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Abstract—In this paper, we propose a method to optimally set
the tap position of voltage regulation transformers in distribution
systems. We cast the problem as a rank-constrained semidefinite
program (SDP), in which the transformer tap ratios are captured
by 1) introducing a secondary-side “virtual” bus per transformer,
and 2) constraining the values that these virtual bus voltages can
take according to the limits on the tap positions. Then, by relaxing
the non-convex rank-1 constraint in the rank-constrained SDP for-
mulation, one obtains a convex SDP problem. The tap positions are
determined as the ratio between the primary-side bus voltage and
the secondary-side virtual bus voltage that result from the optimal
solution of the relaxed SDP, and then rounded to the nearest dis-
crete tap values. To efficiently solve the relaxed SDP, we propose a
distributed algorithm based on the alternating direction method of
multipliers (ADMM). We present several case studies with single-
and three-phase distribution systems to demonstrate the effective-
ness of the distributed ADMM-based algorithm, and compare its
results with centralized solution methods.
Index Terms—Decentralized control, distributed algorithms,

power system analysis computing, relaxation methods, trans-
formers.

I. INTRODUCTION

I N power distribution systems, tap-changing under-load
(TCUL) transformers are commonly used for regulating

voltage. Traditionally, automatic voltage regulators (AVRs)
are utilized to control the transformer tap position based on
local voltage measurements (see, e.g., [1], [2]). While this
AVR-based control is effective in achieving local voltage
regulation, it is likely not optimal in terms of achieving certain
overall system operational objectives, e.g., minimize power
losses and voltage regulation from some reference value.
Motivated by this, we propose a framework to determine the
transformer tap ratios in distribution systems that is optimal in
some sense.
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To address the problem described above, we formulate an
optimal power flow (OPF), where the transformer tap ratios
are included as decision variables and the objective is to mini-
mize the total power losses (although, other objectives can be
accomplished as well). In the context of transmission systems,
optimal transformer tap setting under the OPF framework
has been investigated for decades. For example, in [3], the
transformer tap positions are included as discrete variables in
the OPF problem, which results in a mixed-integer program
(MIP) formulation. Unfortunately, the computational com-
plexity of this formulation grows exponentially as the number
of transformers increases, and thus becomes intractable for
large systems. To tackle this complexity issue, several papers
have proposed to relax transformer tap positions to continuous
optimization variables, and then the solutions to the closest
discrete valuables (see, e.g., [3]–[5]). This alternative approach
can yield acceptable performance without incurring the added
complexity. However, all of these approaches are restricted
to standard OPF formulations, and are known to potentially
suffer from the same convergence issues present in traditional
iterative solvers.
In this paper, we formulate the OPF problem that arises in the

context of voltage regulation in distribution systems as a rank-
constrained semidefinite program (SDP), and subsequently ob-
tain a convex SDP problem from the original SDP formulation
by dropping the only non-convex rank-1 constraint (see, e.g.,
[6]–[9]). In general, this rank relaxation is not guaranteed to at-
tain the global minimum, in particular for mesh networks. Inter-
estingly, it has been shown that under some mild conditions, the
optimal solution for the relaxed SDP-based OPF problem turns
out to be of rank 1 for tree-structured networks, which are typ-
ical of radial distribution systems [6]–[8]. In this sense, the rank
relaxation scheme is actually guaranteed to attain the global op-
timum of the original OPF problem. In addition to handling the
OPF problem, the SDP-based approach also constitutes a very
promising tool to tackle the non-convexity in other monitoring
and control applications in power distribution systems.
It is possible to extend the SDP-based OPF approach to in-

clude the tap ratios of TCUL transformers by introducing a vir-
tual secondary-side bus per transformer, which in turn will re-
sult in additional constraints and decision variables [10]–[12].
However, the TCUL transformer model proposed in [11] is lim-
ited due to two issues: 1) the relaxed SDP problem could fail
to yield a rank-1 solution, and thus its global optimality is no
longer guaranteed; and 2) it is only applicable to single-phase
systems. The first issue arises since the network is equivalently
broken into two disconnected parts by introducing virtual buses
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associated to each transformer, and the network disconnection
would lead to multiple solutions of rank 2 [12]. Although an
optimal rank-1 solution could be recovered in this case, the
conditions for recovering rank-1 solutions are only possible for
single-phase systems [11], [12]. As for the second issue, it is
well known that distribution systems are unbalanced; this mo-
tivates the formulation of the three-phase OPF problem [9]. As
it will become more clear later on, it is impossible to enforce
the phase separation between the primary- and secondary-side
buses for the transformermodel in [11]. To address this issue, we
propose an alternative transformer model by including a highly
resistive line between the primary- and secondary-side buses.
The proposed method does not introduce additional complexity
as compared to [11], but can successfully resolve the two afore-
mentioned issues. Related to our approach, [13] and [14] dis-
cuss adding a very small resistance term to the model to handle
a similar network disconnection issue due to the presence of
ideal transformers. It is worth pointing out that such a method
will maintain phase angles between primary- and secondary-
side buses, but will return incorrect power transfers; hence it
is not deemed effective for modeling transformers.
In order to solve the relaxed SDP problem described earlier,

rather than using iterative solvers traditionally used to solve
the OPF problem, we are interested in fast distributed solvers
to handle the higher computational complexity introduced by
the SDP formulation. Distributed methods for solving the OPF
problem have been proposed in power systems in a variety of
contexts (see, e.g., [7], [9], [15], and the references therein).
In particular, the alternating-direction method of multipliers
(ADMM) has been widely used as a simple, yet powerful
technique for solving distributed convex optimization problems
[16]. This method has been successfully applied in power sys-
tems for the dispatch of distributed generation and deferrable
loads [9], [15], as well as state estimation [17]. In this paper, we
leverage the ADMM to solve the relaxed SDP-based optimal
tap problem in a distributed fashion. The ability to perform
the optimization tasks in parallel can dramatically reduce
computation time and complexity, especially for large-scale
systems [15]. Note that the proposed distributed solver can be
implemented in a distributed environment or solved centrally
and parallelized across several processors.
In this paper, we do not consider the real/reactive power

settings of distributed energy resources (DERs) as optimization
variables since this is covered extensively in [7]–[9]. However,
we could easily incorporate the setting of these devices into
our framework as decision variables and modify the constraints
and objective function as appropriate. In practice, we envision
a two time-scale architecture that categorizes devices as either
slow or fast time-scale devices with the idea of controlling
them separately. Conventional voltage regulation devices, e.g.,
TCUL transformers, would be considered slow time-scale
devices, whereas power electronic interfaced DERs would be
the latter. Then, given that fast (and uncontrolled) changes in
DER active generation (consumption) might cause the voltage
to deviate from some reference voltage, a second optimization
[7] or a feedback control scheme [18], executed at regular
intervals (e.g., every minute), could be utilized to determine
the active/reactive power setting of controllable DERs. These

two time-scale separation ideas have been suggested in [7] and
we intend to explore them further.
The remainder of this paper is organized as follows.

Section II introduces the system model and formulates the
transformer tap-setting optimization problem. In Section III,
we rewrite the OPF as a convex SDP, and introduce a modified
transformer model that will allow us to extend this framework
to a three-phase unbalanced system. The distributed solver is
given in Section IV. Section V presents the case studies and
concluding remarks are presented in Section VI.

II. PROBLEM FORMULATION

In this section, we first introduce the standard TCUL trans-
former model in the literature. Then, we describe the power
system model adopted in this work and formulate the single-
phase OPF problem that includes the transformer tap positions
as decision variables.

A. Standard Transformer Model

Fig. 1(a) shows the standard model of the th TCUL trans-
former located on the distribution line segment of some
distribution system. Without loss of generality, we assume that
the primary side of the transformer is closest to the feeder head,
and the admittance for the attached distribution line segment(s)
and core losses (which are typically ignored in distribution sys-
tems [1], [19]) are referred to the secondary side as . Given
the tap ratio , this model contains an ideal transformer directly
connected to bus and the virtual secondary-side bus such
that . The tap ratio is a discrete variable that typ-
ically takes on 33 possible values , uni-
formly distributed around to create a specified range around
the rated voltage of the transformer (which corresponds to ).
For instance, the taps can move up and down 16 positions from
the nominal tap ratio with each step corresponding to
5/8% p.u. change. With the typical nominal voltage at 1 p.u.,
the tap ratio is bounded by and
[2]. Then, the line current and bus voltage relationships for the
circuit in Fig. 1(a), which depend nonlinearly on the tap ratio,
are

(1)

Fig. 1(b) shows an equivalent model to the one in
Fig. 1(a) that removes the ideal transformer entirely and aug-
ments the network with the virtual bus . We treat the buses

and as though they are electrically disconnected and
introduce an additional variable to account for the power
transferred across the removed ideal transformer, e.g., buses
and will have a net injection of and , respec-
tively. Unlike the model in (1), the primary/secondary power
is independent of the tap ratio. The key advantages of this
alternative model are that: 1) the tap ratio is only necessary in
order to define the secondary-side bus voltage as ,
and 2) the admittance matrix for the equivalent circuit will
remain constant. Hence, in the remainder of the paper we will
use the primary/secondary power relationship of the alternative
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Fig. 1. Tap-changing under load transformer models. (a) Classical transformer
model. (b) Equivalent transformer model.

transformer model in Fig. 1(b). Note that transformers with
fixed turn ratios are easily incorporated by modifying the
admittance matrix as described by (1).

B. Power System Model

Consider an -bus power system that has TCUL trans-
formers. Let denote the set of transformers.
The set of buses incident to the primary-side of a transformer is
defined as ; similarly, for buses incident to
the secondary side, we have that . Addition-
ally, the set of virtual buses [introduced in the equivalent trans-
former model in Fig. 1(b)]is defined as . The
remaining system buses define the set .
Thus, the set of physical buses will be

(2)

and the set of buses in the augmented network created by adding
the virtual buses is

(3)

where .
The edge-set that represents the set of distribution line

segments (which could contain conductors for single-, two-, or
three-phase circuits) is such that is the
distribution line between buses and . The admittance matrix
for the single-phase network will reflect the
topology of the augmented network. Furthermore, we define
the set as the power transferred
through the transformers. This balanced single-phase model
will be extended to the general unbalanced three-phase case in
Section III-D.
Finally, in order to include the equivalent transformer model

in Fig. 1(b), the power flow equations will be formulated de-
pending on the type of bus as follows:
1) No Transformer Incident to a Bus: Consider the case when

there are no transformers incident to bus . Let
be the set of buses electrically connected to

bus , which has no transformers incident to it. Then, the power
injected in bus is

(4)

where the generation and load are positive quantities.
2) Transformer Incident to a Bus: As shown in Fig. 1(b), we

track the power across the transformer via , and capture
the tap ratio with the voltage relationship . If bus
is incident to the primary-side of a transformer, then the cor-

responding power flow equation becomes

(5)

or, for the virtual secondary-side bus, we have that

(6)

Note that the secondary-side buses in are no longer directly
incident to transformers as in the circuit model in Fig. 1(a).

C. Transformer Tap Ratio Optimization
Next, we formulate an OPF problem, the solution of which

will provide the tap settings of the TCUL transformer in the net-
work. As mentioned earlier, the discrete tap positions lead to an
MIP formulation and its complexity grows exponentially with
the number of TCUL transformers [3]. To tackle this, we relax
the values that the discrete transformer tap ratio
can take, and allow to take values on the continuous interval

. Once the optimal is obtained, it will be rounded to the
closest discrete value in .
Given some operational objective function , which we

describe in detail later in Section III-C, defined over the system
voltages , and by letting tap ratios denote the
vector of transformer tap ratios, the OPF problem of interest can
be formulated as follows:

(7a)

such that

(7b)

(7c)

(7d)

(7e)

and

(7f)
(7g)

The high granularity of the available tap positions enables the
continuous tap-ratio representation approach to yield accept-
able results without incurring the added complexity of an MIP
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formulation [3]–[5]. However, the optimization problem in (7)
is still challenging due to the nonlinearity in the power flow
equations, as captured by constraints (7b)–(7d). Hence, the
ensuing section will introduce additional relaxations to handle
these nonlinearities in the power flow model.

III. CONVEX RELAXATION
In this section, we first reformulate the non-convex OPF

problem in (7) into matrix form. Then, we review a modified
transformer model that we proposed in [12]; this model will
allow us to handle three-phase unbalanced OPF. Finally, we
use the modified transformer model to develop the convex
relaxation of the matrix-based OPF formulation in (7).

A. Matrix-Based OPF Formulation
Motivated by the convex relaxation approach in [10]–[12],

we will reformulate (7) as an equivalent semidefinite program
(SDP). To this end, the complex power injection at bus
is given by

(8)

where . We define as

...
. . .

... (9)

where is a positive semidefinite (PSD) matrix with
rank 1. Interestingly, the complex power in (8) is linearly related
to the entries of as follows:

(10)

with , where and is a vector with
all entries equal to zero except the one that is equal to one.
Furthermore, the complex power flowing from bus to over
line is given by

(11)

where and .
We remove the tap ratio from the voltage relationship in (7e)

and (7g) by constraining the voltage on the secondary-side of
the transformer relative to the primary side, i.e.,

(12)

Therefore, the equivalent matrix formulation of the problem in
(7) is as follows:

(13a)

such that

(13b)
(13c)
(13d)

and

(13e)
(13f)

and

(13g)
(13h)

The constraint (13g) ensures that and have the same
phase angle. Once the solution to (13) is obtained, the tap ratio
of transformer can be determined using the bus voltage ratio

as follows:

(14)

B. Non-Ideal Transformer Model
As it will be discussed in detail in Section III-C, the optimiza-

tion problem in (13) can be relaxed to a convex one by drop-
ping the rank-1 constraint [7]–[9]. For distribution networks, it
has been shown in [7] that this relaxation approach would yield
a rank-1 solution; therefore, achieving the global optimum of
the original problem. As pointed out in [12], the transformer
model in Fig. 1(b) results in two electrically disconnected net-
works. Accordingly, it has been shown that the solution to the
relaxed problem could be of higher-rank, albeit with no loss
of optimality as compared to the original problem. However,
the higher-rank solution leads to an arbitrary phase angle dif-
ference between the primary-side bus and downstream buses.
Such phase angle ambiguity would significantly complicate the
analysis of the three-phase system, since the angle separation
among the three phases can no longer be enforced at the virtual
secondary bus.
The issue discussed here can be resolved by introducing the

modified transformer model shown in Fig. 2, where we place an
impedance between and of the ideal transformer intro-
duced earlier to “re-connect” the network. Choosing an appro-
priate value of will ensure that the power flow in the modified
model almost mimics that of an electrically disconnected net-
work. As detailed later, this modification would help maintain
the phase angle consistency on both sides of the transformer;
i.e., . This is highly attractive since it allows one
to solve an equivalent convex formulation of the original OPF
problem in (7), while enforcing the correct phase shift for the
transformers. This is especially important to extend the OPF
framework to three-phase systems where the phase separation
is lost with the disconnected network.
As discussed in detail in Section V-C, we found via numer-

ical simulations that there can be a large range of values for
that yield solutions that are sufficiently accurate. However, if

is too small, the augmented network admittance matrix
could be problematic as the entries corresponding to be-
come much larger compared to the rest. Although a small
maintains , the power flow through will become
comparable to , and thus the system power flow would be
different from the original ideal transformer model. On the other
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Fig. 2. Non-ideal transformer model.

hand, if becomes too large, then the system behavior begins
to mirror the original disconnected case with ideal transformers.
The latter scenario will result in a solution that has a rank
greater than one. The value of needs to be chosen within a
specific range, which can vary based on the system and the gains
in the cost function. Interestingly, all of our numerical simula-
tions corroborated that a with a resistance value of several
orders of magnitude (around 2–4 orders for our test systems)
larger than the neighboring distribution line segments yielded
the best results.

C. Rank-Relaxed Convex OPF

We apply the modifications to the transformer model as de-
scribed in Section III-B and relax the rank-1 constraint in (13)
to get a rank-relaxed convex OPF of the form

(15a)

such that

(15b)

(15c)

(15d)

and

(15e)
(15f)

where incorporates the non-ideal transformer model and
(13g) is dropped since the network is connected. The rank-re-
laxed SDP formulation in (15) is guaranteed to achieve the
global optimality of the non-convex tap setting problem with
the rank constraint.
The objective function includes a term that captures

system losses, which is necessary to ensure that a rank-1 solu-
tion can be obtained from the relaxed problem [7]–[9], [11]. It
may also include additional terms to capture voltage tracking
objectives and power factor targets. The discussion above can
be formalized by considering an objective function of the form

(16)

where

(17)

which captures the total losses of all distribution line segments.
The additional penalty terms in (16), , could be
chosen so as to achieve other objectives of interest; next, we
discuss a few possible choices.
If a given a network has considerable distributed generation,

minimizing line losses may not reduce the total demand at the
(sub)transmission substation. This can be easily addressed by
including a penalty term in (16) of the form

(18)

where is a positive weighting factor.
Additionally, to minimize voltage magnitude deviations from

a specified , we can include a penalty term in (16) of the
form

(19)

where are the positive weighting factors per bus [20]. The
weights themselves should be chosen based on: 1) the distance
between the bus and the feeder, and 2) buses that are prone to
voltage violations. Intuitively, buses near the end of the (sub)lat-
erals should be weighted more than these near the feeder in
traditional radial distribution networks of unidirectional power
flow.
Finally, utilities aim at operating distribution systems with a

unity power factor at the feeder head. Motivated by this, the
reactive reactive power injection to the feeder head bus can be
penalized by

(20)

where is a positive weighting factor.
Note that the candidate cost functions introduced are sepa-

rable among all the buses, this will facilitate the development
of the distributed solver as detailed soon in Section IV.

D. Extension to Three-Phase Unbalanced Systems
So far, we assumed balanced operation, which reduced the

system model to a per-phase equivalent; however, distribution
systems are inherently unbalanced with untransposed distribu-
tion lines and have single-, two-, and three-phase radial feeds;
therefore, a three-phase system extension of the ideas discussed
so far is well motivated. The authors in [9] discuss extending
the SDP relaxation OPF approach to three-phase unbalanced
systems; our work focuses on incorporating three-phase TCUL
transformers into such formulation. For a single-phase system, a
rank-1 exact solution can be recovered even though the relaxed
OPF in (13), the formulation of which is based on the ideal trans-
former model in Fig. 1(b), has higher-rank solutions. The ad-
ditional constraints on the transformer (13g) will ensure a zero
phase angle difference between the primary- and secondary-side
bus voltages of that particular phase; however, the phase angles
of buses downstream of the secondary-side bus are not depen-
dent on the primary side of the transformer. In a multi-phase
network, this implies that there is no constraint that enforces
the angle difference between phases, i.e., . We
can maintain this phase separation by:
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1) reconnecting the network by using the non-ideal trans-
former model we propose in Section III-B, or

2) constraining the off-diagonal entries of the submatrices
and associated with the primary and sec-

ondary sides of the transformer.
The issue with 2) is that the constraints turn out to be highly
nonlinear in , which impedes us from incorporating them into
the SDP OPF formulation in (15), which is why we chose to
pursue solution 1).
Consider the three-phase TCUL model in Fig. 3; we will

follow a configuration similar to the one used for the non-ideal
transformer model in Section III-B. The core losses of the trans-
former will be neglected [1], and we will assume that each
phase can independently regulate its secondary-side virtual bus
voltage. This will be equivalent to a collection of single-phase
transformers that we describe using the model in Fig. 2, which
are coupled by the secondary-side distribution line admittance

. Note that there is no mutual impedance between
the primary-side bus and the virtual secondary-side virtual bus.
Thus, we can optimize every tap individually and maintain the
proper phase separation. We will use , , and to dis-
tinguish the voltages phasors for each phase at bus . We also
define a vector that will include the voltage phasors for all
the buses in the network that has at most elements if
every bus has three-phase circuits. The bus voltage subindex al-
lows one to maintain the notational consistency with the earlier
single-phase (one-line) case. The only difference lies in that the
dimension of the counterpart vectors to accommodate the three
phases. For example, the three-phase line admittance is a block

, as compared to for single-phase cases.
This way, all the analysis and problem formulation so far car-
ries over by defining . The power flow equations
will remain unchanged where we have an (in)equality constraint
per phase; however, the mutual impedances of the untransposed
lines makes it more complicated to compute the line losses com-
pared to (17). To this end, let be the vector with all
entries equal to zero except the entries corresponding to each
phase present at bus are set to one. Define the matrices and

as

(21)

and

,
otherwise

(22)

where is the vector conditioned on phase , i.e., the vector
contains a single nonzero entry corresponding to the entry for
phase of bus . Thus, we update the line loss coefficient matrix

with

(23)

to capture the total losses across each distribution line segment.

IV. DISTRIBUTED SOLVER
It is well known that centralized algorithms for solving the

SDP problem in (13) are not suitable for large systems (see,

Fig. 3. Equivalent three-phase transformer model.

Fig. 4. Partitioned system variables.

e.g., [16]). To address this issue, we propose the use of the al-
ternating direction method-of-multipliers (ADMM), which al-
lows for an efficient distributed solution to the convex SDP
problem in (15). The ADMM is proven to be a powerful dis-
tributed optimization method and offers many benefits [16]. In
particular, with ADMM, the complexity of the SDP problem
scales with the sub-area size rather than with the full network
size, and the communication architecture is simpler than that
of a centralized scheme. Suppose we partition the system into
two areas; Fig. 4 shows a topographical view of the submatrices

, and the boundary conditions .
The computational complexity per iteration using the popular
interior point method for our SDP problem (15) scales with the
fourth-order in the size of matrix , or equivalently the number
of system buses (see, e.g., [21]). For large systems, small parti-
tions will provide significant savings in the number of optimiza-
tion variables as depicted by the empty off-diagonal blocks in
Fig. 4; however, the increased number of boundary conditions
will require more super-iterations for convergence to a solution.
ADMM iteratively minimizes the augmented Lagrangian

over three types of variables: 1) the primary variables, i.e., the
bus voltages and transformer power transfers; 2) the auxiliary
variables that are used to enforce boundary conditions among
neighboring areas; and 3) the multipliers for dualizing the
relaxed problem. The Lagrangian is designed to be separable
relative to each type of variable so that we can cyclically mini-
mize with respect to one variable type while fixing the others.
This allows us to solve the problem distributedly and achieve
convergence to the same solution obtained with a centralized
solver [16].
We begin by partitioning the system into

areas such that , , and
for all . To include the coupled buses, each area needs to be
augmented, and the extended area is

. Then, the neighbors of area
are defined as . For area ,
let denote the corresponding local matrix
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for the outer product of the bus voltages, e.g., the
submatrix of corresponding to area .
To enforce consistency between partitions, boundary

conditions are required to constrain the submatrices
for single phase ( for three

phase) associated with the overlap between neighboring areas.
We define the auxiliary variables for the boundary conditions
of the local optimization as (similarly

for the three-phase case). These variables
are used to enforce the real (imaginary) part of the submatrix
equality boundary condition on bus voltages. Note that without
the auxiliary variables, our problem would not be separable
with respect to each .
For each area we also define , which captures the set of

sub-matrices that satisfy the local power flow and voltage con-
straints described in (15b)–(15f) for area . Given that all of
the cost functions in Section III-C are separable per area, we can
rewrite the global minimization problem in (15) as

(24a)

such that

(24b)

and

(24c)

(24d)

where

(24e)
(24f)

We leverage the relations in (24e) and (24f) when formulating
the update rules of the distributed algorithm, but they are not
enforced directly in the optimization problem. Note that the pri-
mary- and virtual secondary-side buses of a transformer cannot
reside in two different areas. In our system model, we assume
that the transformer is attached at , and that are ef-
fectively the same physical bus; thus, its behavior is completely
captured by where , and the boundary conditions
will be enforced between buses and .

A. Augmented Lagrangian
Let denote the Lagrange multipliers as-

sociated with the equality constraints in (24c) and (24d), respec-
tively, where is the penalty coefficient. The augmented
Lagrangian function for (24) is

(25)

and is clearly separable amongst the three groups of variables
such that

(26)

Then, we can cyclically optimize the augmented Lagrangian
with respect to one of the groups of variables while

holding the others constant with the following three-step update
rule for the th iteration:
[S1] Primal Variables Update: We take the infimum of
with respect to the primal variables, and update them as

(27)

which is dependent of the dual variables and
, and the boundary conditions and
.

[S2] Auxiliary Variables Update: Recall that
and , also note that ; then

(28)

(29)

We update the auxiliary variables with

(30)

(31)

for .
[S3] Multipliers Update: The gradient for the with respect
to the dual variables is

(32)

(33)

We initialize all the multipliers to zero; then, we solve the dual
variables using an ascent method and apply (30)–(31). Thus, for

, the update rules for the dual variables are

(34)

(35)

Note that it follows naturally that and
.

Although Steps S1-S3 are formulated for the single-phase
problem, they can easily be extended to solve three-phase un-
balanced systems as well by accounting for all phase voltages
per bus. The detailed extension is omitted here for brevity; how-
ever, the numerical results presented in the next section include
this extension.
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Fig. 5. 15-bus unbalanced distribution system.

V. CASE STUDIES
In this section, we illustrate the ability of the distributed,

ADMM-based algorithm proposed in Section IV to optimally
set TCUL tap positions for both single- and three-phase cases
of a 15-bus network. We also demonstrate the effectiveness
of the algorithm on the IEEE 123-bus test system [19]. In all
our studies, the voltage magnitude inequality constraints for
all cases are limited to 1 p.u. , rather than the common

to account for discrepancies associated with rounding to
nearest discrete tap position.
We performed the simulations in MATLAB using the CVX

package [22] with the symmetric cone solver SeDuMi [23]. This
software package was used to solve the centralized problem and
to update the primal variables in step S1 of the
distributed algorithm.
While in Section III-C we provided several penalty terms for

different performance objectives, the cost function used in the
case studies in Sections V-A and V-B only considers the distri-
bution line losses as defined in (17), i.e., .

A. 15-Bus Distribution System
We begin with the 15-bus network shown in Fig. 5, which we

derived from the IEEE 13-bus—a three-phase, unbalanced dis-
tribution system (see, e.g., [1], [19]). The system has a three-
phase voltage regulation transformer between buses 650 and
632. The rest of the system contains single-, two-, and three-
phase sublaterals. Buses 650 and 651 were added between the
feeder and the transformer so that the transformer was not di-
rectly connected to the slack bus. Bus 693 was added to account
for the distributed load along line (632, 671), and bus 692 was
removed since it corresponds to a closed switch connected be-
tween buses 671 and 675.
In Fig. 5, buses are color coded for areas and ; the

extended areas and are distinguished by the dashed
lines circling the areas. The overlap occurs at buses 632 and
693 where for the 14-bus single-phase case and

for the following three-phase case.
1) Single-Phase Results: For the single-phase system, we

isolate phase C from Fig. 5 since it is the dominant phase of the

Fig. 6. 14-bus, single-phase results. (a) Objective Functions. (b) Tap position.
(c) Convergence for various penalty parameters.

15-bus network, and create a 14-bus single-phase case that ex-
cludes bus 652 from the network topology since phase C is not
present on that bus. The results obtained using: 1) a centralized
algorithm, 2) our distributed algorithm, and 3) an exhaustive
search where we enumerate all of the possible tap ratio combi-
nations are shown in Table I. All three methods return the same
optimal tap position. The exhaustive search uses an ideal trans-
former model and the difference in the cost function com-
pared to the other two methods is due to the loss through the
non-ideal transformer model. Fig. 6(a) and (b) shows the evo-
lution of the area cost functions and the corresponding tap ratio
for . Notice that the optimal position occurs near itera-
tion 250 where the global remains relatively unchanged
after iteration 125, so there are several tap ratios that will result
in acceptable solutions. Fig. 6(c) shows the effect of changing
the penalty parameter . For the 14-bus network, the fastest con-
vergence occurs when .
2) Three-Phase Results: In the centralized case, the 15-bus,

three-phase unbalanced system problem will have 1763 opti-
mization variables since . In contrast, the dis-
tributed case has a 21.8% reduction for a combined total of 1379
variables (910 for area 1 and 469 for area 2). The results for the
three-phase case are listed in Table II with the progress of the
distributed algorithm displayed in Fig. 7. The solutions to the re-
laxed problem (incorporating the non-ideal transformer model)
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TABLE I
SINGLE-PHASE 14-BUS NETWORK

Fig. 7. 15-bus, three-phase results. (a) Objective functions. (b) Tap position.

obtained with the centralized and distributed solvers yielded the
same tap positions of . The exhaustive search so-
lution yielded a different result for phase A, with the final tap
positions being . However, if we check the cen-
tralized and distributed result by solving the power flow equa-
tions, we found the solution to be acceptable. Similar to the
single-phase case, there are several solutions around the selected
tap positions with nearly the same costs for the objective func-
tion.
From the results in Table I, we can see that the exhaustive

search method for a single tap resulted in a faster computation
than the relaxed centralized problem, with CPU times of 0.1
s versus 0.8 s, respectively. In the three-phase case, the added
computational complexity introduced by the dimensional in-
crease associated with the additional phases resulted in an in-
crease of the CPU time for the exhaustive search solution to
107.2 s, while the relaxed centralized case increased slightly to
2.0 s. The ADMM-based solution that we proposed was tested

TABLE II
THREE-PHASE 15-BUS NETWORK

using a serial implementation on a single-core; thus, we inten-
tionally did not include the CPU time for this case, we refer
the reader to [9], [15], and [16] for computational benefits of
ADMM.

B. 123-Bus Distribution System
Fig. 8 shows the one-line diagram for the IEEE 123-bus,

three-phase distribution system, which includes four
three-phase voltage regulation transformers [19]; we also di-
vide the system into six areas. This is a comprehensive system
that is mostly unbalanced and contains overhead/underground
distribution line segments with single-, two-, and three-phase
branches. We set the voltage at the feeder to 1.01 p.u. so that
there are 18 buses experiencing an under-voltage with the
worst being 0.937 p.u. on bus 118. Note that for this particular
case, we did not include results for an exhaustive search of the
transformer tap settings since the number combinations with
the hardware available is . Therefore we can not obtain
a solution in a reasonable amount of time. In contrast, the
centralized convex relaxation took 71.5 s of CPU time to reach
the solution.
In this case, we have that and the central-

ized relaxed OPF has 268 854 optimization variables. The cen-
tralized algorithm yielded a solution such that the tap positions
are in the neutral position for regulators 1 and 2, are set to

for regulator 3, and are set to for
regulator 4. The minimum voltage is raised to 0.985 p.u. and the
network losses are 0.8286 p.u. The bus voltage error between
the continuous and the rounded discrete tap positions has an av-
erage of p.u. and a standard deviation of 0.0017
p.u. with a maximum error of 0.0029 p.u.
In contrast, the distributed algorithm results in 59 436 opti-

mization variables, which is a 77.89% reduction from the cen-
tralized scheme. The distributed method returned slightly dif-
ferent results for the tap positions: regulators 1 and 2 taps are set
to the neutral position, regulator 3 taps are set to ,
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Fig. 8. IEEE 123-bus distribution system.

and regulator 4 taps are set to . The minimum voltage
in this configuration is 0.965 p.u. on bus 118. However, the min-
imum computed network losses for this configuration are 0.8303
p.u., which represents a 0.3% difference from the centralized re-
sult. For this particular network and loading, the tap positions
of regulator 3 impact the network conditions the most since this
transformer is connected to the feeder. As the number of trans-
formers on the network increases, there could be multiple solu-
tions that minimize the cost function.

C. Impact of the Choice of
Next, we explore the impact of the on the solution of the

15-bus, unbalanced three-phase optimization; the results are
captured in Fig. 9. In each subfigure, the thick red vertical line
represents the resistance of the neighboring distribution line
segments with the vertical lines to the left and right represent
approximately an order of magnitude less and every two orders
of magnitude larger, respectively.
The objective function for this particular case is of the form

(36)

where the summation term penalizes the voltage deviations
from 1 p.u. Fig. 9(a) shows the optimization variables for
the power transferred through the transformer and the phase
difference between the primary and secondary sides
of the transformer versus the impedance of . In Fig. 9(b) we
plot the power transferred through and the rank of the
returned from the convex optimization. In Fig. 9(c) we show
cost function and the normalized percent error

(37)

which is determined by the difference between the voltage
magnitudes recovered from and the voltage magnitudes
shown in Fig. 9(d) that are computed from the power flow with
rounded discrete tap positions.
In Section III-B, we proposed to choose several orders of

magnitude larger than the impedance of the adjacent distribution

Fig. 9. Effects of the choice of on the optimization results for the 15-bus
unbalanced distribution system. (a) Power transferred through and phase
mismatch between and versus . (b) Power transferred through and
the rank of . (c) Normalized percentage of the voltage error and the objective
function in the form . (d) Power flow results for bus
voltages from rounded tap positions.

line segments. For the 15-bus system, the optimization solution
tends to match the power flow results better for small values of
, the desired results were captured when is chosen such that
is two to four orders of magnitude larger than the magnitude
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of the impedance of neighboring distribution lines. Within this
interval, the power transferred through converges to zero and
the system values in the optimization converge to a steady-state.
We also see that the rank of is still one with a subtle discrep-
ancy in the angle difference across the transformer of less than 3
degrees and a normalized voltage magnitudes error of less than
2% between the power flow results and the resulting .
After four orders of magnitude difference, the system behaves
as the disconnected case and we are no longer able to accurately
recover the solution. Note that these results are for this specific
case. In other scenarios we have found that by choosing
approximately two orders of magnitude larger than the neigh-
boring distribution line segments is a good initial value.

VI. CONCLUDING REMARKS

In this paper, we developed a method to optimally set, via a
distributed ADMM-based algorithm, tap positions of voltage
regulation transformers in distribution systems. We demon-
strated the applicability of this method via numerical examples
involving single- and three-phase test systems.
Future work will include improving the convergence of the

distributed ADMM-based algorithm. We also intend to apply
this distributed optimization approach to a system-wide voltage
tracking control scheme. In this case, we would periodically dis-
patch the TCUL transformers and then draw upon our previous
work in [18] to handle fast-transients that can be corrected with
reactive power support.

APPENDIX

Notation:
Set of transformers indexed .
Set of transformer tap ratios indexed .
Set of bus incident to the primary side of a
transformer indexed .
Set of bus incident to the secondary side of a
transformer indexed .
Set of bus incident to the virtual secondary side of
a transformer indexed .
Set of buses not incident to a transformer.
Set of physical buses.
Augmented set of buses that includes .
Set of transformer power transfers indexed

.
Impedance added for the non-ideal transformer
model.
Semi positive-definite matrix of bus voltages.

Submatrix of boundary conditions with
neighbor .
Auxiliary variable associated with .
Auxiliary variable associated with .
Set of partitions indexed .
Set of buses in the area defined by .
Extended area containing neighboring buses.
Partitions neighboring .

Set of power flow constraints and inequalities for
partition .
Augmented Lagrangian with penalty parameter .

Boundary condition dual variable for .
Boundary condition dual variable for .
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