2 Case 2
	5.2.3 Case 3
	5.2.4 The impact of threshold

	6 Discussion
	6.1 Forwarding loop in the procedure of synchronization

	7 Conclusion
	References

