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Controllability, Stabilizability, and Continuous-Time 
Markovian Jump Linear Quadratic Control 

Abstmct-This paper is concerned with the control of continuous-time 
linear systems that possess randomly jumping parameters which can be 
described by finite-state Markov processes. The relationship between ap- 
propriately defined controllability, stabilizability properties and the so- 
lution of the infinite time jump linear quadratic (JLQ) optimal control 
proMem is also examined. Although the solution of the continuous-time 
Markov JLQ problem with finite or infinite time horizons is known, only 
sufficient conditions for the existence of finite cost, constant, stabilizing 
controls for the infinite time problem appear in the literature. In this 
paper, necessary and suflcient conditions are established. These con- 
ditions are based upon new definitions of controllability, observability, 
stabilizability, and detectability that are appropriate for continuous-time 
Markovian jump linear systems. These definitions play the same role 
for the JLQ problem as the deterministic properties do for the linear 
quadratic regulator (LQR) problem. 

I.  INTRODUCTION AND PROBLEM RRMULATION 
AULT-PRONE dynamic systems may experience abrupt F changes in their structure and parameters, caused by phe- 

nomena such as component failures or repairs, changing sub- 
system interconnections, and abrupt environmental disturbances. 
Such systems can be modeled as operating in different “forms” 
[SI, where each form corresponds to some combination of these 
events. We consider continuous-time linear systems with Marko- 
vian jumps, modeled by 

x ( t )  = A ( r ( t ) ) x ( t )  + B(r( t ) )u( t )  (1) 
where t E [ t o ,  TI,  T may be finite or infinite, x ( t )  t kin is the 
x-process state, u ( t )  E K.1” is the x-process input, and A ( t ,  r ( t ) )  
and B ( t ,  r ( t ) )  are appropriately dimensioned real valued matri- 
ces. These matrices are functions of random process { r ( t ) } .  This 
form process {r(  t ) }  is a continuous-time discrete-state Markov 
process taking values in a finite set S = { 1, 2, . . . , s }  with tran- 
sition probability matrix P e { p l J }  given by 

p I J  = Pr ( r ( t  + A) = j j r ( t )  = i) 

where A > 0. Here A,, 2 0 is the form transition rate from i to 
Ai # A, and 

S 

A, = -A,, = A,, (3) 
J = 1 ,  J fi 
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as in [29]. Note that \AlJ I < cc because r ( t )  is a finite state 
Markov process [lo,  pp. 150-1511. The system (1)-(3) is linear 
in x and U ,  for any given form process sample path. Note that, in 
general, A ,  B and the A I J ’ s  could be explicit functions of time, 
as long as certain smoothness conditions are met. Let the initial 
values x0 and ro be independent random variables; ~0 is also in- 
dependent of the a-algebra generated by { r( t ) ,  t E ( to,  TI} .  By 
[29], since almost all sample paths of r ( t )  are constant except 
for a finite number of simple jumps in any finite subinterval of 
[ t o ,  T } ,  we can define the paths of x ( t )  by joining solution arcs of 
(1)  at jump points of r. The x ( t )  sample functions so determined 
are then continuous with probability one. 

Subject to (1)-(3), we consider the minimization of 

J ( ~ o ,  x(t01, r ( to) ,  T ,  U) = E [ x ’ ( t ) Q ( r ( t ) ) x ( t )  (4 
+ u’(t )R(r( t ) )u( t )  dtlx ( t o )  9 r ( t o ) }  (4) 1 

over form-dependent control laws $ E Q 

~ ( t )  = $( t ,  x ( t ) ,  r ( t ) )  $: [to, TI x R“ x s + mm 
where, for some constant k (depending on $), 

Il$(t, x ,  r )  - $ ( l ,  i 9  r)ll < kllx - i l l  9 

$( t ,  x ,  r )  < 4 1  + IIXlO 

for all t ,  x ,  2, r.  Note that this growth condition rules out the 
use of impulse controls. Matrices R and Q are real valued and 
symmetric with R(r(l))  positive definite and ( r ( t ) )  positive 

is the Eu- 
clidean norm of vector x,  and IIA (the largest eigenvalue of 
(A’A)I/*) is the corresponding operator norm of matrix A .  We 
adopt $ E Q, with Q being the class of admissible controls as in 
[29]. Then the joint process ( x ( t ) ,  r ( t ) :  to  5 f 5 T )  is a Markov 
process. We are assuming here that the values of r ( t )  and x ( t )  
are available at time t ,  without error. The expectation in (4) is 
over the joint process {x, r } .  The assumption that the form pro- 
cess value r ( t )  is available at time f is not realistic, although 
in some applications measured values of r ( t )  may be available 
with a small delay. In this paper, this perfect form observation 
assumption is crucial, since it allows us to avoid the “dual con- 
trol” problem. The existence and applicability of a “separation” 
theorem for unobserved r ( t )  are open questions. 

In general, systems described by (1)-(3) belong to the category 
of “hybrid systems,” since they combine a part of the state that 
takes values continuously ( x  E Rn)  and another part of the state 
that takes discrete values ( r  E S) .  Such hybrid systems have been 
considered for the modeling of electric power systems by Willsky 
and Levy [27],  for the control of a solar thermal central receiver 
by Sworder and Rogers 1261. Athans [2] suggested that this model 
setting also has the potential to become a basic framework in 
posing and solving control-related issues in Battle Management 
Command, Control, and Communications ( BM/C3) systems. 

The study of this continuous-time Markovian JLQ problem can 
be traced back (at least) to the work of Krasovskii and Lidskii 

semidefinite. Here \ Ix/I  = ( x :  + x2 + . . . + x ~ ) ~ / ~  9 
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1161. Later, Sworder [24] and Wonham [29] solved this prob- 
lem for finite T. Sworder used a stochastic maximum principle 
to obtain his result, and Wonham used dynamic programming. 
Wonham also solved the infinite time horizon version of this con- 
trol problem, and derived a set of sufficient conditions for the 
existence of a unique, finite steady-state solution. Mariton [ 191 
considered a discount cost version of the problem, where a con- 
troller that ensures stability in all forms was obtained. A discus- 
sion about this result appears in [20]. Mariton and Bertrand [21] 
also considered an output feedback version of the JLQ problem. 

Sworder and Robinson [25] considered problems with U- and 
x-dependent form transition rates. Such formulations can be used 
to describe systems where the rates of deterioration of the system 
components or other abrupt changes are dependent on the level of 
their load or inputs. Sworder and Robinson [25] obtained the non- 
linear partial differential equation related to the optimal solution 
of the x- and u-dependent problem. Unfortunately, the exact so- 
lutions of this class of nonlinear partial differential equations are 
not known in general. However, approximations can be obtained 

Discrete-time versions of the JLQ problem were solved for 
finite-time horizons in Blair and Sworder [4]. Birdwell et al. [3] 
examined the case where matrix A is not dependent on the form 
process. Necessary and sufficient conditions were given for the 
existence of steady-state solutions with finite expected costs for 
the discrete-time JLQ problem in [8]. In [12], controllability and 
observability definitions for discrete-time Markovian jump linear 
systems are described; these conditions can be used to determine 
the existence of finite steady-state JLQ solutions, similar to the 
concepts of deterministic controllability and observability in the 
linear quadratic regulator (LQR) problem. In [7] and [ l l ] ,  the 
JLQ problem for systems with x- and u-dependent form transition 
probabilities are considered. Related control problems concerning 
discrete-time jump linear systems appear in [13] and [14]. 

There are several definitions of stochastic controllability and 
observability in the literature for nonjumping systems. For jump- 
ing systems, a concept of E-controllability for continuous-time 
jump linear systems was derived in 1221. This is a local con- 
trollability idea, following the approach of 1151 and [23]. Suffi- 
cient conditions for it are based on a set of coupled differential 
equations. The problem is that for these controllability conditions 
(e:g., Remark 3 of [22]), the deterministic controllability of each 
pair [ A ; ,  Bi] does not ensure the existence of finite steady-state 
control for jump linear systems. This is demonstrated later, in Ex- 
ample 3 (Section VI). Alternative, global approaches of defining 
stochastic controllability are given in 161, 191, and 1301. However, 
these conditions deal with linear systems which are stochastic 
due to additive random noise terms. In the systems under study 
here, future values of matrices A ( r ( t ) )  and B(r( t ) )  are random 
due to their dependence on the future values of r ( t ) .  These are 
not known at time t .  However, form transition probabilities are 
known. The controllability properties for jump linear systems de- 
veloped here cannot be obtained by directly extending the results 
of 161, 191, or 1301. 

In this paper, we only address the time invariant case as in 
system (1)-(3), where A ,  B,  Q,  R ,  and X i j ’ s  are not explicitly 
dependent on time. Thus, without loss of generality, we let to = 0 
in (4). And, for notational simplicity, when r ( t )  = i we will 
denote A ( r ( t ) )  and B ( r ( t ) )  by Ai and B ; ,  etc. We will let M’ 
denote the transpose of matrix M ,  p,,,,,(M) be the eigenvalue of 
M with the largest real part, and pmln(M) be the eigenvalue of 
M with the smallest real part. 

~ 1 .  

This paper does the following. 
i) Stochastic controllability and stabilizability concepts for 

continuous time Markovian jump linear systems are developed 
(Section 11). 

ii) Necessary and sufficient conditions for stochastic control- 
lability and stabilizability are established by the stochastic Lya- 
punov function approach as in Kushner [18] (Section 111). 

iii) The properties of observability and detectability for jump 

linear system (1)-(3) are investigated by considering its dual sys- 
tem (Section IV). 

iv) Necessary and sufficient conditions for the existence of a 
finite cost solution to the infinite time horizon JLQ problem are 
derived based on the stochastic stabilizability and observability 
properties (Section V) . 

v) Four illustrative examples are given in Section VI. 

11. STOCHASTIC STABILIZABILITY AND CONTROLLABILITY 

Let x ( t ,  XO, ro,  U) denote the trajectory of the x-process from 
the initial state ( x ( 0 )  = x0, r(0)  = ro),  under the action of 
admissible control U( t ) .  We introduce the following definitions. 

Definition ]-Stochastic Stabilizability and Stochastic 
Controllability: We say that the system ( l ) ,  (2) is stochastical/y 
stabilizable if, for all finite x0 E Rn and r 0  E 8, there exists a 
linear feedback control law L(r( t ) )  that is constant for each value 
of r ( t )  E s: 

u ( t )  = --L(r(t))x(t)  

with IIL(r(t))ll 5 cc such that there exists a symmetric positive 
definite matrix M satisfying 

We say that this system is stochastically controllable if, for 
any x0 E Rn, r 0  E 8, E > 0 and given finite T > 0, there exists 
L(r( t ) )  as above for 0 < t < T such that 

(6) E{x’(T,  xo, r 0 ,  u)x(T,  x0, r09 u)lxo, .o> .= E .  

U 

Note that L depends on T and E as well as on xo and r0 .  Alterna- 
tively, in this stabilizability definition-we can require the existence 
of a positive finite constant C ,  with CJJx0JJ2 replacing xhMxo in 
( 5 ) .  

Under the above definition, stochastic stabilizability of a system 
means that there exists a linear feedback control law which drives 
the x state from any given initial (XO, ro)  asymptotically to the 
origin, in the mean square sense. With stochastic controllability, 
the x state can be driven into an eneighborhood of the origin 
in finite time T > 0. Except for certain special cases, it is not 
possible to drive the x state to the origin in the mean square sense 
in finite time. Using these definitions, stochastic controllability 
implies stochastic stabilizability, but the inverse is not true. 

111. CONDITIONS FOR CONTROLLABILITY AND STABlLlZABILlTY 

In this section we consider necessary and sufficient conditions 
for the stochastic controllability and stabilizability of (1)-(3). Re- 
call the following terminology for the finite-state Markov chains 
[IO], [ 171. A state is transient if a return to it is not guaranteed 
after leaving; it is recurrent if not transient. A state i is accessi- 
ble from state j if it is possible to begin in j and arrive in i with 
some finite time; states i and j are said to communicate if each 
is accessible from the other. As in [8], a communicating class is 
a set of states all accessible from each other; these states may be 
transient or recurrent. A closed communicating class is a commu- 
nicating class from which exit is not possible. An absorbing state 
is a single element closed communicating class. A form which is 
not in any communicating class is said to be noncommunicating. 
The results developed in this paper will depend upon the above 
classifications. 

Theorem I :  System ( l ) ,  (2) is stochastically stabilizable if 
and only if, for each form i E 8, there exists a control law 
u( t )  = -Lix(t)  such that for any given positive-definite sym- 
metric matrix N ; ,  the (unique) set of symmetric solutions, Mi,  
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of the s coupled equations 

779 

Lemma 1: The following conditions describe the controllabil- 

Suficiency: If, for all choices of scalar y , there exists a matrix 
ity of the pair ( A ,  B )  in (8). 

L, such that the equation 

(A  - BL,)’M, + M , ( A  - BL,) = -N ( 9 )  

has, for each positive definite symmetric matrix N, a unique 
positive definite symmetric solution M ,  with 

S 

+ ~ i j ~ j  = - N I  (7)  
J = I ,  J #I 

are positive definite for each i E 9. c! 
The proof of this theorem, contained in the Appendix, is based 

upon incorporating the formulas of Wonham [29] into the stochas- 
tic Lyapunov function framework of Kushner [18]. The proof is 
much more complex than the corresponding proof for determin- 
istic linear systems. This is because for each form, the stochastic 
Lyapunov function for system (1)-(3) must incorporate the dy- 
namics and control laws associated with all accessible forms. 

Note that if the system has only a single form, then (7) re- 
duces to the condition for deterministic stabilizability. That is, 
our stochastic stabilizability definition reduces to the determinis- 
tic one for deterministic systems. We will demonstrate later that 
stabilizability in each form is neither necessary (as shown by Ex- 
ample 1) nor sufficient (as shown by Example 3) for the stochastic 
stabilizability of system (1)-(3). In applying Theorem 1, we can 
choose N I  = Z for each i E $5, because the condition in Theorem 
1 holds for any {NI > 0: i E 5). 

Note that if a set of symmetric { M I  > 0: i E S }  is given and 
we must solve for { N ,  : i E S }  via (7),  then the positive definite- 
ness of { N I  } is only sufficient for the stabilizability of (1)-(3), 
but not necessary. This can be shown by a simple example. We 
consider a single form system, with 

-1 4 
A =  [ 0 B = [ 3  

If we choose M in (7) to be the identity matrix Z, then using (7) 
we obtain 

N =  [J :2] 
which is not positive definite. However, this system is obviously 
stabilizable, since both poles of A are negative. 

The necessary and sufficient conditions stated in Theorem 1 are 
not easy to check. The following corollary provides a necessary 
condition for stochastic stabilizability which is easier to test. 

Corollary I :  If ( l) ,  (2) is stochastically stabilizable, then in 
each form i, we can choose L; such that the matrix (A; - B; L; - 
; A i l )  is stable; that is, all its eigenvalues have negative real parts. 

This corollary is proved in the Appendix. Note that the stability 
of the matrix (A; -B; L; - h;Z) for each i E 8 is not sufficient for 
the stochastic stabilizability of (1)-(3). This is shown by Example 
2 in Section VI. 

Next we consider conditions for stochastic controllability of 
jump linear systems. Before doing this, however, it is useful 
to reexamine the controllability of linear time-invariant systems. 
Consider a time-invariant linear system (a single form jump linear 
system) : 

X ( t )  = Ax(t)  + Bu( t ) .  ( 8) 

Necessary and sufficient conditions for the pair ( A ,  B )  to be 
controllable are well known in terms of the rank of matrix 
[B:  AB:  . . . : A”-’B] and the ability to arbitrarily assign closed- 
loop eigenvalues. We introduce here an additional necessary con- 
dition and a sufficient condition which, although awkward when 
considering time-invariant systems, provide an approach for gen- 
eralization in the jump linear system case. 

then the pair (A ,  B )  is controllable. 

scalar y. there exists a matrix L ,  such that the equation 
Necessity: If (A ,  B )  is controllable, then for all choices of 

( A  - BL,)‘Mfl + M , ( A  - BL,) = -N (11) 

has, for each positive definite symmetric matrix N, a unique 
positive definite symmetric solution M ,  where , 

Proof: We first prove sufficiency. Suppose that ( 9 )  and (10) 
hold. Let p be an eigenvalue of ( A  - BL,) and let z be the 
eigenvector associated with p .  From (9 ) ,  we have (for arbitrarily 
chosen N = N’ > 0)  

Z’[(A - BL,)’M, + Ms(A - BL,)]z 

= ( p  + ~)Z’MSZ = -Z’Nz. 

Here Z’ is the transpose of the conjugate of z, and p is the 
conjugate of p .  Thus, 

p + p = 2 Re ( p )  = -Z’Nz/Z’M,z. 

Taking the maximum of both sides and applying (lo), 

Now we prove controllability by contradiction. Assume the pair 
( A ,  B )  is not controllable; that is, there exists a subspace 
V c I$, such that for xo E PI, no control u ( t )  can drive x ( t )  
to the origin at any finite time t = tl . From (13), if we let y 
tend to infinity, then we can assign the closed-loop eigenvalues 
arbitrarily far to the left in the complex plane (by choice of L,). 
But this means that x ( t )  can be driven to the origin within finite 
time using this L, , which contradicts the assumption. 

Next we prove necessity, also by contradiction. Suppose that 
(A,  B )  is controllable. Note that (1 1) is the standard stabilizabil- 
ity condition. Since (A ,  B )  is controllable, for given symmetric 
N > 0 there exist L,  such that (1 1) has a unique positive definite 
solution M ,  . Now assume that (12) does not hold; that is, there 
exists a given number y1 such that for any choice of L,, C Y ,  in 
(12) is less than or equal to yl . For eigenvalue p and associated 
eigenvector z of (A  - BL,), we have 

z’[(A - BLn)’Mn + Mn(A - BL,)Iz 

= ( p  +,E)Z’M,Z = -Z’Nz 

from (1 l) ,  hence, 

p + p = 2 Re (1.1) = -Z’Nz/Z’M,z. 
Taking the maximum of both sides, our assumption on yl implies 
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that 

This means that at least one of the closed-loop poles cannot be 
placed to the left of -yl . This contradicts the controllability of 

It is well known that -2 Re [pmin(A - BL)] and -2 Re 
[pmax(A - BL)] are lower and upper bounds on the rate of con- 
vergence of x’(t)x(t) toward zero. Applying Lemma 1, we have 

an I - 2 Re [pmIn(A - BL)I. 

Thus, as and a,, are also lower and upper bounds on the rate of 
convergence of x’( t)x(t) toward zero, respectively. 

Now we return to the question of stochastic controllability for 
jump linear systems. For jump linear system (1)-(3) with more 
than one form, we cannot talk about pole assignment in LTI 
terms, because the system is time varying. However, upper and 
lower bounds on the convergence rate of E{x’(t)x(t)lxo, ro} can 
be used. A condition similar to Lemma 1 characterizes stochastic 
controllability. 

Theorem 2: The stochastic controllability of system (1)-(3) is 
described by the following conditions. 

Suficiency: If, for all given finite constant y and each choice 
of positive definite symmetric matrices {N;: i E S i }  we have 

( A ,  B ) .  c 

2 - 2 Re [pCLmax(A - BL)I 

where the matrices {M,  > 0: i E S }  are obtained from (7) by 
proper choice of L , ,  then system (1)-(3) is stochastically con- 
trollable. 

Necessity: If system ( 1)-( 3) is stochastically controllable, then 
for all givenfinite constant y and each choice of positive definite 
symmetric matrices {N,: i E S }  we have 

where the matrices { M ;  > 0: i E 3} are obtained from (7) by 
L 

The proof of Theorem 2 is given in the Appendix. 
What this theorem says is that for any positive definite {N;} 

matrices, there exist control laws {L;:  i E S }  that not only meet 
the stochastic stabilizability conditions of Theorem 1, but also 
make the quantity as or a,  in (14), (15) greater than any fixed 
finite positive number y.  The quantity as serves as a lower bound 
on the rate of movement of E{x’xlxo, ro} toward zero, while CY, 
is an upper bound. 

The necessary and sufficient conditions for stochastic control- 
lability of jump linear systems, that are given in Theorem 2, are 
conceptually pleasing in that they correspond to stochastic stabi- 
lizability plus extra requirements (14) and ( 1  5), and they corre- 
spond with the “pole placement” conditions in the deterministic 
case. The conditions of Theorem 2 are unfortunately very diffi- 
cult to test, however. In particular, establishing that (14) or (IS) 
is true for all finite y > 0 is generally difficult since there is no 
natural way to search for the appropriate L, values. A more eas- 
ily tested necessary condition for stochastic controllability is as 
follows. 

Corollary 2: If (1)-(3) is stochastically controllable, then for 
each form i E S, the pair ( A ; ,  B ; )  is controllable. 11 

This corollary is proved in the Appendix. 
The deterministic controllability for each form is generally not 

sufficient for ( 1)-(3) to be stochastically controllable. Example 
3 in Section VI demonstrates this fact. The reason is that jumps 
in the value of r ( t )  may prevent E{x’(t)x(t)lxo, ro} from ap- 
proaching zero, since the application of impulse functions is not 
a1 lowed here. 

proper choice of L, . 

There are a number of special types of jump linear systems 
where stochastic controllability reduces to simpler conditions. 
They are examined below, because these types of systems have 
appeared in previous discussions of jump linear systems in the 
literature. 

Corollary 3: For any noncommunicating form i (i.e., non- 
communicating transient or absorbing forms), the conditions of 
Theorem 2 reduce to deterministic controllability of ( A , ,  B , ) .  

CI; 
This corollary is proved in the Appendix. 
Corollary 4: For scalar systems, deterministic controllability 

in each form (B ,  # 0 for all i E 8) is equivalent to stochastic 
controllability of the system. 

Proof: Note that for scalar A; and B, ,  (7) becomes 

S 

(2-4, - 2B,L, - AOM, + AIJMJ = -NJ. (16) 
J = l , J # f  

Since the pair (A , ,  B , )  is controllable (B ,  # 0), we can choose 
L, such that 

5 S 

The coefficient matrix of the simultaneous equation (16) is row di- 
agonally dominant and has a unique solution { M , ,  i E g } .  Also, 
L, can be chosen such that MI > 0. In this scalar case, the left- 
hand side of (14) is 

J #i 

(17) 

Since CJ+,AIJMJ is finite, the left-hand side of (17) can be made 
greater than any given finite positive number, by choice of L, . 
Note that as = a,  in the scalar case. c 

In previous literature concerning steady-state JLQ regulators 
for continuous-time jump linear systems, only scalar examples or 
examples with all noncommunicating forms were used. For these 
special cases, deterministic controllability of each pair ( A , ,  B , )  
implies the stochastic controllability of the system; unfortunately, 
this is not a general property, as shown later in Example 3. 

IV. DUALITY, OBSERVABILITY, AND DETECTABILITY 
We examine the observability and detectability properties of 

continuous time jump linear systems in this section. Consider the 
output equation of system (1)-(3): 

Y ( t )  = C ( r ( t ) ) x ( t )  (18) 

where y E M P  is thex-process output. It would be natural to try to 
apply duality arguments to obtain observability and detectability 
results from the stochastic controllability and stabilizability results 
of Sections I1 and 111. But for jump linear systems, this simple 
approach fails. To see why, consider the observability Grammian 
o f ( l ) ,  (21, (18): 

where @(t ,  t o )  is the x state transition matrix of (1) with u ( t )  = 
0. If we can find a finite time t~ such that r has rank n for any 
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value of r ( t )  ( t o  5 t 5 t l ) ,  then 

78 1 

tz,...,t~, and 

r ( t )=ro=io  f o r t o < t < t l ,  

r ( t )  = i i  forti  I t < f 2 ,  

. . .  

r ( t )  = is forts 5 1 5 T .  J 
That is, the system will be observable in the deterministic sense. 
Note that here the value of xo is found at time t l  ; at that time, the 
values of r ( t ) ,  to 5 t 5 t I ,  which are needed to obtain r(to, t l )  
of (19), are available. 

The above argument is not valid for the controllability problem 
of ( l ) ,  (2), (18), however, if we wish to find a control U which 
drives x state from xo (at t = t o )  to any given XI at a finite time 
ti  by 

Since, at time T,  the values of r ( t )  for t o  5 t 5 T are known, we 
have a deterministic linear time varying system which is piece- 
wise constant in parameters A ( r ( t ) )  and C(r( t ) )  over t E [to,  TI. 
Consider the observability Grammian: 

Uto,  T )  = exp [A:,,(t - ~o)IC,!,,C,, exp [Ai,,(t - to)] dr + . . . I‘ 
. exp [A;, ( t  - t s ) ]  . . . exp [Ai, ( t I  - to)] dt .  (22) 

This system is observable if and only if the observability Gram- 
mian r(to, T )  is positive definite. 

We can show that observability of the pair ( C ; ,  A;) ,  for all 
i E 8 is both necessary and sufficient for this. Necessity is im- 
mediate, since for ro = i E 3, it is possible that r ( t )  stays in i 

Since the controllability Grammian T is 

T(t0, t l )  2 @’(to, T ) B ( ~ ( T ) ) B ’ ( ~ ( ~ ) ) ~ ( ~ O , T I ~ ~ ,  

(21) 
until any finite time T. Lack of observability of ( C ; ,  A ; )  :mplies 
that r(to, T )  is not positive definite. Sufficiency can be Seen from 
writing r(to, T )  as 

then the control law in (20) is not causal. That is, at time l o ,  in- 
formation about the values of r ( t )  for to  < t 5 ti is not available; 
thus, T(to, t l )  in (21) cannot be determined. 

The dual system of ( l ) ,  (2), (18) is given by 

X * ( T )  = A ’ ( r * ( T ) ) X * ( T )  - c ’ ( r * ( 7 ) ) U * ( T )  (l’) where r;,(to, t l ) ,  . . . ,r;s(ts, T )  are the corresponding terms on 
the right-hand side of ( 2 2 ) .  Thus, r;, ( t k ,  t k + l )  is the product 

y ( 7 )  B’(r*(7))x*(7) .  (18’) 

Here 7 = T - t .  The underlying process { r * ( ~ ) } ,  r * ( ~ )  = r ( T -  
T) takes values in the finite set S. It is anticipative under the new 

Under this 7, { r * ( ~ ) }  is also memoryless. However, we have 
knowledge of the posterior transition probabilities 

r ; k ( f k y  f k + l )  =exPIA:o(tl - tO)l .’ .exPIA~k-l ( t k - 1  - t k ) ] r ( t k )  

running variable 7 [ I ,  pp. 172-1781, and thus is not random. . exp [Ai,-, ( t k - 1  - t k ) l  exp [A;,(t l  - to)] 
where 

p*. 4 Pr { r * ( ~  - A) = j / r * ( 7 )  = i }  
, J  

= Pr {r(T - (7 - A)) = jlr(T - 7) = i} 

= Pr { r ( t  + A)  = j ( r ( t )  = i }  = P i j .  

The deterministic observability of each pair (C , ,  A; )  implies that 
I Y t k )  is positive definite if t k  > f k - 1 .  

We know that the matrix 

Thus, by ( 2 ) ,  we have exp [Aik-, ( f k - 1  - t k ) l ‘  ’ . exp [Ai, ( t l  - toll 
is nonsingular, so r r k ( f k ,  f k + l )  > 0;  hence, I y t o ,  T )  > 0 and 

c system (I) ,  (2), (18) is observable. p;  = Pr(r*(T - A)  = j l r * ( t )  = i )  
Based on the above discussion, we can treat the detectability 

(in the sense of [28]) of ( I ) ,  (2), (18) like that for a deterministic, 
time varying system. Assuming that {u( t ) ,  t E [ t o ,  T I }  is known, 
consider the asymptotic x state estimator (observer) 

X i j A  + O(A) 

1 +XiiA +O(A) 

ifi = j 

ifi # j 
(2’) 

where A > 0. This result can be verified by considering the filter 
problem of a jump linear system with Gaussian input and mea- 
surement noises as the regulator problem of the dual system (l’), 
(2’), (18’), following the approach of [l]. Now we can introduce 
the observability concept for system ( l ) ,  (2), (18) as follows. 

Definition 2: Jump linear system ( l ) ,  ( 2 ) ,  (18) is said to be 
observable if there exists a finite time Tsuch that for any (xo, ro),  
the knowledge of input U(?) and output y ( t )  over [ t o ,  TI suffices 
to determine the initial state xg. r_l 

We have an algebraic test for observability. 
Theorem 3: System (l) ,  (2), (18) is observable if and only if, 

for each form i E 8, the pair ( C , ,  A , )  is observable. n 
Proofi Suppose that r ( t )  jumps at time instants t i ,  

d i ( t ) / d t  = A(r ( t ) ) x ( t )  + B ( r ( t ) ) u ( t )  

+H(r(t))Iy( t )  - C(r(t)Mt)l. 
Then we have the following definition. 

Definition 3: We say that system ( l ) ,  (2), (18) is detectable 
if there exists { H ; :  i E 3 }  for the above estimator such that the 
estimate error 

X( t )  4 x ( t )  - X ( t )  

is globally, asymptotically Lyapunov stable. r7 
For detectability, we have the following immediate conditions. 
Theorem 4: System ( I ) ,  ( 2 ) ,  (18) is detectable if and only 
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the coupled algebraic matrix Riccati equations 

A;K; + K;A; - K ~ B ~ R , : I B ; K ~  - A;K; 
S 

+ AijK, +Qi = O .  (27) 
j =  I ,  J f ;  

The optimal steady state control is 
u ( t )  = - L ; x ( f )  = -R,:’B,!K;x(t) 

and the controlled system is stable in the sense that 

E{x’(t)x(t)lxo, ro}  - O as t + CO. 

Proof Sketch; With the stochastic stabilizability assump- 
tion, there exist L; (not necessarily optimal) for each i E S 
such that for any given N ;  > 0 (i E S ) ,  there exists a unique 
symmetric set {M;  > 0: i E S} which solves (7). Using the ob- 
servability as_sumption, we show that for such a choice of L ; ,  
(Q; + L!R;L;) > 0 for each i E S .  By Theorem 3, each pair 
( (Qi)’ l2 ,  A ; )  is observable; thus, the pair ( (Q;)”* ,  A, - ; A i l )  
i_s obsgrvable, which-implies the observability of the pair ( (Q;  + 
L,!R;L;)1/2, A; -B;L; - : A i l )  (by [28, Lemma 4.11). Therefore, 
for any t > 0, 

if there exist H i  for each form i E S ,  such that for any initial 
condition ( X O ,  rO)  and on any form sample path {io, i I , . . . ,io } , 
we have 

lim /exp [ (A l  - C:,HI)(T - to)] 
7,- 03 

exp[(A;” - C:oH,!~,)(tl - to)]xg/ = 0. c 
Corollary 5: 

i) A necessary condition for ( l ) ,  (2), (18) to be detectable 

ii) A sufficient condition for ( l ) ,  (2), (18) to be detectable 
is that for each form i E $3, the pair (Ci, A ; )  is detectable. 

is that for each form i E 8, there exists N; such that 

Ilexp((A: - C,!H:)II < 1 .  

iii) If there is no communicating form in 3, then ( l ) ,  (2), 
(18) is detectable if and only if for each i E 8, the pair (C; , A ; )  
is detectable. 0 

It is easy to see that observability implies detectability of sys- 
tem ( l ) ,  ( 2 ) ,  (18), since the observability of each pair (C; ,  A ; )  
ensures the sufficient condition (ii) of Theorem 4.  

V. THE INFINITE TIME MARKOV JLQ OPTIMAL CONTROL PROBLEM 
The definitions of Sections 11-IV have been constructed so that 

they play the same role for the infinite time horizon jump linear 
quadratic problem that the deterministic properties play for the 
linear quadratic regulator problem. In particular, they determine 
the existence and uniqueness of constant (in time for each form 
value) control laws that stabilize the system with finite expected 
cost. 

First recall the results of finite time JLQ problem [24], [29]. 
For system (1)-(3) with cost criterion (4), the optimal control 
law is 

u ( t ,  i) = -L;( t )x( t )  

where 

S 

-AiK;(t) + A;,K,(t) + Q; + L;R;L; = 0 
J=  I ,  J f i  

(25) 

with L , ( t )  defined in (23) and terminal conditions 

K,(T)  = 0 i E S ,  to I t I T .  (26) 

For the case of T + m, we have the following result. 
Theorem 5: For JLQ problem (1)-(4) with T + CO, assume 

that for C:C, = Q,,  system ( l ) ,  (2), (18) is observable. Then if 
and only if the system is stochastically stabilizable, the solution 
K , ( t )  of (25) for each i E 4 is finite and 

K ;  = lim K ; ( t )  
T - t - c c  

exists, where K ; ( i  E 8) is the set of unique, positive solutions of 

which- is the obseryability Grammian of the pair ( ( Q ,  + 
L:R,L,)’/2, A ,  -B,L, - iA,Z). It is bounded (by [28]) and pos- 
itive definite. Since D, > 0 and the matrix ( A ,  - @,L, - 
iA,Z)  is stable (from Corollary l), we have (Q, +L:R,L,) > 0. 
With this fact in hand, we can show that the JLQ cost in (4) for 
this problem is a Lyapunov function for the controlled system. 
Specifically, with 

N I  A Q, +L;R,L,  > 0 

then (4) becomes 

I E { 1,” [x’( t )Q(r( t ) )x( t )  + u’(t)R(r(t))u(t)] d t  

1 
A-oA - Lim - [E{V(x( t  +A), 

f m .  
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The first term on the right-hand side of (28) is zero from (A.6). 
Without loss of generality, let r ( t0)  = ro = i ;  note that the left- 
hand side of (28) is the cost-to-go from ( x o ,  ro = i) and the 
right-hand side equals the Lyapunov function 

783 

V(x0, ro = i )  = x;M;xo. 

This finite quanjity (resulting from a not-necessarily optimal feed- 
back control {L; :  i E s}) serves as an upper bound for the opti- 
mal cost-to-go x’( t )K;  ( t )x (  t )  (resulting from the optimal choice 
of {L;:i E S } ) .  Each K ; ( t )  [obtained from (25)] is monotoni- 
cally nondecreasing as T increases. Therefore, each K ; ( t )  con- 
verges to constant matrix K ;  as (T - t )  + CO. Thus, (25) becomes 
(27). Since xAK,xo < CO as T + 00, the positive definiteness of 
each K ;  and the observability of the system ensure that for this 
closed-loop system with the optimal feedback control, we have 
E{x’ ( t )x ( t )Jxo ,  ro} + 0 as t - CO. 

The above proves sufficiency. With the observability assump- 
tion, the proof that stochastic stabilizability is necessary for the 
existence of a finite solution is immediate. Suppose the system 
is not stochastically stabilizable; that is, no feedback control law 
can result in a finite cost. Then the fact that the optimal control 
results in a finite cost is a contradiction. E1 

The observability requirement in Theorem 5 is not necessary 
for the stability of the controlled system. It may be that replacing 
observability with detectability in Theorem 5 will lead to a com- 
plete set of necessary and sufficient conditions for finite cost and 
stability of controlled system. However, since the positive defi- 
niteness of (Q; +L,!R;L;) cannot be established by detectability of 
( I ) ,  (2), (18) alone, it may be necessary to modify the stochastic 
stabilizability condition to allow positive semidefinite Ni to be 
chosen, under some type of detectability assumption. 

Note that the choice of feedback laws {L;:  j E S} could be 
viewed as a stabilization problem for (1)-(3). That is, we simul- 
taneously select, for each form j E 8, a closed-loop dynamic 
matrix A such that the equations 

.t = A , x  

have desired stability properties. These choices are made from the 
sets { A ,  - B,L;:  L ,  E R m x n } .  The desired stability properties 
can be obtained from the results of Theorem 1 and Corollary 1 
by setting U 0. 

VI. EXAMPLES 
Wonham [29] gave an example to show that the optimal JLQ 

controller does not necessarily stabilize all (A;  - B;L; ) .  This is 
because the stability of (A;  - B;L,)  for each i E 8 only means 
stability on constant sample paths of r ( t ) .  The JLQ controller, 
which obtains mean square stability, does not guarantee stability 
on all form sample paths, and thus does not guarantee the stability 
of all (A;  - B;L,). 

In this section, four examples are developed to illustrate the 
results established in Sections I-V. Example 1 is used to illus- 
trate two points. First, it shows that stochastic stabilizability of 
system (1)-(3) does not imply that each form is deterministically 
stabilizable. Second, it demonstrates that a sufficient condition of 
Wonham [29, (6.12)] is not necessary for finite cost solution to 
the infinite time JLQ problem. 

Example I :  We consider a two-form system, with 

for this system as follows: 
1 1 - g M + M 2 + 1 = 0  

1 1  
3 M 2  +MI + 1 =o.  

Since the solution M I  = 21 > 0, M2 = 6 > 0, this system is 
stochastically stabilizable. Thus, the stabilizability of (A; ,  B ; )  
Vi E S is not necessary for the system to be stochastically stabi- 
lizable. Next, we know by Theorem 5, there exists a finite cost 
solution for the infinite time JLQ problem of this system. But 
consider the condition 

,exp [(A; -B;L;  - - X ; I  2 t dt / I  < 1 (29) 

which [29, (6.12)] was given by Wonham as part of a set of 
sufficient conditions for the existence of a finite cost solution to 
the infinite time JLQ problem. It is easy to see that for i = 1 ,  the 
left-hand side of (29) equals 3; thus, (29) is not satisfied. Thus, 
conditions (i) and (ii) in Theorem 6.1 of [29] are sufficient but 
not necessary for the stochastic stabilizability of the system. 

The next example demonstrates that the necessary condition of 
Corollary 1 ,  the stability of (A;  - BiL; - 1 /2X;), Vi E S, is not 
sufficient for stochastic stabilizability. 

’ 11 

Example 2: Consider a two-form system, with 

L J 

To test for stochastic stabilizability of this system, we apply The- 
orem 1 .  For any choice of {L; :  i = 1 ,  2}, we obtain from (7) 

2M1 -  MI + 3M2 = -1 

M2 -2M2 +2MI = - 1 .  { 
The only solution is M I  = -415, M2 = -315; they are not 
positive definite. Thus, by Theorem 1 ,  this system is not sta- 
bilizable. But we have ( A I  - BlLl - $ X I )  = -112 and (A2 - 
B2Lz - iX2) = -1/2. That is, they are both stable. Thus, we 
see that this “decoupled” (in terms of parameters in each form) 
necessary condition of Corollary 1 is not sufficient for stochastic 
stabilizability. 

The next example illustrates that controllability of each pair 
( A ; ,  B; )  Vi E S is not sufficient for stochastic stabilizability of 
system (1)-(3); consequently, it is not sufficient for the stochastic 
controllability of system (1)-(3). 

Example 3: Consider a two-form system with 

A =  [ y  Ill A t =  [” ‘ 1  B 1 =  [:] 
0 0.5 

0.5 0 

A Z =  [ 1 1.51 B z =  [:I* 
Note that each pair (Ai ,  B; )  i E {I, 2) is controllable. Taking 
CI = C2 = I ,  by Theorem 3, this system is observable. Let 
R I  = R2 = 1 ,  Q I  = C ~ C I  = I ,  Q2 = C:C2 = I ,  and consider 
the infinite time JLQ problem. The two sets of real symmetric 
solutions of (27) are 

This system is not stabilizable in form 1 since A I  > 0 and B1 = 
0. To test stochastic stabilizability by Theorem 1 ,  we solve (7) 

K 1 = [  0 0  ] K 2 = [ 0  - 1  0 
0 -1  
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--1 1 0 0 0 -  

0 -1 0.5 0 0.5 

A =  0 0 -1 1 0 

0 0  1 - 1 0  

- 0  0 0 0 0 -  

Fig. 1. Form structure of Example 4. 

and 

r 6.729043 -3.834479 1 
K1 = 1-3.834479 0.2451221 

1.5 

0 

B3 = [:] 
-1.5 

A4 = 
0 

1 

B z =  [i] A 3 =  [: b]  
"1 0 B4 = [:I 

0 -1 

1 2  
A 5 =  [ ] B s =  [ e ]  

with R; = - and Q; = in (4) for i = 1, 2, 3, 4, 5. Con- 
sider the infin'te time horizon JLQ problem. First note that with 

is observable by Theorem 3. For the noncommunicating tran- 
sient forms {1,2} and absorbing form {5} ,  the pairs ( A ; ,  B;)  
are all controllable. Thus, by Corollary 3, for these forms, the 
conditions of Theorem 2 (stochastic controllability) can be satis- 
fied by proper choice of L; . Thus, the conditions for Theorem 1 
(stochastic stabilizability) are satisfied for forms (1 , 2,5}. Since 
only forms 3 and 4 are communicating forms, we check (7) for 

C; = Z = Q; i *, the pairs (C;, A;)  are observable. So the system 

them. That is. 

With the choices of L3 = [ l  21 for form 3 and L4 = [2 11 for 
form 4, for 

we obtain the positive definite solutions of (7) 

M 3 = [  517 117 ] M 4 = [  517 117 ] 
117 317 117 317 

Thus, the conditions of Theorem 1 are satisfied for forms 3 and 
4. Since the conditions of Theorem 1 are satisfied for all five 
forms, this system is stochastically stabilizable. Therefore, by 
Theorem 5 ,  the steady-state solution for this problem exists and 
can be found by solving (27). We can obtain the solution as 
follows. First find Kg,  where (27) is a deterministic algebraic 
Riccati equation. Then find K3 and K4,  by solving two coupled 
algebraic Riccati equations. With K3 and Ks known, K2 can be 
found from (27). Finally, with K2 known, K1 can be obtained 
from (27). The result is the following: 

1 2.02486 0.41421 

0.41421 2.04244 
K s =  [ 

1 1.138647 1.486321 

1.486321 2.47161 
K 2 =  [ 

1 27.63533 7.576919 

7.576919 2.843495 

with steady-state feedback gains: 

LS [7.5765919 2.8434951 L4 = [1.73205 I] 

L3 = [ l  1.732051 

L2 = [0.35857 3.280441 L1 = [3.451813 0.5297751, 

VII. SUMMARY 
Concepts of stochastic controllability and stochastic stabiliz- 

ability are developed here for continuous-time Markov jump lin- 
ear systems. Corresponding necessary and sufficient conditions 
are given. The observability and detectability concepts used are 
deterministic, however. Together, these properties are related to 
the solution of the continuous-time jump linear quadratic control 
problem with infinite time horizon. Based on these properties, 
necessary and sufficient conditions for the existence of a finite 
cost steady-state solution which stabilizes the controlled system 
are obtained. 
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APPENDIX 

Proof of Theorem I :  Following [18], we first set up the 
stochastic Lyapunov function for the closed-loop system. Con- 
sider feedback control u ( t )  = -L ,x ( t ) ;  then ( 1 )  becomes 

d x ( t ) / d t  = (A, - B,L , )x ( t )  r ( t )  = i E S .  (A.l) 

Take the stochastic Lyapunov function to be 

V ( x ( t ) ,  r ( t )  = i )  = V ( x ,  i )  = x’ ( t )M,x ( t ) .  (A.2) 

Note that M ,  is constant for each i. For this choice of V ( X ,  r ) ,  
we have V(0,  r )  = 0 and V ( x ,  r )  --f CO only when llxll 3 03. 

Consider the weak infinitesimal operator A of the joint process 
{ ( r ( i ) ,  x ( t ) ,  t E [to,  TI} ,  which is the natural stochastic-analog 
of the deterministic derivative [ 181. Here the domain of A is the 
functjon space [ t o ,  TI x S x W” . Note that because 8 is a finite 
set, A is also the generator of { r ( t ) ,  x ( t ) } ,  so from [29, equation 
(2 .26)] ,  we have 

1 
A i 0  A A V ( x ,  i) 4 Lim - [ [E{V(x(t  + A ) ,  r ( t  + A)lx( t ) ,  r ( t )  = i} 

= X ’  (Ai - BiL;)’M; + M;(Ai - BiLi) I 

S 

; = I ,  j# i  

(Similar arguments for deterministic system Lyapunov functions 
can be found in [ 5 ] . )  Thus, we have 

Taking limit as T i CO, we have 

Since M; > 0 for each i E S ,  this means 

Lim E { i T x ’ ( t ) x ( t ) d t l x o ,  ro = i 5 xAkx0 (A.7) I T - w  

where 

which proves sufficiency. 
For necessity, we must show that if system (1)-(3) is stochas- 

tically stabilizable, then the conditions of Theorem 1 hold. That 
is, for any choice of {Ni > 0: i E S } ,  there exists a unique set 
of symmetric solutions, {M;  > 0: i E S} ,  of (7). We assume that 
the system ( l ) ,  (2) is stochastically stabilizable. That is, for ap- 
propriately chosen u ( t )  = -Lix( t )  in (A.l ) ,  we have 

Consider the following function: 
(A.3) 

x’( t )M(T - t ,  r ( t ) ) ~ ( t )  
With stochastic Lyapunov function of (A.2) and its weak in- 

finitesima! operator of (A.3), we can prove sufficiency: by (7), 
we have A V ( x ,  i) = -x’N,x.  Thus, & E { ~ T X ’ ( 7 ) N ( r ( 7 ) ) X ( ~ ~ d 7 , x ( t ) ,  r ( t )  1 . (A.9) 

A v ( x ,  i) x’N,x  
.~ - - -- - - - & ( x )  
V ( x ,  i )  x’M,x 

forx # 0. (A.4) Assume x ( t )  f 0. Since N(r ( t ) )  > 0, then as T increases, either 

Since MI > 0 and N, > 0, @ , ( x )  is a positive number and we 
have 

x’( t )M(T - t ,  r ( t ) )x ( t )  is monotonically increasing or else it 
increases monotonically until 

E { X ’ ( 7 ) N ( r ( 7 ) ) X ( 7 ) I X ( t ) ,  r ( t ) }  = 0 

- P , ( X )  5 - a  -min- CL ( N I  ( ~ 5 )  for all 7 2 71 2 t .  From (A.8), we know x ’ ( t ) M ( T - t ,  r ( t ) )x ( t )  
I EJ Pmax (MI) a is bounded above. Thus, the following limit exists: 

x’ ( t )M,x ( t )  2 Lim x’( t )M(T - t ,  r ( t )  = i ) x ( t )  Clearly CY > 0. So 
T-CC 

Av(x ,  i )  5 - O C V ( X ,  i ) .  

Then by Dynkin’s formula and the Gronwell-Bellman lemma, we 
have for all i E S 

E { V ( x ( t ) ,  i ) }  I exp(-at)V(xo, i ) .  

Thus, Since this is valid for any x ( t ) ,  we have 

(A.lO) 

M ;  2 Lim M(T - t ,  r ( t )  = i). (A . l l )  E { V ( x ( t ) ,  i))xo, ro = i }  = E(x‘( t )M;x(t) lxo,  ro = i }  T - m  

I exp (-at)x;Mixo. (A.6) From (A. lo), we see that Mi is symmetric and positive definite 
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because N; is symmetric and positive definite. Now consider that is, 

E{x’(t)M(T - t ,  r ( t )  = i)x(t) - x’(t + A) M(T - t ,  r( t> = i) = A ( M ( T  - t ,  r( t> = i )  
d(T - t )  

. M ( T  - t - A,  r ( t  + A))x(t + A)lx(t), r ( t )  = i }  
+M(T - t ,  r ( t )  = i)A; - N(T - t ,  r ( t ) ) .  (A.16) 

= E { E { l + A  X’(r)N(r(r))X(r)dr~X(t)~ r ( t )  = The solution of (A.16) can be expressed as 

I 

By ignoring the higher order terms O(A), (A.12) can be ex- 
pressed as 

M(T - t ,  r ( t )  = i )  = exp[A((T - t)]M(t, r ( t )  = i) 
#.T - I  

(A.12) 

-x’(t)[(A; - B;L;)’M(T - t ,  r ( t )  = i )A  - M(T - t ,  r ( t )  = i )  . exp [A ((T - t - r)]  dr.  (A.17) 

From ( A . l l ) ,  we know M(T - 1 ,  r ( t )  = i) has a limit Mi when 
T tends to infinity for any initial value of M ( t ,  r ( t )  = i). so for 
M ( f ,  r ( t )  = i )  = I in (A.17), taking the limit over both sides of 
(A.17), we obtain 

S 

’ (A; - B ; k ) A  + h ; j M ( T  - - ‘9 r ( t  + = j) 
j = l  

+ A&l(T - t ,  r ( t )  = i)]x(t) 

Mi = lim {exp[(T -t)A(]exp[(T-t)Ail} x’(~)N(r(r))x(r)drIx(f), r ( t )  = i T - - f - m  

T - t  

(A.13) +T2ym {i exP[A!(T-t-T)I 
Dividing both sides of (A.13) with A ,  then taking limit as 
A + 0, we have . N(T - t - 7, r ( t  - 7)) 

-x’(t)[(A; - B;L;)’M(T - t ,  r ( t )  = i )  + M ( T  - t ,  r ( t )  = i )  
S 

(A;  - BiL;) + X;jM(T - t ,  r ( t )  = J )  
j = l  

exp [Ai(T - t -  
I 

and for M ( t ,  r ( t )  = i) = 0, we have 

+ &l(T - t ,  r ( t )  = i)]x(t) M :  = lim 
T --f 

, T-t-CC ----- { 4 exp[A((T - t - T ) ]  

= E  [pi (+A x’(r)N(r(T))x(r)dTIx(t), r ( t )  = i 1 

(A.18) 

Note that it must be valid for any x(t). Thus, we have Thus, the first term 0,“ the right in (A.18) equals zero. That is, 
for any vector b in , 

- (Ai - B;L;)’M(T - t ,  r ( t )  = i )  - M(T - t ,  r ( t )  = i )  

. (A; - B;L;)  - &(T - t ,  r ( t )  = i) 
lim {b’expt(T - t )A~lexp[(T-t)A;lb} = O  

T - - f i m  

d -M(T - t ,  r ( t )  = i )  = -A(M(T - t ,  r ( t )  = i) 
dt 

We first prove sufficiency. Since (1)-(3) is stochastically stabiliz- 
able, from (A.4)-(A.6) we have 

1 A .  - A .  - B.L.  - -),.I N(T - t ,  r ( t ) )  =N; I -  I I 1  

Here as is defined in (14) and Mi is given by (7). Note that 
Mi > 0, so we can write it as M ;  = HiH; ,  where Hi is nonsin- 
gular. Let z = H;x. Then 
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notation to replace z with x: 

787 

we have 

~{z’(T)x(T)lxo, ro = i )  5 exp[(-a,)(T - to)lxbo. 
For any choice of E > 0 in the definition of controllability, y can 
be chosen large enough such that 

y 2 Iln (xhxo) - In (E)I/(T - t o ) .  

This control law { L , :  i E S }  drives E{x‘(T)x(T)lxo, ro = 
i }  < E. Thus, the system is stochastically controllable. 

Next we prove necessity. Suppose the system is stochastically 
controllable. Since stochastic controllability implies stochastic 
stabilizability, then for any given { N I  > 0: i E S}, there exists 
{ L , :  i E S } ,  such that the solution { M ,  > 0: i E S} satisfies (7). 
We prove condition (15) by contradiction. Assume that for any 
choice {L ,  : i E S } ,  for any given {N, > 0: i E S }  and some ob- 
tained M I ,  we have 

for some specified finite y > 0. Then similar to (A.4)-(A.6), we 
have 

Thus, 

E{x’(T)M;x(T)Ixo, ro = i }  2 exp(-cu,(T - to))xhM;xo. 
By the arguments of (A.20), we have 

If 

then 

E{x’(T)x(T)lxo, ro = i} 2 E .  

Thus, there exists no feedback control law which can drive 
E{x’(T)x(T)Ixo, ro} from all finite initial xo (note that anlthough 
for some xo value which may lie in some subspace of L that is 
controllable, stochastic controllability requires that (6) be valid 
for any xo < CO) to the E-neighborhood of zero within time T. 
This contradicts the assumption of stochastic controllability of 

Proof of Corollary 2: Assume that system (1)-(3) is 
stochastically controllable. For each form i E 8, there exists an 
L, such that N, and M I  in (7) satisfy ( 15). From (7), we have 

system (1)-(3). 0 

z ‘NI  z 
z’A4;z 

p +,C = 2 R e ( p )  = -: 

where Z ’  is the transpose of the conjugate of vector z and ji is 
the conjugate of p .  Thus, we have, for any choice of L; , 

= max { -2 Re ( p ) }  5 y. 
2 

This contradicts ( 1 3 ,  and therefore the stochastic controllability 

Proof of Corollary 3: Here we only need to show suffi- 
ciency (necessity is given by Corollary 2). In (A.22), if i is an 
absorbing form, then (A.22) for this form i becomes 

assumption. 0 

(A;  - B;Lj)’M; +M;(Aj  - BjL;) = -N; , 
as for a single form system. Then, by Lemma 1 ,  the necessary and 
sufficient condition (for stochastic controllability of this system) 
involving form i is that the pair ( A ; ,  B ; )  is controllable. 

For a noncommunicating transient form i ,  A,, # 0 implies 
X j i  = 0 .  That is, i does not communicate with other forms. 
Thus, if A;;M, # 0 in the form i (A.22), then in the form j 
(A.22) we have Aj;M; = 0. That is, M; is not coupled to the 
solution of A4, . Consequently, in solving for Mi,  the right-hand 
side N; of (A.22) can be chosen arbitrarily. Thus, controllability 
of the pair ( A ; ,  B; )  implies the controllability of ( A ;  - AiZ, B;) ;  
the latter can be used to show that (14) is satisfied for this form 
i (by the same proof steps as for the sufficiency of Lemma l).O 

Our definition of stochastic stabilizability only considers the 
case of constant (for each form value) feedback control laws. 
This is an accepted practice in defining stabilizability [29]. How- 
ever, in defining controllability, the set of admissible controls in 
general is not restricted to constant (for each form value) feed- 
back control laws. This is a serious restriction. If we use, instead, 
the admissible control class Q defined in Section I,  the sufficient 
part of Theorem 2 is still valid. However, under this less-stringent 
requirement, we may not be able to obtain several useful results 
(e.g., for scalar case and for systems with only noncommunicat- 
ing forms, the system is stochastically controllable if and only if 
each pair ( A ; ,  B ; )  is deterministically controllable). 
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