
0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

1

Parallel Hierarchical Subspace Clustering of
Categorical Data

Ning Pang, Jifu Zhang, Member, IEEE , Chaowei Zhang, and Xiao Qin, Senior Member, IEEE ,

Abstract—Parallel clustering is an important research area of big data analysis. The conventional HAC (Hierarchical Agglomerative
Clustering) techniques are inadequate to handle big-scale categorical datasets due to two drawbacks. First, HAC consumes excessive
CPU time and memory resources; and second, it is non-trivial to decompose clustering tasks into independent sub-tasks executed in
parallel. We solve these two problems by a MapReduce-based hierarchical subspace-clustering algorithm - called PAPU - using LSH-
based data partitioning. PAPU is conducive to partitioning a large-scale dataset into multiple independent sub-datasets, into which similar
data objects are mapped. Advocating parallel computing, PAPU obtains sub-clusters corresponding to respective attribute subspaces from
independent chunks in the local clustering phase. To improve the accuracy of approximated clustering results, PAPU measures various scale
clusters by applying the hierarchical clustering scheme to iteratively merge sub-clusters during the global clustering phase. We implement
PAPU on a 24-node Hadoop computing platform. The experimental results reveal that hierarchical subspace-clustering coupled with the
data-partitioning strategy achieves high clustering efficiency on both synthetic and real-world large-scale datasets. The experiments also
demonstrate that PAPU delivers superior performance in terms of extensibility and scalability (e.g., a nearly linear speedup).

Keywords—hierarchical subspace-clustering, LSH-based data partitioning, categorical data, Hadoop

F

1 INTRODUCTION

H IERARCHICAL agglomerative clustering (hereinafter
referred to as HAC) is one of the most prominent

data analysis techniques thanks to its informative represen-
tation of input data’s hierarchical structure [1][2]. Despite
a handful of advantages, existing HAC algorithms are
incapable of dealing with large-scale datasets due to the
lack of performance enhancing partitioning [3][4].

In this study, we design a parallel hierarchical subspace-
clustering scheme called PAPU running on the Hadoop
platform. At the heart of PAPU is an efficient data par-
titioning strategy, which addresses the challenging issue
of hierarchical clustering algorithms. We demonstrate how
to judiciously partition data among computing nodes to
speed up the performance of clustering large-scale cate-
gorical data. Our partitioning strategy groups and stores
similar data objects in each node in a locality-sensitive
hash manner. Similarity measures for categorical data are
accomplished by Hamming distance. With our partitioning
strategy in place, global hierarchical clustering results can
be achieved after performing local subspace clustering on
an array of Hadoop nodes in parallel.

1.1 Motivations
The following four observations motivate us to propose
PAPU - the Hadoop-based hierarchical subspace-clustering
algorithm for categorical data:

• N. Pang and J. Zhang? are with Taiyuan University of Science and Technol-
ogy (TYUST), Taiyuan, Shanxi, China. 030024.
E-Mail: jifuzh@sina.com, ?corresponding author: Jifu Zhang.

• C. Zhang and X. Qin are with Department of Computer Science and Software
Engineering, Samuel Ginn College of Engineering, Auburn University, AL
36849-5347.
E-mail:ccz0032@auburn.edu; xqin@auburn.edu.

• Conventional HAC techniques are insufficient to pro-
cess big-scale categorical data.

• Appropriate data partitioning is inclined to signifi-
cantly improve clustering efficiency while maintaining
an acceptable accuracy.

• There is a lack of parallel HAC techniques for large-
scale categorical datasets.

• The Hadoop platform increasingly becomes a popular
practice for processing big data.

Motivation 1. Existing HAC solutions can obtain any
number of clusters exhibiting various shapes. An increas-
ing number of applications manage and process large-
scale categorical data [5]. Unfortunately, conventional hi-
erarchical clustering schemes (see, for example, [6][7]) are
inadequate to handle a massive amount of categorical data.

The existing HAC algorithms are inefficient in clustering
big data due to high CPU time and memory complexities.
Prior studies show that the traditional clustering methods
tend to break down in terms of both accuracy and effi-
ciency during the course of high-dimensional data cluster-
ing [8]. In this study, we pay attention to big categorical
datasets, because modern real-world categorical datasets
are large-scale in nature [9].

Motivation 2. It is futile, if not impossible, to improve
parallel clustering efficiency through data partitioning. To
make parallel clustering algorithms scalable, one has to
enable computing nodes to independently offer local clus-
tering results without collaborating with other nodes. Such
an ideal goal can be partially implemented by partitioning
data among the computing nodes. It is arguably true
that data partitioning plays a key role in optimizing the
performance of parallel clustering algorithms.

Taking into account storage locations of data objects,
a handful of data partitioning approaches tend to divide

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

2

balanced partitions with either a single hash function or
equally spaced keys [10]. Such conventional approaches
ignore relevance among data objects, thereby being un-
able to minimize communication overhead among data
nodes [11][12]. Most of the parallel hierarchical clustering
methods randomly partition data sets into equal-sized
groups prior to clustering. The weakness of such partitions
is frequent data transfers among nodes, which pushes
I/O overhead to a high level. To address this intriguing
problem in data partitioning, we propose a novel solution
to group similar objects in each data node in a locality-
sensitive manner.

Motivation 3. Although parallel clustering has been
intensively investigated, parallel hierarchical clustering is
still in its infancy. Developing parallel algorithms for hier-
archical clustering is nontrivial, because the HAC schemes
have to build a hierarchy of clusters with the dendrogram
- a tree structure driven by similarities among all clus-
ters [13].

The HAC algorithms, in each iteration, calculate and
store distances among all pairwise clusters. Such pair-
wise calculations prevent clustering tasks from being de-
composed into independent sub-tasks to be executed in
parallel. For this reason, implementing parallel solutions
for the conventional HAC algorithms is a daunting job.
This challenge motivates us to develop a parallel hierar-
chical clustering algorithm for categorical data. To process
large-scale data, we aim to run our parallel hierarchical
subspace-clustering algorithm on the Hadoop computing
platform.

Motivation 4. Hadoop [14] is a simple yet efficient
parallel computing framework offering high scalability
and fault tolerance. Very recently, a few inspiring studies
demonstrated that Hadoop is a powerful parallel com-
puting technique for clustering massive datasets [15]. In
recognizing that little attention has been paid toward
hierarchical clustering for big data using Hadoop, we are
motivated to design a Hadoop-based clustering algorithm
for large-scale categorical datasets. We exploit a way of
partitioning data among Hadoop nodes to improve clus-
tering efficiency while maintaining high accuracy.

1.2 Contributions
To facilitate the design of scalable parallel clustering al-
gorithms, we strive to partition a large-scale dataset into
multiple independent subdatasets processed by multiple
data nodes in parallel. Without such data partitioning,
parallel clustering algorithms are slowed down by merging
only one pair of closest clusters in each iteration for an
entire global dataset.

Our data partitioning relies on the locality sensitive
hashing algorithm [16] or LSH to project similar data
objects into the same bucket. The LSH-based data parti-
tioning improves clustering efficiency by discovering local
clusters in each data node without communicating with
the other nodes in Hadoop.

After an array of buckets is created using LSH, the
buckets may have a diversified number of data objects.

To address the data skewness problem imposed by the
imbalanced buckets, we design a load balancing index
to evenly distribute buckets across Hadoop nodes. The
load balancing index’s performance largely depends on
the bucket granularity. The number of buckets is in a range
between the number of Hadoop nodes. We investigate and
test the optimal number of buckets to maximize the load
balancing performance in the experiment(see Section 7.2).

When a massive amount of datasets are partitioned by
the aforementioned LSH, we are in a position to address
the challenge imposed by hierarchical clustering. To alle-
viate high memory demands and long processing time,
we implement a two-stage hierarchical subspace-clustering
algorithm running on Hadoop. In the first stage, local
clustering results are produced corresponding to respective
attribute subspaces in parallel from independent chunks
split by input datasets. In the second stage, a global
dendrogram is formed based on local clustering results of
stage one from data nodes using hierarchical agglomera-
tive clustering.

The contributions of this study are summarized as fol-
lows:
• We apply locality sensitive hashing to partition data

into a set of non-overlapped subdatasets among
Hadoop nodes.

• We develop the two-phase - the local and global
clustering phase - hierarchical subspace clustering al-
gorithm called PAPU running on Hadoop.

• We conduct extensive experiments to evaluate PAPU
using the UCI and stellar spectral datasets in addition
to synthetic data.

1.3 Organization

The rest of the paper is organized as follows. Section 2
summarizes some preliminaries of this study. The problem
statement and main ideas can be found in Section 3.
We present a hierarchical subspace-clustering technique
using Hadoop computing platform in Section 4. Section 5
discusses the implementation details of PAPU. Section 6
and 7 describes the experimental settings as well as the
results. Section 8 surveys prior work related to this study.
Finally, we conclude our work in Section 9.

2 PRELIMINARIES

In this section, we first introduce hierarchical agglomer-
ative clustering and subspace clustering, followed by an
overview of the Hadoop computing framework.

2.1 Hierarchical Agglomerative Clustering

Compared to flat clustering methods, hierarchical cluster-
ing algorithms are simple, yet powerful, non-parametric
clustering methods. Hierarchical clustering algorithms or-
ganize the relationships of clusters using a dendrogram,
which shows the positioning course of each data ob-
ject [17][18]. Hierarchical clustering approaches generally

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

3

fall into two categories, namely, ”top-down” divisive ap-
proaches and ”bottom-up” agglomerative approaches. Be-
cause of adopting an exhaustive search, the time complex-
ity of divisive clustering is O(2n). In contrast, agglomera-
tive clustering’s time complexity is O(n3), which promotes
these types of approaches to be widely adopted. Applying
these clustering approaches for processing large-scale data
becomes a challenging problem.

Hierarchical agglomerative clustering or HAC starts with
an initial partition into singleton clusters; HAC iteratively
agglomerates an existing closest pair of clusters to create
an internal node until all objects gather into the same
cluster. At each iteration, all the distances among existing
clusters have to be calculated in a distance matrix. The final
hierarchical tree structure is called a dendrogram, which
intuitively shows how clusters are agglomerated at each
level.

2.2 Subspace clustering
Low-dimensional adjacent objects within a cluster may
be far from each other in a full dimensional space in
the context of high-dimensional clustering. The primary
cause of such a problem is that high-dimensional objects
in different clusters are always correlated with respect to
certain attributes subsets. This problem has been addressed
by a handful of subspace clustering methods in recent
years (see, for example, [19][20]). The overarching goal
of subspace clustering is to divide high-dimensional data
into multiple low-dimensional subspaces driven by the
patterns of the high-dimensional data. The objective of
subspace clustering is two-fold, namely, (1) to identify
attribute subsets corresponding with clusters and (2) to
explore clusters from various attribute subsets.

2.3 MapReduce and Hadoop
Google developed MapReduce [14] as a powerful paral-
lel programming platform to meet the demands of big-
data applications. MapReduce simplifies the process of
large datasets on parallel computers, where a MapReduce
program embraces a pair of mappers and reducers. A
mapper is invoked for every record in an input dataset,
producing a partitioned and sorted set of intermediate re-
sults. A reducer loads the sorted data from an appropriate
partition offered by the mapper to compute final output
data. Map and reduce functions are conceptually expressed
as map(k1, v1) → list(k2, v2) and reduce(k2, list(v2)) →
(k3, v3).

Hadoop is an open-source software implementation of the
MapReduce programming model. Data are stored in the
Hadoop distributed file system (a.k.a., HDFS). Before pro-
cessing data, files should be imported into HDFS splitting
the files into equal sized chunks. The resource management
in Hadoop is YARN, which splits up the resource manage-
ment functionalities and job scheduling/monitoring into
separate daemons - a global ResourceManager and per-
application ApplicationMaster. A Hadoop application is
implemented in form of either a single job or a DAG (i.e.,
directed acyclic graph) of jobs.

3 PROPOSED MAIN IDEAS

Before presenting the main ideas of PAPU, we introduce
the problem statement and basic idea of this study below.

3.1 Categorical Data and Problem Statement

Unlike numerical data, categorical data generally refer to
particular groups or categories, the values of which are
limited, unordered, and non-comparable [21]. An example
of categorical data is human blood types, the values of
which include A, B, AB, and O. Similarity measures of nu-
merical data using distance are inapplicable for categorical
data.

Let A = {A1, A2, ..., Ad} be a set of d categorical at-
tributes with domain D(A1), ..., D(Ad), respectively. Do-
main D(Aj) can be expressed as D(Aj) = {Dj1 , ..., Djmj

}
where mj is the number of categories in attribute Aj

(1 ≤ j ≤ d). We consider a dataset O = {O1, O2, ..., On}
of n objects defined on attribute set A, where Oi =
(ai1, ai2, ..., aid). Object Oi ∈ O can be represented as a
vector [ai1, ..., aid], where aij (1 ≤ i ≤ n, 1 ≤ j ≤ d)
is a categorical attribute value in domain D(Aj) (i.e.,
aij ∈ D(Aj)). The clustering result can be expressed as
a set C = {C1, ..., Ck} where k is the number of clusters C.

In this study, given dataset O, the goal of clustering tasks
is to generate tree-like nested partitions represented by
T = {T1, ..., Tm}. Subcluster Cs is the set of data objects
corresponding to the leaves of subtree Ts [22].

Table I lists symbols and notation used throughout this
paper.

TABLE I. Symbols and Notations

Symbol Description Symbol Description

O object set A attribute set in O

Oi the ith object in O Aj the jth attribute in A

aij attribute value j of object i D(Aj) domain of attribute j

Cs the sth cluster k the number of clusters Ti

n the number of objects d the number of attributes

3.2 Basic Idea

Prior to the development of PAPU, we keep the following
two design goals in mind.
• Design Goal 1. In the process of constructing a den-

drogram, the number of pairwise-distance calculations
should be minimized.

• Design Goal 2. Parallel clustering algorithms should
follow the Hadoop parallel computing model.

To fulfill the above two design goals, we propose a
data partitioning strategy as a data reprocessing module
in PAPU, where a clustering algorithm on Hadoop is in
charge of creating a dendrogram in parallel. Traditional
hierarchical clustering methods spend an excessive amount
of time in comparing and computing pairwise distances
from all existing clusters. The data partitioning module in
PAPU strives to minimize the number of pairwise-distance
calculations (see Design Goal 1).

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

4

Converting conventional HAC into a parallel algorithm
is challenging due to two reasons. First, in each iteration,
merging operations depend on global merging results pro-
duced from the previous iteration. Second, broadcasting
global merging results adversely slows down the overall
parallel performance. Our PAPU tackles these parallel com-
puting problems by judiciously partitioning data among
Hadoop nodes, where local clustering results are computed
on Hadoop in parallel during multiple local iterations. To
verify the correctness of local clustering results, a reduce
phase is to generate how local subclusters from data nodes
should be merged according to hierarchical clustering
method. (see Design Goal 2).

From the perspective of constructing dendrograms,
high-level structures obtained by PAPU are almost iden-
tical to those built by centralized PAPU and PAPUNSD.
Centralized PAPU and PAPUNSD are counterparts to
PAPU where subspace clustering and data partitioning are
intentionally taken out for comparison purpose. The main
difference among these three alternative schemes is that
during the procedure of building low levels of a den-
drogram in each partition, PAPU advocates for subspace
clustering to produce flat-structure subclusters rather than
a subtree.

4 SYSTEM DESIGN

In this section, we first shed some light on data-partition
method (see Sections 4.1). Then, we propose a parallel
hierarchical subspace-clustering approach empowered by
data partitioning (see Sections 4.2).

4.1 Data Partitioning
Conventional wisdom in data partitioning is to divide
input files into logically-independent partitions [23]. Ide-
ally, data-partitioning methods should share the following
two hallmarks: (1) pruning redundant objects transmitted
among computing nodes; (2) alleviating data skewness
among tasks.

Locality sensitive hashing or LSH was proposed to
accomplish the nearest neighbour searching in high-
dimensional data [24]. We adopt an LSH-based banding
technique to address the data-partitioning problem, prior
to which characteristic matrix and dimension reduction
with MinHash are employed as the theoretical underpin-
nings of data partitioning.

4.1.1 Dimension Reduction With MinHash
We construct a characteristic matrix, which includes only
1s and 0s, to delineate the attribute space of a dataset.
Given dataset O, containing n data objects and m attribute
values, we construct an m-by-n characteristic matrix re-
ferred to as M , where columns denote data objects and
rows mean attribute values. We set the value in position
(r, c) to 1 if attribute value r occurs on an attribute of object
c; otherwise, the value of (r, c) is configured to 0.

In order to reduce the dimension of the characteristic
matrix M , we substitute small-scale representations called

“signatures” for the characteristic matrix using the Min-
Hash technique [25]. To generate a signature, we first
introduce the minhash function hminj , which maps ob-
ject Oi to distinct integers. For any object Oi, we de-
fine the minimum value in all hash values as minhash
value of hminj(Oi). Suppose that the minhash value of
object Oi for a certain function hminj is denoted by
hminj(Oi), the signature Sig(Oi) is expressed as Sig(Oi) =
(hmin1(Oi), hmin2(Oi), ..., hminl(Oi)).

The basic idea of MinHash is to randomly permute
the rows, followed by computing the minhash value (e.g.,
hminj(ci)) of each column (e.g., ci) to form a signature. A
minhash value is the position of the first nonzero attribute-
value in the permuted characteristic matrix. Repeatedly
performing l independent permutations, we obtain mul-
tiple signatures to form an l-by-n signature matrix, where
l indicates the number of minhash functions and n signifies
the number of objects. It is noteworthy that value l is far
smaller than the number of rows m in the characteristic
matrix, fulfilling the purpose of the dimension reduction.

4.1.2 Data Partitioning Based on LSH

Locality-Sensitive Hashing or LSH maps similar data ob-
jects into same buckets using a banding technique with
multiple hash functions [24]. Different from the common
hash function, LSH offers a high probability of collision for
similar objects. Intuitively, LSH depends on using a large
number of hash functions to guarantee that similar data
objects are likely to be in the same bucket; however, LSH
has a side effect of producing multiple redundant buckets,
thereby leading to extra storage overhead [26]. Inspired by
the LSH algorithm, we propose a novel data-partitioning
method to solve the problem of redundant buckets and
bypass computing similarities among a sheer number of
object pairs.

Fig. 1 depicts a data-partitioning process employing
LSH; the process is comprised of the following steps:

Fig. 1. The LSH-based data partitioning process is comprised of three steps. The
first step divides a signature matrix into b bands and maps similar objects into one
bucket unit; the second step merges similar bucket units among different bucket
arrays; and the third step is responsible for partitioning data to finalize partitioning
results.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

5

(1) Mapping into bucket arrays. We adopt the traditional
LSH technique to obtain the rudimentary bucket arrays.
This step is kicked off by dividing the obtained signature
matrix into b bands, each of which consists of r rows (see
signature Sig(On) in Fig. 1). Objects Oi and Oj will be
considered alike, if there is at least a corresponding band
pair hashing into the same bucket (e.g., O1, O2 in Fig. 1).
Thus, data objects sharing an identical hash value in the ith
band are placed to the unit of the ith bucket array. After
repeatedly performing the above operation b times, each
data object is successively mapped into b bucket arrays.
Finally, a total of

∑b
i=1 ki buckets are generated, where

b is the number of bucket arrays (see b bucket arrays in
Fig. 1). And data object Oi is expressed as a vector G(Oi) =
(v1(Oi), v2(Oi), ..., vb(Oi)), where vi represents object Oi’s
location in ith bucket array.

(2) Merging similar bucket units. In the previous step,
vector G with b hash values vi shows that each data object
is sequentially mapped into b bucket units from different
bucket arrays. Then it shows that similar bucket units are
sharing many data objects among the bucket arrays, which
give rise to data redundancy and surplus operations. As
such, there is a pressing demand to merge similar bucket
units using linear hash mapping H(Oi), where vector G
of the data object Oi is converted to an integer as the
partition’s label. Thus, we have H(Oi) = (a1∗v1(Oi)+a2∗
v2(Oi)+ad∗vd(Oi))modM , where constant coefficient ai is in
a range between 0 and M−1 (i.e., ai ∈ [0,M−1]) and M is
the number of partitions.

(3) Partitioning data. We deploy the results obtained by
the above steps to partition objects. The objects belonging
to the same bucket hash into the same partition, which
can guarantee the objects falling into a partition with great
similarity.

4.2 Parallel HAC-Based Subspace
Given input dataset O, hierarchical agglomerative clus-
tering aims to formulate an optimal set C of k clusters
C = {C1, . . . , Ck}. In light of data partitioning, our PAPU
algorithm is devised as a two-stage parallel clustering ap-
proach that seamlessly integrates the subspace clustering
algorithm [27] with the conventional HAC algorithm.

PAPU performs two stages to accomplish parallel clus-
tering tasks. In the first stage of local clustering, PAPU uti-
lizes the subspace clustering algorithm in parallel to obtain
subclusters in multiple partitions generated by the afore-
mentioned data-partitioning process (see Section 4.2.1).
Given subclusters obtained from stage 1, the second stage
- referred to as global clustering - employs the hierarchi-
cal agglomerative clustering approach to merge the most
similar subclusters to achieve global clustering results (see
Section 4.2.2).

4.2.1 Local Clustering
To generate local subclusters, we employ a clustering
quality function Q(C) to search clustering results using the
subspace clustering algorithm [9]. In the local clustering

procedure, data objects in different attribute subspace are
iteratively scanned to allocate into an existing subcluster
or produce a new subcluster to maximize the clustering
quality function Q(C).

Quality function Q(C) is expressed as a weighted sum of
qualities of items in cluster set C. Thus, Q(C) is measured
as follows:

Q(C) =
k∑

s=1

P(Cs)×Q(Cs), (1)

where Q(Cs) (see Eq. 2) denotes the quality of cluster Cs,
and P (Cs) is the percentage of objects that belong to cluster
Cs. Percentage P (Cs) - serving as a weight - represents the
contribution of Cs to overall quality Q(C).

An ideal clustering quality function should make a good
tradeoff between compactness and separation [9][28][29].

Here we propose a practical quality function Q(Cs),
which combines compactness Com(aij) and separation
Sep(aij). Thus, clustering quality Q(Cs) is defined below:

Q(Cs) =
∑

Oi∈Cs

d∑
j=1

[Com(aij)]
2×Sep(aij) (2)

where aij is an attribute value of data Oi appearing in the
jth dimension.

Compactness Com(aij) is measured as

Com(aij) =
count(aij,Aj,Cs)

|O| ×W(aij) =
ns
j

n
×W(aij), (3)

where count(aij , Aj , Cs) (i.e. ns
j) is the number of cat-

egorical value aij appearing in dimension Aj of cluster
Cs; n is the total number of objects in dataset O. We
advocate applying a product of ns

j

n and weight W (aij)
(see Eq. 4) to derive compactness Com(aij), which stresses
major contributions of significant attribute values in the
clustering formation process.

The subspace clustering principle suggests that attribute
weights play a crucial role in data clustering, because an
array of attributes is likely to make diversified contribu-
tions in clustering of a high-dimensional data. Projecting
important attributes on attribute subspaces is a vital step
of a subspace clustering analysis.

The significant attribute values composing an attribute
subspace not only have a high occurrence frequency in
their own dimensions (see Eq. 5), but also have a high
co-occurrence degree with the other relevant dimensions
of the attribute subspace (see Eq. 6). To address this
concern, we assign high weights to such attribute values.
We quantify weight of categorical value aij to precisely
assess clustering impacts of attributes. W (aij) is denoted
as the weight of attribute value aij , which is expressed as:

W(aij) = WAj(aij)×[F(aij)]
2 (4)

Weight W (aij) in (4) is a product of single-attribute
weight WAj

(see the first term on the right-hand side of
(4)) and aij ’s co-occurrence factor F (see the second term
on the right-hand side of (4)). To put the spotlight on the
impact of co-occurrence frequency, we apply a square to
the second term on the right-hand side of (4).

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

6

Single-attribute weight WAj
(aij) in (4) represents value

aij ’s local clustering capability from the perspective of its
own dimension Aj . Weight WAj

can be written as

WAj(aij) =
nj

n
×log[nj(1−

nj

n
)+1]. (5)

where nj represents the occurrence number of categorical
value aij in attribute Aj , and nj

n corresponds to the prob-
ability of categorical value aij appearing in dimension Aj .

F(aij) =
d∑

s=1,s6=i

WAs(aij) =
d∑

s=1,s6=i

njs

nj+ns−njs
(6)

where ns denotes the occurrence number of value ais
in dimension As. njs counts the number of times that
attribute-value pair (aij and ais) co-occurs in dimensions
Aj and As. We apply the Jaccard similarity coefficient to
calculate the co-occurrence factor of categorical value aij .

Now we express separation Sep(aij) as follows

Sep(aij) =
count(aij,Aj,Cs)

count(aij,Aj)
=

ns
j

nj
, (7)

where count(aij , Aj) is the number of categorical value
aij appearing in dimension Aj (i.e. nj). ns

j

nj
indicates the

percentage of categorical value aij in dimension Aj exclu-
sively belonging to cluster Cs. A large percentage of aij
implies the importance degree of aij in the clustering pro-
cess, which means that aij plays a vital role in improving
the clustering quality of Cs.

4.2.2 Global Clustering
Clustering results yielded by the local-clustering phase
merely resemble the distribution of local subclusters from
a single computing node. In the course of global clustering,
we adopt the HAC algorithm to merge two most similar
subclusters with minimum distance iteratively among all
subclusters from the different nodes.

There is a large number of linkage measures to quantify
the distance (a.k.a., similarity) between clusters; mean link-
age averages all distance between pairs of objects from two
clusters [30]. The mean linkage measure distavg(Ci, Cj) is
written as:

distavg(Ci,Cj) =
1

ninj

∑
Op∈Ci,Op′∈Cj

|Op−Op′ |, (8)

where ni and nj express the number of data objects
in clusters Ci and Cj , respectively. |Op−Op′ | gauges the
distance between two objects Op, Op′ . Here, we exploit
Jaccard coefficient [31] to assess the distance between two
categorical data.

5 IMPLEMENTATION DETAILS

We start this section with an overview of PAPU (see Sec-
tion 5.1). Next, we apply the LSH-based data partitioning
method to group similar objects into a single block. The
implementation of data-partition can be found in Section
5.2. We also implement a weight-computing module in
the Hadoop framework to facilitate subspace clustering,
the implementation details of which are well covered in
Section 5.3. We discuss the implementation of parallel
hierarchical subspace-clustering on Hadoop in Section 5.4.

Fig. 2. PAPU is comprised of three MapReduce jobs. The first MapReduce job is
responsible for partitioning data; the second MapReduce job computes the weight
of attribute-values; in the third job, the mapper discovers local subclusters on each
data block; and reducer improves the correctness of local subclusters produced by
the mapper in the third job through the HAC method.

5.1 Overview
Fig. 2 delineates the working process of PAPU consisting
of the following three Hadoop jobs seamlessly integrated
in PAPU.
• Data Partitioning. The first job incorporates LSH to

map similar objects into a single bucket. We imple-
ment the Hadoop-based LSH algorithm to partition
data in parallel (see also Section 5.2). We investigate
the impacts of LSH-bucket granularity on the effi-
ciency of categorical data clustering. (see the exper-
iment in Section 7.2)

• Weight Computing. The objective of the second job
is to compute the weight of each attribute-value aij
(see also Section 5.3). Projecting important attributes
on attribute subspace is a crucial step of a subspace
clustering analysis. We quantify attribute subspace in
terms of weight of each attribution value.

• Parallel HAC on Hadoop. The clustering process con-
ducted in this job invokes a local clustering module
and a global clustering module. Local clustering aims
to generate subclusters from similar objects stored
on singleton data node. Global clustering generates
ultimate dendrogram from all the results obtained
from local clustering (see also Section 5.4).

5.2 Data Partitioning
The first MapReduce job in PAPU is responsible for par-
titioning objects of dataset O into multiple data blocks
managed by LSH. Algorithm 1 details the pseudocode of
the first MapReduce job, which is focused on MapReduce-
based data partitioning.

The first job executes the following four steps.
Step 1. Each mapper on a node sequentially reads data

objects from a local input split, where each object is stored
in the format of pair 〈LongWritable offset, Text object〉 (see
Line 4).

Step 2. In the mapper’s local input split, the mapper se-
quentially applies two functions (i.e. Generate-chara-matr()
and Generate-signature-matr()) to originate the charac-
teristic matrix (see Lines 7-9) and the signature matrix
(see Lines 10-12) for each point Oi. The signature matrix

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

7

Algorithm 1 Data Partitioning Based on LSH
1: input: a dataset;
2: output: distribution of data partitioning;
3: function MAP(key offset, values input)
4: O′ ← splitter.split(input.toString());
5: LChaMa ← new List;
6: LSig ← new List;
7: for all (Oi : O

′) do
8: Append(LChaMa, Generate−chara−matr(Oi));
9: end for

10: for all (chi : LChaMa) do
11: Append(LSig , Generate−signature−matr(chi));
12: end for
13: for all (si : LSig) do
14: divide si into b bands with r rows;
15: Hashbucket← HashMap(each band of si);
16: end for
17: applying Linear hash function H(Oi) to compute the partition Pj

of each data Oi;
18: emit(Pj , objectID);
19: end function
20: function REDUCE(key pj ,values objectID)
21: Listp ← new List;
22: for all (val: values) do
23: Append(Listp, val);
24: end for
25: emit(partitionID, Listp);
26: Map A−list← all the (partitionID, Listp) //A−list is a CacheFile

storing the distribution of data partitioning.
27: end function

is generated based on the MinHash algorithm ∗. Lists
LChaMa and LSig store characteristic matrix and signature
matrix of the local input split, respectively.

Step 3. Lines 13-18 perform the implementation of LSH-
based data partitioning †. LSH divides the signature matrix
into b bands, each of which comprises r rows (see Line 14).
Subsequently, these bands with same value are mapped
into an identical hash bucket that contains similar objects
(see Line 15).

As articulated in Section 4.1.2, data object Oi is expressed
as a vector composed of d bucket-unit numbers. A Linear
hash function H(Oi) is applied to transform a vector to an
integer Pj , where Oi is allocated to the partition labeled
as Pj . We donate the mapper’s output in a tuple format of
{Pj , objectID} (see Lines 18).

Step 4. A reducer merges all objects with the same
partition-label from multiple computing nodes to ob-
tain the complete partition information(see Lines 20-25).
The output of the reducer is a list in form of a pair
{partitionID,Listp} (see Line 25), where partitionID rep-
resents the identifier of a partition and Listp expresses a list
that contains all objects belonging to partition partitionID.

Importantly, a list of pairs in form of
{partitionID,Listp} (see A−List in Line 26 of Algorithm1)
becomes the second MapReduce job’s input, which can be
found in Line 3 of Algorithm 3 in the parallel hierarchical
subspace-clustering module (see Section 4.2).

∗. MinHash code is seen in https://cwiki.apache.org/confluence/display/MAHOUT
/Minhash+Clustering
†. LSH code is seen in http://www.mit.edu/ andoni/LSH/

5.3 Weight Computing
The second MapReduce job is in charge of computing
attribute-value weights using co-occurrence factors (see
Section 4.2.1). It is noteworthy that the input of mappers in
this module is the first job’s partitioning results. Attribute-
value weight is calculated according to distribution of data
objects in different data partitions rather than the entire
data set.

Algorithm 2 Attribute Weight
1: input: A−list;/* A−list is generated by the first job */
2: output: a weight table of attribute value ;
3: function MAP(key offset, values input)
4: O ← splitter.split(input.toString());
5: Ld ← newList;
6: for all (Oi : O) do
7: for all (Aj : A) do
8: for all (As : A) do
9: Ld ← ((aijais, j, s), 1);

10: end for
11: end for
12: end for
13: for all (Oi : O) do
14: for all (Aj : A) do
15: emit(< aij , j >,< i, Ld >);
16: end for
17: end for
18: end function
19: function REDUCE(key < aij , j >, values < i, Ld >)
20: sum← newArray;
21: for all (val: values) do
22: sum[0] ← sum[0]++; /*sum[0] is the occurrence number of

the attribute value aij on a single dimension Aj*/
23: for all (s=1;s<=j;s++) do
24: if (aijais) then
25: sum[s] ← sum[s]++; /*sum[s] means the number of

attribute value pair co-occurring on dimension Aj and As*/
26: end if
27: end for
28: end for
29: computing WAj

(aij) with formula (5) and sum[s];
30: emit(< aij , i, j >, WAj

(aij)) and Map B−list ← all the (<
aij , i, j >, WAj

(aij));
31: end function

Algorithm 2 depicts the pseudocode of the second job,
which carries out the following four steps.

Step 1. Data-partition set LA is derived from list A−list
(see Line 26 in Algorithm 1), which is an input data set of
the mapper (see Line 4 in Algorithm 2).

Step 2. To quantify the weight of attribute value aij , the
mapper counts (1) the occurrence of each attribute value
in a single dimension and (2) the co-occurrence of each
attribute-value pair among multiple dimensions (see Lines
4-17). ListLd keeps track of the co-occurrences among the
multiple dimensions.

Step 3. To alleviate high network communication over-
head experienced in the shuffle stage, we aggregate a large
number of small key/value pairs into a large compound
one (see Lines 13-17). Tuple < aij , j > is taken as the key
of mapper’s output, where j is an index of dimension on
which attribute value aij is located. The compound value
of mapper’s output is tuple < i, Ld >, where the elements
of list Ld are tuple < (aijais, j, s), 1 >. aijais is the attribute-
value pair {aij , ais} co-occurring on dimensions Aj and As

(see in Line 9).

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

8

Step 4. A reducer merges local occurrences of attribute
values and co-occurrences of attribute-value pairs to com-
pute the weight value of aij (see Lines 19-31). The output
of the reducer is a list in the format of pair 〈< aij , i, j >
,W (aij)〉 (see Line 30). The output of the second job is a list
(i.e., B-list) of pairs in the format of {< aij , i, j >,W (aij)},
which is fed into the third MapReduce jobs as an input
(see Line 3 of Algorithm 3).

5.4 Parallel Clustering with Hadoop

With data partitioning and weight computing in place, we
implement a two-step approach to obtaining hierarchical
subspace-clustering results in the third MapReduce job. It
is worth noting that the input of mappers in the third job
is the output of the reducers in the second job. In step
one, adopting the subspace clustering method (see Section
4.2.1), local clustering results are produced by the third
job’s mappers (see the mapper of Algorithm 3) on each
data node. When it comes to the second step, the global
clustering stage aggregates local clusters to determine a
dendrogram using the hierarchical agglomerative cluster-
ing algorithm (see the reducer of Algorithm 3).

5.4.1 Local-step-based Subspace Clustering

The local-clustering stage performs the following four
steps to form local subclusters of different partitions
in the mapper, the output of which is a tuple of
〈subclusterID, sci〉. subclusterID in the tuple is an iden-
tification of subcluster sci. Subcluster sci is yielded based
on subspace clustering algorithm (see Section 4.2.1). These
pairs generated by the third job’s mappers are shuffled and
combined into the reducers, which are technical underpin-
nings of the global-clustering stage.

Step 1. A table (see Line 1 in Algorithm 3) of weighted
partitions is created by loading list B−list.key, where
B−list is an output of the second job (see Line 30 in
Algorithm 2).

Step 2. From a local input split, each mapper sequen-
tially reads data objects and randomly selects a data object
to store in list SC as the first subcluster (see Line 5). Here,
list SC stores subclusters corresponding to local input
splits.

Step 3. This process is outlined in Lines 7-26 of Algo-
rithm 3. To maximize the clustering-quality function Q(C) (
see Eq.1), we address two vital issues, namely, (1) each data
object (e.g., Oi) of the input split is assigned to an existing
subcluster or creates a new subcluster to maximize Q(C) in
initial clustering (see Lines 7-21), and (2) some subclusters
are merged to maximize Q(C) in the local-merging stage
(see Lines 22-26), thereby guaranteeing accuracy of initial
clustering results in addition to decreasing communication
overhead.

Step 4. The output of the mapper is a list of pairs
{subclusterID, sci}, in which subcluster sci produced by
the preceding steps indicates local subspace-clustering re-
sults (see also Lines 27-29).

Algorithm 3 Parallel Hierarchical Subspace-Clustering.
1: input: dataset, B−list; ;/* B−list is generated by the second job */
2: output: clustering result;
3: function MAP(key offset, values input)
4: O ← splitter.split(input);
5: scl ← any one data object of O;
6: max← 0;
7: for all (Oi : O) do
8: for all (sck : SC) do/*SC is the subcluster set */
9: if (Q({Oi}∪sck)-Q({Oi})-Q(sck)>0) then

10: if (Q({Oi}∪sck)> max) then/* Q() is cluster quality
computed using Eq. 1*/

11: maxid=k;
12: max=Q({Oi}∪sck);
13: end if
14: else
15: SC ← {Oi}; /*Oi generates a new subcluster*/
16: end if
17: end for
18: if (max! = 0) then
19: SC ← scmaxid∪{Oi}; /*Oi is allocated a subcluster*/
20: end if
21: end for
22: for all (sci : SC) do
23: for all (scj : SC) do
24: Merge subcluster sci and scj to maximize Q(SC);
25: end for
26: end for
27: for all (sci : SC) do
28: emit(subclusterID,sci);
29: end for
30: end function
31: function REDUCE(key subclusterID, values sci)
32: for all (val : values) do
33: SC ← val;
34: end for
35: for all (sci : SC) do
36: for all (scj : SC) do
37: search most similar two subcluster (sci and scj);
38: Merge sci and scj to generate a dendrogram with HAC

method;
39: end for
40: end for
41: emit(key,dendrogram);
42: end function

5.4.2 Global-step-based HAC

Local clustering results yielded by the aforementioned
mappers may be insufficiently accurate from a global
perspective. This problem is solved by global clustering
handled in the reducers of Algorithm 3, which executes
two steps to originate a hierarchical structure of global
clustering results. The input of a reducer is a list of
pairs (i.e., {subclusterID, sc}) obtained from the third job’s
mapper output (see Line 28 in Algorithm 3).

Step 1. SC is created to maintain ultimate clustering
results in the form of a dendrogram (see Lines 32-34 in
Algorithm 3).

Step 2. A global clustering result is made possible by
iteratively aggregating the most similar subclusters using
the hierarchical agglomerative clustering algorithm (see
Section 2.1). Each reducer emits a pair 〈key, dendrogram〉,
where dendrogram means the global clustering result in
format as hierarchical tree structure (see Lines 35-42).

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

9

6 EXPERIMENTAL SETUP

We evaluate the performance of PAPU on a real-world 24-
node Hadoop cluster. Each computing node has an Intel
E5-1620 v2 series 3.7G quad core processor, 16 GB main
memory. We install the Centos 6.4 OS, Java JDK 10.0.2,
and Hadoop 3.0 on the cluster. The capacity of disks in the
namenode and datanode are 500GB and 2TB, respectively.
We use the default parameters to configure the Hadoop
cluster.

6.1 Datasets
The performance evaluation is driven by both synthetic
(see Section 6.1.1) and real-world (see Section 6.1.2)
datasets processed by PAPU on the Hadoop cluster.

TABLE II. Characteristics of the synthetic and real-world datasets.

Dataset Type Size(MB) # Objects # Dims # Clusters

Type1 Synthetic 2×103 0.5×108 100 20

Type2 Synthetic 4×103 1×108 100 20

Type3 Synthetic 6×103 2×108 100 30

Type4 Synthetic 8×103 4×108 100 30

Splice Real(UCI) 0.312 3190 61 3

Mushroom Real(UCI) 0.365 8124 22 2

Spectrum Real 349 520403 91 5

6.1.1 Synthetic Dataset
The four synthetic datasets (i.e., Type1 ∼ Type4) are gener-
ated to resemble various practical applications reported in
the literature [27]. We create the four synthetic datasets
using an existing data generator toolkit [32], which is
available on the web site‡.

The structural discrepancies among the four synthetic
datasets are vividly demonstrated in Fig. 3. The attribute
subspaces are completely disjoint among multiple clusters
in Type1. Type2 has an array of sharing objects across a
group of clusters. There is intersection among the attribute
subspace of different clusters in Type3. Unlike Type1,
Type4 is a non-equilibrium dataset, cluster sizes of which
change greatly.

Fig. 3. Type1 ∼ Type4 are four synthetic datasets. In these datasets, there are three
categorical attributes (i.e., A1, A2, A3), four objects (i.e., O1, O2, O3, O4), and two
clusters (i.e., C1, C2).

‡. http://www.datgen.com

6.1.2 Real-World Datasets
Two real-world datasets (see also Table II) are processed to
test the clustering algorithms. The first dataset is selected
from the widely adopted UCI repository§(i.e. Splice [27],
Mushroom [29][28][9][32]); the second one is the Celestial
Spectrum data released by the China National Astronom-
ical Observatory [33]. All the continuous dimensions are
discretized into finite categorical values in the Spectrum
datasets.

6.2 Performance Metrics
The three evaluation criteria or metrics applied to assess
the quality of clustering algorithms include (1) adjusted
rand index (ARI), (2) Jaccard index (Jaccard), and (3) purity
metric (Pur) [9].

Adjusted rand index or ARI mainly evaluates the simi-
larity between clustering results and actual clusters (a.k.a.,
ground-truth clusters). Jaccard determines the proportion
of correctly divided data pair to total ones. Pur expresses
the ratio of dominant data objects in each cluster; Pur is
calculated as a weighted sum of each cluster’s purity. A
large value indicates good lustering performance for the
three performance metrics (ARI , Jaccard and Pur).

We employ the Speedup measures [34] to quantify the
parallel performance of our PAPU; the Speedup metric is
calculated as follows:

Speedup(p) =
T1

Tp
(9)

where p represents the number of nodes, T1 is the exe-
cution time of the parallel algorithm running on a single
processor and Tp is the execution time spent on p nodes
processing the same amount of data. The speedup metric
intuitively shows the scalability of the parallel algorithm.

7 EXPERIMENTAL RESULTS

7.1 Data-partitioning Impacts on Clustering
In the first group of experiments, we evaluate the impacts
of data partitioning on clustering efficiency of PAPU driven
by an assortment of synthetic datasets. Fig. 4 shows the
efficiency of the data-partitioning-enabled and non-data-
partitioning-enabled PAPU running on the 16 computing
nodes.

Let us vary the dataset type from type1 to type4, the run-
ning times of which are plotted in Fig. 4. The average run-
ning time of the data-partitioning-enabled PAPU is 18.25%
faster than that of the non-data-partitioning-enabled coun-
terpart in the tested datasets. The reason is two-fold. First,
the data-partitioning strategy maps similar data into one
block prior to the clustering phase, based on which PAPU
effectively reduces clustering ranges while minimizing
the number of pairwise-distance computations. Second in
the local-clustering phase of the data-partitioning-enabled
PAPU, the number of subclusters in the each mapper is
significantly decreased, thereby effectively reducing the
reduce-phase running time.

§. http://archive.ics.uci.edu/ml/datasets.html

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

10

Fig. 4. Clustering-efficiency comparisons between the data-partitioning-enabled
PAPU and the non-data-partitioning-enabled PAPU. We vary the data distribution
and the number of data objects in the four testing datasets. The number of
computing nodes is set to 8.

7.2 Impact of LSH-bucket Granularity

Locality Sensitive Hashing or LSH is applied to produce
multiple buckets in our data-partition strategy (see Sec-
tion 4.1). In this group of experiments, we evaluate the
impacts of bucket granularity on the efficiency of PAPU,
where we employ the ratio of bucket number to computing
node number to quantify bucket granularity. The number
of buckets - representing the number of map tasks -
theoretically implies the degree of parallelism.

Fig. 5. Impacts of bucket quantity on the efficiency of PAPU. Four synthesis datasets
are tested (i.e., Type1, Type2, Type3 and Type4). The number of computing nodes
is set to 8.

Fig. 5 reveals that the running time of PAPU drops
with the increasing bucket granularity. Interestingly, the
reduction trend diminishes gradually thanks to three main
reasons. First, the total execution time of the third job is
determined by the slowest worker node and incompletely
rest with the number of map tasks. Second, increasing the
number of buckets consumes more time in merging sub-
clusters yielded during the course of the local clustering
phase. The efficiency improvement stops at a particular
number of bucket granularity due to detrimental I/O
overheads. Finally, the entire running time is constrained
by the global clustering step, which leaves little room
for improvement contributed by the sequential clustering
process with an increasing number of map tasks.

7.3 Comparison s with Existing Algorithms

The goal of this group of experiments is to assess the
clustering accuracy and efficiency of our PAPU and the
other alternative clustering algorithms (see Table III).

We contrast the clustering precision and efficiency of
our PAPU with DHCC [28], PROCAD [9] and PARA-
BLE [15] driven by the seven testing datasets, which are
composed of Splice and Mushroom available from the
UCI datasets and the four synthetic datasets and the
subsets extracted from the spectrum dataset. DHCC is a
typical non-parametric clustering algorithm using the idea
of HAC for reference. PROCAD is a subspace clustering
algorithm based on attribute-weight calculation using fre-
quency of attribute values in a single dimension. DHCC
and PROCAD are sequential clustering algorithms running
a single node. To fairly compare with DHCC and PRO-
CAD, we run our PAPU without data-partition on a single
node(a.k.a.,serial PAPU). We acquire the partial source
code of the DHCC algorithm from its author. We also
realize PROCAD and DHCC use the programming lan-
guage Java and the integrated development environment
Eclipse. We implement the parallel clustering algorithm
(i.e., PARABLE) using Java JDK 10.0.2 and Hadoop 3.0.
PARABLE is the epitome of parallel hierarchical cluster-
ing algorithms that take full advantage of random data
partitioning (see Section 8 for the details). The number of
partitions M as the parameter of PARABLE is set to 30.

We observe from Fig. 6 that the differences among
the three competitive algorithms are insignificant in the
four synthetic datasets. Fig. 6 shows that the clustering-
evaluation indicator of serial PAPU is superior to those of
the other two algorithms in most of the testing datasets;
this trend is especially true in the Splice dataset. The
attribute values of the Splice dataset have only four op-
tions (i.e., A, T, G, C). A small domain usually leads to
low discrimination of attribute weight, thereby affecting
final clustering results of the clustering algorithms that
rely on a single attribute (e.g., PROCAD). Serial PAPU
obtains an optimal clustering effect in the Splice dataset,
because subspace clustering powered by the co-occurrence
frequency of attribute value (see Section 4.2.1 for details)
is accomplished in dealing with the dataset consisting of
the small-range attributes in the local clustering phase.
The clustering performance of serial PAPU on Mushroom
is second only to PROCAD. The key reason is that se-
rial PAPU benefits from the multi-attribute frequency of
attribute weights using Eq. 4 at the cost of meticulous
clustering problems. As such, serial PAPU ensures the pu-
rity of subclusters while affecting the other two indicator
measures.

Fig. 6 shows that our PAPU is superior to PARABLE in
terms of clustering precision. In the map phase, the PARA-
BLE algorithm randomly divides an entire dataset into an
array of smaller partitions, each of which is handled by the
sequential HAC algorithm to form local clustering results
in mappers. There is no information exchange among the
mappers. Using the LSH-based data-partitioning strategy,
our PAPU is adept at grouping similar data objects into
one data block or more prior to data clustering. PAPU
delivers higher accuracy than PARABLE, because PAPU
orchestrates subspace clustering to yield multiple subclus-
ters that lead to an approximate global dendrogram.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

11

(a) Compare PAPU with the existing algo-
rithms in terms of ARI.

(b) Compare PAPU with the existing algo-
rithms in terms of Purity.

(c) Compare PAPU with the existing algo-
rithms in terms of Jaccard.

Fig. 6. Compare PAPU with the existing algorithms in terms of ARI , Jaccard, and Pur. The seven tested datasets include the UCI dataset Mushroom, Splice and
subsets extracted from the synthetic, spectrum dataset. The three existing algorithms are DHCC [28], PROCAD [9] and PARABLE [15].

Fig. 7(a) reveals clustering efficiency of sequential PAPU
and the other two sequential algorithms. We vary the
number of data objects (i.e., from 5000 to 40000) extracted
from synthetic dataset Type1. The extensibility of sequen-
tial PAPU is only second to PROCAD. PAPU calculates
attribute weights according to co-occurrence frequencies
among multiple attributes. With a growing number of data
objects, PAPU’s computation time surges. Fortunately, our
PAPU merely searches, in the subspace-clustering phase,
the most appropriate one among the existing subclusters.
In other words, PAPU avoids searching an entire dataset to
slash computing cost. PAPU’s time spent in forming sub-
clusters is significantly lower than DHCC’s time consumed
in merging one pair of closest clusters.

Fig. 7(b) plots an efficiency trend of PAPU and PARABLE
when the data size varies from 0.5 GB to 2.0 GB. PAPU
outperforms PARABLE thanks to two reasons. First, PAPU
adopts the based-LSH data partitioning method to split big
data into small and independent partitions, which helps in
effectively reducing network load and cutting redundant
data exchange. Second, in each computing node, subspace
clustering on similar objects can dramatically improve the
clustering speed as well as parallelism.

(a) Compare serial PAPU with
DHCC and PROCAD varying the
number of data objects.

(b) Compare PAPU with PARA-
BLE varying the number of data
objects.

Fig. 7. Clustering-efficiency comparisons between PAPU and the existing algorithms.
We vary the number of data objects in synthetic dataset Type1.

7.4 Extensibility

In this group of experiments, we mainly evaluate the
extensibility of our PAPU on the Hadoop platform. Fig. 8

plots the running times of PAPU as a function of the
number of objects and attributes, respectively.

Fig. 8(a) shows the impacts of data size (i.e., varying
from 2.0 GB to 8.0 GB) and the number of computing
nodes on PAPU’s running time. We observe that expanding
the data size gives rise to the increasing execution time in
almost a linear manner. Fig. 8(a) clearly reveals that the
overall running time of PAPU is enlarged along with an
increasing dataset size. The large amount of time spent in
dealing with a large-scale dataset is obviously alleviated
by increasing computing nodes.

Fig. 8(b) depicts the execution times of PAPU when the
number of dimensions varies from 20 to 100. Adopting
co-occurrence frequencies among multiple dimensions in
the subspace-clustering stage of PAPU, we observe that
the time spent in each mapper rises when the number of
dimensions goes up. Fig. 8(b) shows when we expand the
number of computing nodes from four to 24, the execution-
time increasing ratio is reduced by a factor of 2.11. Intu-
itively, scaling up the Hadoop cluster size (i.e., the number
of computing nodes) is conducive to the acceleration of
the subspace- clustering process. Nevertheless, the PAPU’s
performance difference between the 20-node and 24-node
cases is marginal due to adverse communication overhead
among a large number of nodes.

(a) Impacts of the numbers of
objects on PAPU’s running times
measured in seconds.

(b) Impacts of the numbers of at-
tributes on PAPU’s running times
measured in seconds.

Fig. 8. The extensibility of the PAPU algorithm. The number of computing nodes is
varied from 4 to 24. Tested datasets include Type1, Type2, Type3, and Type4,
the data size of which varies from 2.0 to 8.0 GB. The attributes size is configured
in a range between 20 and 100.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

12

7.5 Scalability
The scalability of PAPU is evaluated by increasing the
number of computing nodes in Hadoop platform from 4
to 24 with an increment of 4.

(a) PAPU’s running times of pro-
cessing the four datasets

(b) PAPU’s speedups of process-
ing the four datasets

Fig. 9. The scalability of the PAPU algorithm. Tested datasets include the four
synthetic datasets. The data size of Type4 is the largest and that of Type1 is
the smallest. The number of computing nodes is varied from 4 to 24.

The results plotted in Fig. 9(a) indicate a significant
downtrend for the running time of PAPU with the expand-
ing number of computing nodes. Such a trend becomes
more pronounced for large-scale datasets. The results
apparently confirm that PAPU is a parallel hierarchical
subspace-clustering algorithm delivering good scalability
regardless of the synthetic or real-world datasets. We as-
cribe the high scalability of PAPU to three factors. First,
the data-partitioning strategy divides a large dataset into
a number of data blocks uniformly stored on multiple
nodes. Running time of PAPU is inversely proportional
to the number of computing nodes. Second, counting co-
occurrence frequencies among relevant dimensions is a
very time-consuming yet important stage, the execution
time of which is proportional to the number of data objects
assigned to one node. Third, PAPU’s local-clustering phase
performs parallel computing, where subsets of the data
partitions are handled concurrently.

Fig. 9(b) demonstrates that PAPU exhibits an approxi-
mately linear speedup ratio indicating high parallel effi-
ciency on most of the datasets, particularly the big ones.
The rationale behind good speedup performance is given
as follows. When it comes to large datasets, PAPU in-
troduces fairly low interconnect-communication overhead
compared with heavy computing load. In the small-data
cases, high communication overhead overshadows light
computing workload. Thus, it is arguably true for small
datasets that an optimum point of PAPU‘s scalability is
likely to occur with an increasing number of nodes. PAPU‘s
communication overhead incurred by computing global
dendrograms simply accounts for a small portion of the
overall running time. The main reason is two-fold. First,
thanks to LSH-based data partitioning, most data objects
are assigned to their final location of dendrogram in the
map stage. Second, the shuffle stage is responsible for
transferring intermediate data from mappers to reducers.
Sorting is an important yet time-consuming component in
the shuffle process. A salient strength of LSH-based data-
partitioning is that a significant portion of intermediate

data are pre-sorted in the PAPU‘s map phase, thereby mak-
ing merge-sorting operation trivial in the reduce phase.

8 RELATED WORK
In this section, we first review existing techniques in the
realm of data-correlation-based data partitioning (see Sec-
tion 8.1). Then, we discuss parallel hierarchical clustering
schemes or parallel HAC in Section 8.2. Table III sum-
marizes the comparisons between PAPU and the existing
clustering schemes.

TABLE III. Comparisons among the sequential and parallel clustering algorithms.

Algorithms Platform Partitioning Subspace HAC Data

PROCAD[9] NO × X × C

DHCC [28] NO × × X C

Li [35] SIMD × × X N

Olson[36] PRAM × × X N

HybridHC[2] OpenMP X × X S

pPOP[4] MPI X × X N

Z. Du[37] MPI × × X N

PARABLE [15] Hadoop × × X N

IncDiSC[38] Hadoop × × X I

PAPU Hadoop X X X C

8.1 Data-Partition Method
Data partitioning in database systems has been widely
studied in both single-server systems and distributed
systems [39]. Data-partitioning techniques have been ap-
plied in a variety of fields such as frequent subgraph
mining [40], kNN joins [41], and frequent itemset min-
ing [39]. A recent study suggests that data-partitioning
methods play a vital role in parallel hierarchical cluster-
ing [2][13][42]. An efficient data-partitioning scheme can
reduce the number of pairwise distances computed for
hierarchical clustering. More importantly, data-partitioning
methods contribute to hierarchical-clustering results with
performance guarantees. Data partitioning strategies that
rely on data correlations offer an effective way of solving
large-scale clustering problems using hierarchical cluster-
ing algorithms. In short, the efficiency of the parallel HAC
algorithms is improved using a valid partitioning scheme
without compromising their accuracy [4].

An adaptive Landmark-based AHDC [43] method was
proposed to partition a large-scale sequence dataset into
groups [2]. As a building data-block technique, the adap-
tive landmark-based selection scheme was applicable for
flat clustering. Although coming with theoretical guaran-
tees on clustering performance [43], two major drawbacks,
relatively high time complexity and poor noise immunity,
make AHDC inadequate for dealing with large datasets.

Using partially overlapping partitioning, Dash et al. [4]
proposed the pPOP algorithm converting a big-data clus-
tering problem into multiple local-clustering problems. A
dataset is partitioned into c overlapping cells with parallel
axis. In each iteration, the pPOP algorithm searches the
closest pair of clusters for each cell, followed by determin-
ing the overall closest pair from those pairs. Only one pair
of clusters can be selected as the result of each iteration.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

13

8.2 Parallel Hierarchical Clustering
Compared to the flat clustering methods, hierarchical clus-
tering algorithms offer several advantages thanks to their
non-parametric nature and the ability to elucidate the
overall structure of a dataset. A nonparametric algorithm
PROCAD was presented by Bouguessa [9] as a project
clustering method extended from hierarchical clustering.
PROCAD evaluates the clustering weights of attributes
with occurrence frequency on their own dimensions. Xiong
et al. [28] proposed DHCC - a hierarchical clustering
scheme. DHCC splits an initial cluster based on a multiple
correspondence analysis, which repeatedly chooses one
cluster to split into two subclusters optimizing clustering
performance.

Although hierarchical clustering offers a handful of ad-
vantages, such strategy faces a challenge of being effec-
tively parallelized due to high computational cost and data
dependences. Consequently, little work has been carried
out on parallel hierarchical clustering [2][15][4][1], espe-
cially in the context of the Hadoop framework [15].

Du et al. developed a parallel hierarchical clustering
algorithm using distributed memory architectures [37].
This algorithm, however, is unadaptable to process large
datasets due to a prerequisite of calculating a distributed
distance matrix.

In the aforementioned hierarchical clustering ap-
proaches, it is an open issue to create global clustering
results by generating local sub-clusters constructed on
each computing node. Conventional parallel hierarchi-
cal clustering algorithms improve efficiency by distribut-
ing iterative-agglomerating tasks into multiple computing
nodes. Unfortunately, random data partitioning adopted
by traditional parallel hierarchical clustering are inade-
quate for achieving both high accuracy and efficiency. It
is worth noting that such a local-result merging process is
a key to clustering accuracy. More importantly, one major
discrepancy between the above algorithms and our PAPU
is that our scheme leverages local results to approximate
global dendrogram thanks to data partitioning.

9 CONCLUSION AND FUTURE WORK

In this paper, we investigated the problem of hierarchical
clustering for categorical data. We paid particular attention
on parallel hierarchical clustering using the MapReduce
programming model. Our approach addresses the two
problems encountered in the existing hierarchical cluster-
ing techniques. First, due to high computational cost and
data dependencies, hierarchical clustering is difficult to
parallelize. Second, random partitioning methods running
on the MapReduce computing framework are inadequate
for significantly improving clustering efficiency and main-
taining an acceptable accuracy.

We proposed a MapReduce-based hierarchical subspace-
clustering algorithm PAPU coupled with attribute-value
weights using a data-partitioning strategy. Conducting
extensive experiments driven by the synthetic and real-
world large-scale datasets, we compared our PAPU with

two existing clustering algorithms - PROCAD and DHCC.
The experimental results show that the PAPU scheme out-
performs the two existing algorithms in terms of adjusted
rand index, Jaccard index, and the purity metric in most of
the testing dataset. Furthermore, the results also demon-
strate that running on the MapReduce framework, PAPU
achieves high performance in terms of extensibility and
scalability. Importantly, PAPU exhibits an approximately
linear speedup with the number of computing node in a
Hadoop cluster.

As a future research direction, we intend to adopt an ad-
justable mechanism based on multi-granularity databucket
to solve the data skewness problem. Such a mechanism
aims to judiciously assign buckets with diversified granu-
larities to computing nodes by taking available resources
into account. We will employ this mechanism to mitigate
data skewness in a follow-up study.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under Grant No.61876122. Xiao Qin’s
work is supported by the U.S. National Science Foundation
under Grants IIS-1618669, CNS-0917137, and CCF-0845257.
The authors would like to thank Mojen Lau and Christian
Kauten for proofreading and editing this paper.

REFERENCES

[1] Y. Jeon and S. Yoon, “Multi-threaded hierarchical clustering by
parallel nearest-neighbor chaining,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 9, pp. 2534–2548, 2015.

[2] Q. Mao, W. Zheng, L. Wang, Y. Cai, V. Mai, and Y. Sun, “Parallel
hierarchical clustering in linearithmic time for large-scale sequence
analysis,” in IEEE International Conference on Data Mining, 2016, pp.
310–319.

[3] S. Rajasekaran, “Efficient parallel hierarchical clustering algorithms,”
IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 6,
pp. 497–502, 2005.

[4] M. Dash, S. Petrutiu, and P. Scheuermann, “ppop: Fast yet accurate
parallel hierarchical clustering using partitioning,” Data and Knowl-
edge Engineering, vol. 61, no. 3, pp. 563–578, 2007.

[5] C. Keribin, V. Brault, G. Celeux, and G. Govaert, “Estimation and
selection for the latent block model on categorical data,” Statistics
and Computing, vol. 25, no. 6, pp. 1201–1216, 2015.

[6] J. Wang, M. Li, J. Chen, and Y. Pan, “A fast hierarchical clustering
algorithm for functional modules discovery in protein interaction
networks,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 8, no. 3, pp. 607–620, 2011.

[7] D. Wei, Q. Jiang, Y. Wei, and S. Wang, “A novel hierarchical clus-
tering algorithm for gene sequences,” BMC Bioinformatics, vol. 13,
no. 1, pp. 1–15, 2012.

[8] A. A. Esmin, R. A. Coelho, and S. Matwin, “A review on particle
swarm optimization algorithm and its variants to clustering high-
dimensional data,” Artificial Intelligence Review, vol. 44, no. 1, pp.
23–45, 2015.

[9] M. Bouguessa, “Clustering categorical data in projected spaces,”
Data Mining and Knowledge Discovery, vol. 29, no. 1, pp. 3–38, 2015.

[10] N. Benjamas and P. Uthayopas, “Impact of i/o and execution
scheduling strategies on large scale parallel data mining,” in Infor-
mation Science and Service Science and Data Mining, 2013, pp. 654–660.

[11] J. M. Cope, N. Trebon, H. M. Tufo, and P. Beckman, “Robust data
placement in urgent computing environments,” in IEEE International
Symposium on Parallel and distributed Processing, 2009, pp. 1–13.

[12] T. Xie, “Sea: A striping-based energy-aware strategy for data place-
ment in raid-structured storage systems,” IEEE Transactions on Com-
puters, vol. 57, no. 6, pp. 748–761, 2008.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2879332, IEEE
Transactions on Computers

14

[13] C. Jin, M. M. A. Patwary, W. Hendrix, A. Agrawal, W. K. Liao,
and A. Choudhary, “Disc: A distributed single-linkage hierarchical
clustering algorithm using mapreduce,” Work, 2013.

[14] Z. Liu, Q. Zhang, R. Ahmed, R. Boutaba, Y. Liu, and Z. Gong, “Dy-
namic resource allocation for mapreduce with partitioning skew,”
IEEE Transactions on Computers, vol. 65, no. 11, pp. 3304–3317, 2016.

[15] S. Wang and H. Dutta, “Parable: A parallelrandom-partition based
hierarchicalclustering algorithm for the mapreduce framework,”
Center for Computational Learning Systems Columbia University, 2011.

[16] J. Qian, Q. Zhu, and H. Chen, “Multi-granularity locality-sensitive
bloom filter,” IEEE Transactions on Computers, vol. 64, no. 12, pp.
3500–3514, 2015.

[17] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, and A. Song, “Efficient ag-
glomerative hierarchical clustering,” Expert Systems with Applications,
vol. 42, no. 5, pp. 2785–2797, 2015.

[18] M. Ackerman and S. Ben-David, A characterization of linkage-based
hierarchical clustering. JMLR.org, 2016.

[19] A. Adler, M. Elad, and Y. Hel-Or, “Linear-time subspace clustering
via bipartite graph modeling,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 26, no. 10, pp. 2234–2246, 2015.

[20] G. Gan and K. P. Ng, “Subspace clustering using affinity propaga-
tion,” Pattern Recognition, vol. 48, no. 4, pp. 1455–1464, 2015.

[21] T. D. Wickens, “Categorical data analysis.” Annual Review of Psychol-
ogy, vol. 49, no. 1, pp. 109–109, 1998.

[22] K. A. Heller and Z. Ghahramani, “Bayesian hierarchical clustering,”
in International Conference on Machine Learning, 2005, pp. 297–304.

[23] A. K. Paul, W. Zhuang, L. Xu, M. Li, M. M. Rafique, and A. R.
Butt, “Chopper: Optimizing data partitioning for in-memory data
analytics frameworks,” in IEEE International Conference on CLUSTER
Computing, 2016, pp. 110–119.

[24] K. M. Lee and K. M. Lee, “A locality sensitive hashing technique
for categorical data,” Applied Mechanics and Materials, vol. 244, pp.
3159–3164, 2013.

[25] J. Leskovec, A. Rajaraman, and J. D. Ullman, “Mining of massive
datasets,” 2012.

[26] B. Bahmani, A. Goel, and R. Shinde, “Efficient distributed locality
sensitive hashing,” in Proceedings of the 21st ACM international confer-
ence on Information and knowledge management, 2012, pp. 2174–2178.

[27] X. He, J. Feng, B. Konte, S. T. Mai, and C. Plant, “Relevant over-
lapping subspace clusters on categorical data,” in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2014,
pp. 213–222.

[28] T. Xiong, S. Wang, A. Mayers, and E. Monga, “Dhcc: Divisive hier-
archical clustering of categorical data,” Data Mining and Knowledge
Discovery, vol. 24, no. 1, pp. 103–135, 2012.

[29] E. Cesario, G. Manco, and R. Ortale, “Top-down parameter-free
clustering of high-dimensional categorical data,” IEEE Transactions
on Knowledge and Data Engineering, vol. 19, no. 12, pp. 1607–1624,
2007.

[30] O. Yim and K. T. Ramdeen, “Hierarchical cluster analysis: Com-
parison of three linkage measures and application to psychological
data,” Tutorials in Quantitative Methods for Psychology, vol. 11, no. 1,
pp. 8–21, 2015.

[31] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu,
“Using of jaccard coefficient for keywords similarity,” Lecture Notes
in Engineering Computer Science, vol. 2202, no. 1, 2013.

[32] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik, “Limbo:
Scalable clustering of categorical data,” in Advances in Database
Technology - EDBT 2004, International Conference on Extending Database
Technology, Heraklion, Crete, Greece, March 14-18, 2004, Proceedings,
2004, pp. 123–146.

[33] J. Zhang, X. Yu, Y. Li, S. Zhang, Y. Xun, and X. Qin, “A relevant
subspace based contextual outlier mining algorithm,” Knowledge-
Based Systems, vol. 99, no. C, pp. 1–9, 2016.

[34] Y. Yang, T. Rutayisire, C. Lin, T. Li, and F. Teng, “An improved
cop-kmeans clustering for solving constraint violation based on
mapreduce framework,” Fundamenta Informaticae, vol. 126, no. 4, pp.
301–318, 2013.

[35] X. Li, Parallel Algorithms for Hierarchical Clustering and Cluster Validity.
IEEE Computer Society, 1990.

[36] C. F. Olson, “Parallel algorithms for hierarchical clustering,” Pattern
Analysis and Machine Intelligence IEEE Transactions on, vol. 12, no. 11,
pp. 1088–1092, 1995.

[37] Z. Du and F. Lin, “A novel parallelization approach for hierarchical
clustering,” Parallel Computing, vol. 31, no. 5, pp. 523–527, 2005.

[38] C. Jin, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary,
“Incremental, distributed single-linkage hierarchical clustering al-
gorithm using mapreduce,” in Symposium on High PERFORMANCE
Computing, 2015, pp. 83–92.

[39] Y. Xun, J. Zhang, X. Qin, and X. Zhao, “Fidoop-dp: Data partitioning
in frequent itemset mining on hadoop clusters,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 1, pp. 101–114, 2017.

[40] S. Aridhi, L. D’Orazio, M. Maddouri, and E. Mephu, “A novel
mapreduce-based approach for distributed frequent subgraph min-
ing,” Actes De La Confrence Rfia, 2014.

[41] X. Zhao, J. Zhang, and X. Qin, “knn-dp: Handling data skewness
in knn joins using mapreduce,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 3, pp. 600–613, 2018.

[42] C. Jin, R. Liu, Z. Chen, W. Hendrix, A. Agrawal, and A. Choud-
hary, “A scalable hierarchical clustering algorithm using spark,” in
IEEE First International Conference on Big Data Computing Service and
Applications, 2015, pp. 418–426.

[43] A. Krishnamurthy, S. Balakrishnan, M. Xu, and A. Singh, “Efficient
active algorithms for hierarchical clustering,” Computer Science, 2012.

Ning Pang received the MS in Computer Science
and Technology in 2007 from Shanxi University,
China. She is currently a Ph.D. student at Taiyuan
University of Science and Technology(TYUST). Her
research interests include data mining and parallel
computing.

Jifu Zhang received the BS and MS in Computer
Science and Technology from Hefei University of
Tchnology, China, and the Ph.D. degree in Pattern
Recognition and Intelligence Systems from Beijing
Institute of Technology, in 1983, 1989, 2005,re-
spectively. He is currently a Professor in the School
of Computer Science and Technology at TYUST.
His research interests include data mining, parallel
computing, and celestial spectrum data analysis.

Chaowei Zhang received the BS in Software En-
gineering in 2014 from North University of China,
China. He is currently a Ph.D. student in the De-
partment of Computer Science and Software Engi-
neering, Auburn University. His research interests
include natural language processing, data mining
and parallel computing.

Xiao Qin received the BS and MS degrees in
Computer Science from Huazhong University of
Science and Technology, China, and the Ph.D.
degree in Computer Science from the University
of Nebraska-Lincoln in 1992, 1999, and 2004, re-
spectively. Currently, he is a Professor in the De-
partment of Computer Science and Software Engi-
neering, Auburn University. His research interests
include parallel and distributed systems, storage
systems, fault tolerance, real-time systems, and
performance evaluation. He received the U.S. NSF

CAREER Award in 2009. He is a senior member of the IEEE.

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html

