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" We propose a new Bayesian approach for wind energy resource estimation.
" The approach systematically considers various types of uncertainties.
" For illustration, we studied measured wind speeds near Yeosu, Korea.
" The approach better models the uncertainties due to the limited amount of data.
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A new Bayesian approach is proposed to estimate the annual energy production (AEP) of a site where con-
struction of wind turbines is considered. The approach uses long-term wind speeds of a nearby weather
station and short-term wind speeds near the target site. Uncertainties exist due to the limited amount of
data in the target site, in addition to the inherent uncertainties in the wind speed, the air density, the sur-
face roughness exponent, and the power performance of the turbine. The proposed method systemati-
cally addresses these uncertainties and provides the distribution of the AEP. For illustration, we used
the wind speed data near Yeosu, Korea, and the power performance curve of a 3 MW turbine. For the site
and the turbine studied, the range given by the 95% confidence interval corresponded to 8.9% of the mean
AEP, and the range given by the 99% confidence interval corresponded to 11.9% of the mean AEP. Benefits
of using the Bayesian approach compared to the classical statistical inference was also illustrated with
the case study. The proposed approach provides a more conservative estimation considering the uncer-
tainties due to the limited amount of data. Distributions of parameters of the prediction model are also
provided, which enables a more detailed analysis of the prediction.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Wind energy potential assessment is an important first step be-
fore selecting a site to build wind turbines. The wind energy poten-
tial may refer to the potential of an entire nation or continent [1] or
the potential of a specific location [2–8]. The potential assessment
is differentiated from the forecasting because the former typically
deals with the prediction of the annual energy production whereas
the latter typically deals with the prediction for the next 24–72 h.

Unlike the forecasting problem where many researchers
worked on the effect of the uncertainty (see [9–11] for extensive
literature review), the literature on the uncertainty of the potential
assessment is somewhat limited. However, the uncertainty analy-
sis is important to reduce the discrepancy between the prediction
and actual production, which can be quite significant. For example,
ll rights reserved.

: +82 63 280 2421.
n).
Tindal et al. [12] analyzed a large database consisted of 156 wind
farms of Europe and North America to compare energy predictions
and actual production. The analysis of 510 wind farm years (of the
156 wind farms) showed that the average ratio of actual produc-
tion to prediction was 93.3%. The authors identified the two most
significant causes of the discrepancy as turbine availability and
wind speed measurement quality.

The wind energy potential of a site is characterized using the
estimated annual energy production (AEP). The AEP is sometimes
roughly estimated using the mean wind speed only [13], but it is
typically calculated using the measured power curve of a turbine
and the wind speed distribution of the site. Uncertainties exist in
both the power curve and the wind speed distribution. The inter-
national standard in estimating the AEP and evaluating the uncer-
tainty is the IEC 61400-12-1 [14]. The IEC standard makes some
assumptions for easier use in practice, which does not consider
interaction of uncertainties. Bastide and Harding [15] discussed
various sources of uncertainties such as the aerodynamic effects
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Fig. 1. Wind speed measurement sites.
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of monitoring tower and equipment on the air flow, data quality,
simplistic wind shear extrapolation, wind flow modeling, and wind
speed density function. The authors provided an estimated finan-
cial loss for a sample site due to these errors, but they did not con-
sider the interaction of these errors and simply accumulated the
errors. Fontaine and Armstrong [16] provided similar explanations
along with the comparison of the deterministic (IEC) method and
the Monte Carlo analysis. The authors also provided a case study
of a wind farm located in Italy. A more systematic approach can
be found in Lackner et al. [17], where a mathematical approach
to combine independent sources of uncertainty was presented.
The paper also recommended measuring of wind speeds at hub
height to significantly reduce the uncertainty in the assessment.
The authors in a subsequent paper demonstrated that even
short-term hub height measurement can substantially improve
the accuracy of the prediction [18]. Kwon [19] presented a system-
atic Monte Carlo approach, which to date is the most comprehen-
sive method in dealing with the interaction of various sources of
uncertainties.

In dealing with the uncertainties, most studies employed the
probability density function that represents the randomness (ex:
the normal distribution), and the parameters of the function (ex:
the mean and the variance). Obviously, the accuracy of the energy
potential assessment depends on the accuracy of the estimates of
the parameters. However, it is not always easy to obtain accurate
estimates of the parameters because of the limited availability of
the data and the uncertainty in the model parameters reflect in
low confidence in predictions of wind speed and energy potential.
In addition to the parameter uncertainty, measurements of the
wind speed are typically available from a nearby weather station,
but the estimates of the parameters obtained from these measure-
ments do not fully represent the wind speed of the target site, and
this is usually reflected in a prediction bias. Correction algorithms
exist to improve the prediction, which compensate for the inaccu-
racy by using additional short-term measurements from the target
site [20]. These algorithms greatly improve the accuracy of the pre-
diction, yet the amount of data for the short-term measurements is
typically small so the issue of the limited availability of the data
still remains.

Bayesian methods are used in statistics to deal with the uncer-
tainties of the estimates of the parameters. The Bayesian approach
offers two benefits compared to the classical statistics. The first ben-
efit is that subjective judgments based on expert knowledge or indi-
rect information is incorporated systematically with observed data
([21], p. 330). For example, consider a case where long-term mea-
sured wind speeds are available from a nearby weather station,
but measurements at the target site are too limited to provide reli-
able statistics. However, suppose that an expert is able to estimate
the statistics of the wind speed at the target site based on published
literature that had similar site characteristics. In the Bayesian ap-
proach, the expert estimation is formulated as the prior probability,
which is systematically updated as additional measurements be-
come available, to provide the posterior probability.

The second benefit of Bayesian methods is the ability to sepa-
rate uncontrollable uncertainties and controllable uncertainties.
The uncertainties in the potential estimation come from different
sources—the inherent variability in the wind such as the variability
in the climate, wind profiles, wind shear, and turbulence [22], the
uncertainties due to the processing of measured wind speeds [23],
and the uncertainties due to the inexact nature of mathematical
models, the site of measurement, and the limited size of data.
These uncertainties may be grouped into two categories. The
uncontrollable uncertainties are due to the inherent nature of the
phenomena, which is beyond our control in modeling, while the
controllable uncertainties are due to our choice of mathematical
models, data collection, etc., which in the ideal situation can be
eliminated by using a ‘‘perfect’’ approach. The uncontrollable
uncertainties are termed as the aleatory (or, intrinsic) uncertainty,
and the controllable uncertainties are termed as the epistemic (or,
knowledge-based) uncertainty [24]. Although the elimination of
the epistemic uncertainty is not practically possible, different nat-
ure of these uncertainties suggests that it will be informative and
beneficial to separate these uncertainties, and the Bayesian ap-
proach offers the framework to do so.

In this paper, we will present a Bayesian approach to utilize
these benefits in the wind energy potential assessment. To illus-
trate the use of the proposed approach, it will be applied to a sam-
ple site and be compared to a deterministic approach.
2. Wind speed measurements

Wind speeds used in this paper were collected at the Yeosu
Weather Station, the Kwangyang Bay site, and the Yi Sun-sin
Bridge site in Korea [19,25]. Fig. 1 is a satellite photo that shows
the three sites.

The Yeosu Weather Station is the reference site where long-
term wind speeds were measured. It is located at an urban area
surrounded by hills (north and west), an island (southeast), and
the sea (east and south). Hourly mean wind speeds between 1/1/
1983 and 12/31/2007 were collected at the standard 10 m height.
The Kwangyang Bay site is the target site where the wind energy
potential was assessed. The distance between the Yeosu Weather
Station and the Kwangyang Bay site is 16 km. There is a 500 m
mountain between the Yeosu Weather Station and the Kwangyang
Bay site. At Kwangyang Bay, hourly mean wind speeds between 1/
1/2006 and 12/31/2006 were collected. The tower at Kwangyang
Bay was 10 m high, but the anemometer was constructed at
2.5 m above the tower. The exposure of the tower within the
1 km radius is the sea. There are factories and storage facilities to
the 2–3 km north and south of the tower, and hills to the 4–5 km
east and west.

Since the tower at Kwangyang Bay was only 10 m high, data
from the Yi Sun-sin Bridge site was also utilized to estimate wind
speed at the hub height. The Yi Sun-sin Bridge site had a 60 m
tower that recorded 10-min wind speeds at 10 m, 35 m, and
60 m, in order to provide data for designing a new bridge. The
exposure is a combination of open water and factories to the south
and the west, and open land and factories elsewhere. There is a
500 m mountain 4 km north of the tower. This research used wind
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Fig. 2. Normalized histograms of the wind directions of the three sites: (a) Yeosu Weather Station, (b) Kwangyang Bay Site and (c) Yi Sun-sin Bridge Site.
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speeds at 10 m and 60 m recorded between 8/1/2007 and 7/31/
2008 in order to improve the accuracy of the potential assessment
for the nearby Kwangyang Bay site. The distance between the
Kwangyang Bay site and the Yi Sun-sin Bridge site is 6 km.

Two assumptions were made in using wind speeds from these
sites. First, elevation difference between the Yeosu Weather Sta-
tion (reference) and the Kwangyang Bay site (target) was ignored.
The Yeosu Weather Station is located at a hill, which is 67 m from
the sea level. Although wind speeds were measured at 10 m from
the ground level of the Yeosu Weather Station, the elevation differ-
ence between the reference and the target may introduce some er-
rors. Second, the surface roughness of the Kwangyang Bay site was
assumed as similar to that of the Yi Sun-sin Bridge site. This
assumption may introduce some errors because the distance be-
tween the two sites is 6 km, and also the surroundings of the
two sites are somewhat different as shown in Fig. 1 and explained
in previous paragraphs. To facilitate the understanding of relative
contributions of the surroundings, normalized histograms of the
wind directions are shown in Fig. 2. The data from 2006 was used
for the Yeosu Weather Station and the Kwangyang Bay site. The
data between 8/1/2007 and 7/31/2008 was used for the Yi Sun-
sin Bridge site.

3. Deterministic approach without considering the
uncertainties

In order to compare the performance of the proposed Bayesian
approach (which will be introduced in Section 4 below), we will
consider the traditional approach to calculate the annual energy
production without accounting for uncertainties. The annual en-
ergy production (AEP) quantifies the wind energy potential of a gi-
ven site. It is estimated by multiplying the total hours by the
average wind turbine power.

EAEP ¼ T
Z 1

0
PwtðVÞfV ðVÞdV ð1Þ

in which T is the number of hours for one year, Pwt(V) is the power
performance curve, and fV(V) is the wind speed probability density
function (PDF). The power performance curve Pwt(V) is a single fixed
curve. The power performance curve is typically obtained from the
manufacturer of the turbine.

AEP estimated using Eq. (1) is based on the mean values of the
power performance curve and the wind speed PDF therefore does
not account for the uncertainties.

3.1. Wind speed PDF

To describe the distribution of the mean wind speed, the Wei-
bull PDF is commonly used.
fV ðVÞ ¼
k
c

V
c

� �k�1

exp � V
c

� �k
( )

ð2Þ

in which V is the mean wind speed, k is the shape parameter, and c
is the scale parameter. The parameters, based on the moment esti-
mate method, are given by [26]:

lk ¼
rV

lV

� ��1:091

ð3Þ

lc ¼
lV

Cð1þ 1=kÞ ð4Þ

in which C is the Gamma function. Note that the mean of the shape
parameter and the scale parameter is used when the uncertainties
are ignored. For detailed studies on estimating Weibull parameters
or using other models, refer to [27–29].

3.2. Estimation of the wind speed at the target site

In wind energy potential assessment, usually only short-term
measurements are available for the target site where the turbine
is going to be constructed. On the other hand, we often have access
to long-term measurements at another reference site such as a
weather station. Measure-correlate-predict (MCP) algorithms en-
able the prediction of long-term wind speed for the target site un-
der this situation. The Variance Ratio Method [20] is expressed as:

bV t ¼ ðlVt
� ðrVt=rVr ÞlVr

Þ þ ðrVt=rVr ÞVr ð5Þ

in which bV t is the predicted wind speed at the target site, Vr is the
observed wind speed at the reference site, and lVt

, lVr
, rVt and rVr

are the mean and the standard deviation of the two concurrent data
sets at the target site and the reference site.

3.3. Height extrapolation

Due to the large size of modern turbines, the wind speed should
be extrapolated to the hub height. Meteorologists typically use the
logarithmic law to describe the vertical profile of the wind. For
practical applications, the power law is often employed for its sim-
plicity [30]. The power law is expressed as:

Vðz2Þ ¼ Vðz1Þ
z2

z1

� �a

ð6Þ

in which a is the surface roughness exponent dependent on the
roughness of terrain, and z1 and z2 are the height above ground or
sea level. When wind speed measurements at two different heights
are available, the surface roughness can be computed using the
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measurements. If wind speed measurements are not available, an
expert opinion or design code [31] may be referred to.

Most literature provides single value of the roughness exponent
for the given terrain. However, to describe the observed speeds
adequately a variable exponent is necessary [32]. In addition to
the conventional constant roughness exponent, the following two
variable roughness models were also employed in the analyses.
The first equation empirically scales the Justus equation [19]. The
second equation is a generalized form of the first equation.

laðVÞ ¼ 5~að0:37� 0:0881 lnðVÞÞ ð7Þ

laðVÞ ¼ c0 þ c1 lnðVÞ ð8Þ

in which ~a is the mean roughness exponent of the site, c0 and c1 are
regression coefficients estimated from the given data.

3.4. Procedure to estimate the AEP

If long-term wind speeds at the hub height are available, then to
estimate the AEP at the hub height the following procedure can be
performed:

(1) Obtain the mean and the standard deviation of the long-
term wind speeds.

(2) Compute the shape parameter and the scale parameter of
the Weibull distribution using Eqs. (3) and (4).

(3) Estimate the AEP using Eqs. (1) and (2), and the power per-
formance curve from the manufacturer.

A more common case is that long-term wind speeds are avail-
able from a nearby weather station and the long-term data have
to be extrapolated to the target site and to the hub height, as
shown in the flowchart in Fig. 3. In this case, the procedure to esti-
mate the AEP is:
Obtain long-term wind speeds 
from a reference site

Target, surface 
height data?

Estimate long-term wind 
speeds of the target, surface 

height

Target, hub 
height data?

Estimate long-term wind 
speeds of the target, hub 

height

Get an expert opinion 
(ex: an estimated mean 

windspeed)

Get an expert opinion 
or refer to design code

No

No

Yes
Compute parameters of the 

prediction model

Compute parameters of the 
power law

Yes

Fig. 3. Estimation of long-term wind speeds of the target site at the hub height,
using the wind speed data from a reference site.
(1) Obtain the mean and the standard deviation of the wind
speeds at the target site (surface height). If the data is not
available, get an expert opinion to estimate the statistics.

(2) Obtain the mean and the standard deviation of the wind
speeds at the reference site, using the data corresponding
to the time period of step 1.

(3) Extrapolate the long-term wind speeds of the reference to
the target using Eq. (5).

(4) Estimate the surface roughness exponent. If concurrent wind
speeds at two different heights are available, use them to
compute the exponent. If the data is not available, get an
expert opinion or refer to the design code.

(5) Extrapolate the wind speeds of the surface height to the hub
height using Eq. (6). Use Eqs. (7) and (8) if necessary.

(6) Obtain the wind speed PDF using Eqs. (2)–(4).
(7) Estimate the AEP using Eqs. (1) and (2), and the power per-

formance curve from the manufacturer.

4. Proposed Bayesian approach to assess the AEP

In order to account for the effect of the uncertainties, we pro-
pose a Bayesian approach for the AEP calculation. The approach
predicts the wind speed at the target site based on the historical
data set. The predicted wind speeds are then used in the following
discrete model to compute the wind turbine power and to obtain
the AEP.

EAEP ¼
XT

j¼1

PwtðVjÞ~q ð9Þ

in which ~q is the normalized air density from Eq. (10). Since the
power performance curve Pwt(V) is provided with respect to the
standard air density of 1.225 kg/m3, ~q and the probability given in
Eq. (10) will account for the uncertainties due to the change in
the air density.

4.1. Air density

Energy potential equation is dependent on the air density. After
analyzing actual measurements from Kwangyang Bay, a uniform
(rectangular) probability distribution was used to represent the ac-
tual data [19]. Therefore, for Kwangyang Bay,

fq ¼
1

1:07�0:94 ð0:94 6 ~q 6 1:07Þ
0 ðotherwiseÞ

(
ð10Þ

in which ~q is the air density normalized by the standard air density
of 1.225 kg/m3.

4.2. Power performance curve

To estimate the power output of a turbine, the power perfor-
mance curve is necessary. The power performance curve shows
power output under various wind speeds. It is provided by the man-
ufacturer of the turbine. Standardized tests [14] are used to obtain
the curve. Since the power performance curve only represents the
average power output for given wind speeds, probability models
are necessary to account for the uncertainty. In this research, the
measured power performance curve of a wind turbine at Hangwon
Windfarm in Jeju, Korea was used [33]. Based on the measurements,
a normal distribution model for the power based on 10-min incre-
ment data had been developed in another paper [19], which was re-
vised to be compatible with the hourly data used in this paper.

rPwt ðVÞ ¼
� 0:35ðV�VRÞ

VR�VI
þ 0:1

h i
lPwt
ðVÞ=

ffiffiffi
6
p

ðVI 6 V 6 VRÞ

0:1lPwt
ðVÞ=

ffiffiffi
6
p

ðVR < VÞ

8<: ð11Þ
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in which lPwt
ðVÞ and rPwt ðVÞ are the mean and the standard devia-

tion of the power performance Pwt(V), VR is the rated wind speed of
the turbine (15 m/s), and VI is the cut-in wind speed of the turbine
(4 m/s). The cut-out wind speed of the turbine used in this research
is 25 m/s. Note that lPwt

ðVÞ was provided by the manufacturer
whereas Eq. (11) was developed using the measured power
performance.

4.3. Uncertainty in the wind speed of the reference site

The Monte Carlo simulation and Eq. (9) require very long-term
data (at least 100 years or longer) in order to simulate interactions
of uncertainties on the AEP. If such data is available, it may be used
directly in the simulation. If not, wind speed PDF needs to be de-
fined using the wind speeds of the reference site, Eqs. (2)–(4),
and the following. Then, wind speeds of any duration can be sam-
pled from the PDF. Note that in this case, the uncertainty in the
mean and the standard deviation is insignificant because the wind
speed data at the reference site is long-term, and therefore, the
Bayesian approach needs not be applied.

The dispersion of the shape parameter k depends on the length
of the available data. The standard deviation of the shape parame-
ter, obtained from the best fit of the available data is given by [19]:

rk ¼ lk � 0:15n�0:35
d ð12Þ

in which nd is the length of the data in months.

4.4. Estimation of the wind speed at the target site

In order to predict the wind speed at the target site as a function
of the wind speed at the reference site (i.e., horizontal extrapola-
tion) we will employ a Bayesian regression model. The model has
Vt the wind speed at the target as the response and Vr the wind
speed at the reference as the regressor as follows:

Vt ¼ b0 þ b1Vr þ e ð13Þ

in which e follows the normal distribution with zero mean and re

standard deviation. The regression parameters b0 and b1 are esti-
mated in a Bayesian manner from a set of n observed wind speed
data Vt1. . .Vtn at the target site and Vr1, . . . ,Vrn at the reference site.
Suppose Vt and Vr (n by 1 vectors) are concurrent data sets at the
target site and the reference site. Define X ¼ ½1 Vr � to be the n
by 2 regressor matrix.

We assume noninformative prior distribution on the regression
parameters as pðb;r2

e Þ / 1=r2
e where b ¼ ðb0; b1Þ is the vector of

regression parameters. In Bayesian analysis, noninformative distri-
butions are often employed when no prior knowledge about the
model parameters b and r2

e exist. Noninformative (also called flat
or vague by some authors) priors assume that before observing
any data all values of the parameters are equally likely [34].

The posterior distribution of the regression model parameters
that correspond to noninformative priors and the assumed regres-
sion model Eq. (13) after observing the wind speed data at the ref-
erence and target locations are developed as follows. The posterior
of the error variance follows an Inverse Gamma IG distribution [35]:

r2
e jVr ;Vt � IGððn� 2Þ=2; s2ðn� 2Þ=2Þ ð14Þ

In this notation r2
e j� denotes conditional or posterior distribu-

tion meaning that after observing the data Vr, Vt the probability
density of r2

e is an inverse gamma. The shape and scale parameters
of the distribution are (n � 2)/2 and s2ðn� 2Þ=2, respectively,
where is the sample size and s2 is the estimated error variance de-
fined as:

s2 ¼ 1
n� k

ðVt � Xb̂Þ0ðVt � Xb̂Þ ð15Þ
Note that the prime (0) denotes the transpose operation. The poster-
ior of the regression coefficients is a multivariate normal distribu-
tion (MVN) with mean b̂ and variance–covariance matrix r2

e ðX
0XÞ�1:

bjVr ;Vt; r2
e � MVNð~b;r2

e ðX
0XÞ�1Þ ð16Þ

in which b̂ ¼ ðX0XÞ�1X0Vt is the vector of least squares estimates of
the regression coefficients. The proposed approach obtains the pre-
dictions of the target wind speed by simulation. The posterior pre-
dictive distribution of the target wind speed is obtained as the
integral:

pðVtjVtÞ ¼
Z

pðVt jb;r2
e Þpðb;r2

e jVtÞdbdr2
e ð17Þ

in which, by using the regression equation, the first quantity in the
integral pðVtjb;r2

e Þ is a normal distribution with mean b0 + b1Vr and
variance r2

e and the second quantity pðb;r2
e jVtÞ is the posterior of

the regression parameters. Samples from the predictive distribution
can be drawn (without having to evaluate the integral) by simula-
tion using the following algorithm:

(1) Draw error variance r2
e from the posterior distribution

r2
e jVr ;Vt using Eq. (14).

(2) Conditional on r2
e , draw regression coefficients b using Eq.

(16).
(3) Draw wind speed Vt at the target from pðVt jb;r2

e Þ.
(4) Go to step 1 and generate many samples.

4.5. Height extrapolation

The mean and standard deviation of surface roughness are as-
sumed to be functions of the wind speed at the surface height by
assuming the following relation:

aðVtÞ ¼ c0 þ c1 ln Vt þ n ð18Þ

in which c0 and c1 are unknown regression coefficients and n is
model error. The model error is assumed to follow a normal distri-
bution with mean 0 and standard deviation rnra(Vt) which is the
product of an unknown scale factor and rn a known standard devi-
ation function

raðVtÞ ¼ 2:5~a expð�0:1VtÞð0:37� 0:0881 lnðVtÞÞ ð19Þ

in which ~a is the mean roughness exponent of the site. The form re-
flects the observation that the standard deviation of the roughness
exponent depends on the wind speed and the relation discussed in
[19] was employed. Using the given data sets, the term rn will scale
the assumed standard deviation.

The regression model parameters of the surface roughness are
estimated using a Bayesian model from a set of n observations of
hub height wind speed Vh = (Vh1 , . . . , Vhn) and surface height wind
speed Vt = (Vt1, . . ., Vtn). The relation between the surface and hub
height wind speed can be given using the power law shown in
Eq. (6). Note that V(z2) = Vh and V(z1) = Vt. Therefore, the surface
roughness can be estimated from the pairs of surface and hub
height measurements. Let the n observations of the surface rough-
ness obtained from above calculation be denoted by a = (a1, . . . ,an).
Define R ¼ ½1 ln Vt � to be the (n � 2) regressor matrix obtained
from the logarithms of the surface height speeds ln Vt. According
to model (18) the model errors follow a normal distribution but
have unequal variances described by the variance covariance ma-
trix r2

n

P
n where the diagonal matrix:

Rn ¼ Diagðr2
aðVt1Þ; . . . ;r2

aðVtnÞÞ ð20Þ

is the known variance covariance matrix and r2
n is the unknown

scale factor. The posterior of the scale factor is an inverse gamma
distribution:

r2
n ja � IGððn� 2Þ=2; s2

n ðn� 2Þ=2Þ ð21Þ
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Fig. 4. Comparison of roughness exponents used in the deterministic analysis.

Table 1
Wind speed statistics and Weibull parameters in the deterministic analysis.

Wind speed
statistics

Weibull
parameters

l r k c

Reference measurement (1983–2007) 4.089 2.750 1.542 4.544
Reference measurement (2006) 4.013 2.770 1.498 4.445
Target measurement @ 12.5 m (2006) 4.426 2.916 1.577 4.930
Target estimated @ 12.5 m 4.506 2.895 1.620 5.031
Target estimated @ 80.0 m (constant

roughness exponent)
6.315 4.057 1.621 7.051

Target estimated @ 80.0 m (variable
roughness exponent, Eq. (7))

6.547 3.655 1.889 7.377

Target estimated @ 80.0 m (variable
roughness exponent, Eq. (8))

6.131 3.787 1.692 6.869
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and the posterior of the regression coefficients c is a multivariate
normal distribution:

cjr2
n ;a � MVN ĉ;r2

n R0
X�1

z
R

� ��1
� �

ð22Þ

in which ĉ ¼ ðR0
P�1

z RÞ�1R0
P�1

z a is the vector of weighted least
squares estimates of the regression coefficients. The estimated error
variance of the model is

s2
n ¼

1
n� k

ða� RĉÞ0R�1
z ða� RĉÞ ð23Þ

Similar to the horizontal extrapolation, the predictions of hub
height wind speed will be obtained by simulation:

(1) Draw error variance r2
n from posterior distribution using Eq.

(21).
(2) Conditional on r2

n , draw regression coefficients c from the
posterior using Eq. (22).

(3) Conditional on r2
n and c draw roughness exponent a from:

pðajc;r2
nÞ ¼ Nðc0 þ c1 ln Vt ;r2

nr
2
aÞ

(4) Conditional on a, find wind speed at hub height Vh = Vt(z2/
z1)a.

(5) Go to step 1 and generate many samples.

5. An illustrative example: the deterministic approach

This section analyzes the AEP using the conventional determin-
istic approach explained in Section 3. The deterministic approach
uses the mean values of the wind speed PDF and the power perfor-
mance curve. We will compare the results to the proposed Bayes-
ian approach in Section 6.

First, concurrent wind speeds measured between 1/1/2006 and
12/31/2006 were used to obtain the MCP parameters. The mean
and the standard deviation of the hourly wind speed at the target
(Kwangyang Bay) was 4.426 and 2.916. The mean and the standard
deviation of the hourly wind speed at the reference (Yeosu Weath-
er Station) was 4.013 and 2.770. The slope of the obtained MCP
equation was 1.053 and the y-intercept was 0.202.

Next, the roughness exponent was computed using the 10 m
and 60 m wind speeds measured between 8/1/2007 and 7/31/
2008 at the Yi Sun-sin Bridge site, which had similar surface
characteristics to the target site. Since the anemometers at the Yi
Sun-sin Bridge site reported 10-min wind speeds, they were first
converted to hourly wind speeds so that the data among all sites
are compatible. When all hourly speeds were used, 12.2% of hourly
speeds produced unrealistic roughness exponents (smaller than
zero or greater than one). These unrealistic exponents were
excluded in computing the average roughness exponent. The com-
puted average roughness exponent was 0.182, which was used in
the constant roughness exponent and the variable roughness expo-
nent model of Eq. (7). The data was also used to obtain the regres-
sion coefficients of Eq. (8), which were computed as c0 = 0.2062
and. c1 = �0.0237 Fig. 4 compares these roughness exponents
obtained with constant and variable exponent models discussed
in Section 3.3. Overall, Eq. (8) provided the best fit but it slightly
underestimated the roughness exponent of higher speeds.

After obtaining the parameters for MCP and the roughness
exponent, the long-term wind speeds at the reference between
1983 and 2007 were extrapolated to the target surface height
(12.5 m) and then to the target hub height (80.0 m). Finally, the
Weibull parameters were obtained and then the AEP was com-
puted. Table 1 summarizes the obtained wind speed statistics
and Weibull parameters. Fig. 5 graphically compares the wind
speed PDFs at different stages. The AEP was computed as 6363
MW h for the constant roughness exponent, 6621 MW h for the
variable roughness exponent using Eq. (7), and 5932 MW h for
the variable roughness exponent using Eq. (8). Note that the AEP
is different from what was reported in another paper [19] because
in this paper new data was used to compute the surface roughness,
which turned out to be higher than the earlier estimation. The
roughness exponent had a significant impact on the AEP. If we take
the AEP of the constant roughness model as 100% since the con-
stant model is frequently used in practice, the AEP changed be-
tween 93% and 104% by selecting a different roughness exponent
model.
6. An illustrative example: the proposed approach

6.1. AEP analysis using the proposed approach

The proposed approach considers the mean and the variance of
the wind speed PDFs and the power performance curve. The interac-
tions of the uncertainties at the stages of horizontal extrapolation,
vertical extrapolation, and the wind turbine power calculation are
considered using the procedure explained in Section 4.

The simulation was run for 1000 years. For each year of the sim-
ulation, 365 � 24 = 8760 hourly wind speeds were generated for
the reference site using the Weibull distribution with the parame-
ters shown in the first row of Table 1. The reason for using the
Weibull distribution instead of the actual measurement was be-
cause the measurement was available for only 25 years whereas
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simulation year 1).
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the simulation was done for 1000 years. Fig. 6 plots the histograms
of generated wind speeds for all 1000 years. Compared to the his-
togram of actual measurements between 1983 and 2007, the wind
speeds higher than 5 m/s were more accurate than the wind
speeds lower than 5 m/s. This characteristic was favorable to the
simulation because the cut-in speed of the turbine used in the sim-
ulation was 4 m/s and the lower wind speeds were ignored in the
AEP calculation.

The next step was to apply the horizontal extrapolations of the
hourly wind speeds using the procedure explained in Section 4.4.
To obtain the predictive distributions, 1-year measured data at
the reference and the target was used. Fig. 7 shows the histogram
of simulated hourly wind speeds after the horizontal extrapolation.
Only the simulation year 1 is shown for the clarity of the presenta-
tion. The solid and the dotted lines were obtained using the hourly
speeds of the simulation year 1, so the lines changed for every year
of the simulation reflecting the effect of the uncertainties. The fig-
ure clearly shows the deviation from the mean wind speed PDF
shown in Fig. 5.

The vertical extrapolation is characterized by the roughness
exponents. Fig. 8 compares values computed using the measured
wind speeds, values generated during the simulation using the pre-
dictive distributions, and Eq. (7). The predictive distributions were
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Fig. 6. Wind speeds at the reference: histogram of measurements vs. simulated
data. Simulated values were obtained from the Weibull distribution.
calibrated using the 1-year data measured at 10 m and 60 m near
the target site, using the procedure explained in Section 4.5. Eq.
(7) showed an excellent fit for the site in Tjare [19], but the fit
was not very good for the data used in this paper (square markers).
On the other hand, the proposed approach calibrated the predictive
distributions of the roughness exponent using the given data, and
the mean of exponents generated during the simulation (circle
markers) represented the actual measurements very well. In the
previous research [19], Eq. (19) was obtained by scaling Eq. (7)
to fit the Tjare data. Unlike the mean function, the standard devia-
tion (Eq. (19)) showed an excellent fit for the standard deviation of
the data used in this paper. The proposed simulation scales Eq. (19)
using the given data, and it obviously also showed a good fit.

The importance of the roughness exponent was identified ear-
lier in the deterministic analysis, so the roughness exponent of
the uncertainty analysis was further analyzed. Fig. 9 compares
the measured wind speeds and the simulated wind speeds ob-
tained by applying the Bayesian approach at the wind turbine
hub height. The advantage of the Bayesian approach can be seen
in the figure when we compare the markers to the lines. The sim-
ulated wind speeds in the uncertainty analysis (circles) closely
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follows the measured wind speeds (squares), both of which show
scatters inherent in wind speeds. On the other hand, the determin-
istic analysis provides only point predictions resulting in lines
shown in the figure. Therefore, the deterministic analysis is not
able to quantify uncertainties inherent in the predictions. Overall,
the simulated wind speeds match the measured wind speeds very
well, especially up to the surface wind speed 13 m/s. However, the
accuracy is not as good for the speeds of 14 m/s or higher due to
the lack of the measured data. Only two records existed for the
speeds higher than 14 m/s, which were not sufficient to change
the predictive model. For the lower wind speeds up to 13 m/s, both
the measured speeds and the simulated speeds follow Eq. (8). For
the higher wind speeds, the measured speeds follow somewhere
between the constant roughness assumption and the variable
roughness assumption of Eq. (8), whereas the simulation follows
primarily Eq. (8). Therefore, it is difficult to conclude that the real
behavior follows only certain roughness model. In the following,
the comparison of AEP of the uncertainty analysis and the deter-
ministic analysis will show results from all roughness models.

The last step in the uncertainty analysis is to compute the AEP
for the given simulation year using the predicted wind speeds at
the hub height and the power performance curve. Fig. 10 shows
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Fig. 10. Histogram of wind speeds obtained with the proposed Bayesian approach
for the reference, the target at the surface height, and the target at the hub height
(simulation year 1).
example distributions of simulated wind speeds for the simulation
year 1. The distributions were constructed from the histograms
with bin width = 0.5 m/s. The distribution at 80 m shows higher
wind speeds than the distribution at 12.5 m. It also shows more
variability (the width of the distribution) than the distribution at
12.5 m. For a different simulation year, the histograms will change
(see Fig. 6) reflecting the effects of the uncertainties, but the overall
trends should remain the same. In the deterministic approach, only
single curve was used to represent the wind speeds at the hub
height as shown in Fig. 5. Fig. 11 shows simulated powers for the
simulation year 1. For the same wind speed record, the power out-
put in y-axis shows clearly the variations reflecting the uncertainty
in the turbine power output. The variation of the power output in-
creases for the increase in the wind speed up to 16 m/s. The trend
would have continued if the number of simulated data points did
not decrease for the higher speeds.

The AEP of each year of simulation will change due to the ran-
domly generated uncertainties in the simulation. The simulation
was repeated for 1000 years. The probability density of the AEP
from the Bayesian approach (uncertainty analysis) is compared
to the deterministic analysis results in Fig. 12. As explained earlier,
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it is not possible to state, for the site and the turbine analyzed in
this paper, that certain roughness model was the most accurate,
so the results from the uncertainty analysis were compared to all
roughness models. When we take the mean of the uncertainty
analysis as 100%, the AEPs from deterministic analyses with the
constant roughness model, Eqs. (7) and (8) are 99.6%, 103.6%, and
92.9%, respectively. The limits obtained by the different roughness
models are useful as lower or upper bounds on the energy produc-
tion, but they are not able to quantify the probabilities. An advan-
tage of the Bayesian approach evident from this Fig. 12 is that the
PDF of the AEP enables us to more accurately calculate the proba-
bility that the AEP will lie in certain intervals. For example in
Fig. 11 the probability that AEP is less than 6200 MW h can be esti-
mated as about 16%. The deterministic analysis with the constant
roughness model happened to be the closest to the mean of the
uncertainty analysis (6388 MW h), but for another site the model
may change based on an earlier study [19]. The 95 percentiles of
the PDF are 6110 MW h and 6678 MW h, and the results from
the constant roughness model and Eq. (7) are within the bound.
The result from Eq. (8) is outside the bound, but the difference with
respect to the lower bound is less than 3%. The 99 percentiles of the
PDF are 6031 MW h and 6794 MW h, and the difference with re-
spect to the lower bound becomes 1.6%. Therefore, we conclude
that the PDF of AEP from the uncertainty analysis reasonably cap-
tures the results of deterministic analyses with various roughness
models. Finally, the range given by the 95% confidence interval cor-
responds to 8.9% of the mean AEP. The range given by the 99% con-
fidence interval corresponds to 11.9% of the mean AEP.

6.2. Comparison of Bayesian and frequentist approaches and effects of
using short-term data

In order to study the benefits of the Bayesian approach we com-
pare the uncertainty results to a traditional frequentist method.
Bayesian inference considers all unknown parameters as random
variables. Frequentist (classical) statistical inference considers
population parameters as fixed but data as random due to sam-
pling. Fig. 13 shows the Bayesian posterior distribution of the slope
parameter b1 and the error variance r2

e from the horizontal extrap-
olation model using different data sizes.

The slope coefficient b1 can be interpreted as the correlation be-
tween the reference and target wind speeds. As it can be seen in
the posterior distributions, the parameter is more accurately esti-
mated as more data points are used. The 95% confidence intervals
of b1 are as follows: with 1 week data 0.762 � 0.111, with 1 month
data 0.813 � 0.049, and with 1 year data 0.776 � 0.015, showing
that the intervals become narrower with more data points. There-
fore, for example, the prediction interval for target wind speed for a
reference wind speed of 5 m/s (assume b0 = 1) can be obtained
using Eq. (13) as (4.26, 5.37) and (4.81, 4.96) with 1 week and
1 year data, respectively. Hence we capture the possibility that
the wind speed can be as low as 4.26 m/s with 1 week data, but
our minimum estimate with 1 year data will be 4.81 m/s. In addi-
tion, the posterior confidence interval of r2

e that measures the
model error are as follows: with 1 week data 4.769 � 1.031, with
1 month data 4.066 � 0.452, and with 1 year data 3.887 � 0.119.
Having a distribution for r2

e rather than just single value (as we
would have in a frequentist approach) accounts for additional
uncertainty due to small sample size—the confidence interval with
1 week data is wider than 1 year data. This uncertainty is reflected
in the posterior of the because the posterior of b1 is generated con-
ditional on the posterior of r2

e , as discussed in the simulation algo-
rithm in Section 4.4.

Fig. 14 shows the posterior distribution of the slope parameter
c1 and the error variance r2

n from the vertical extrapolation model.
The slope c1 gives the relation between the log of the surface wind
speed and the roughness exponent through Eq. (18). The confi-
dence intervals of c1 with 1 week and 1 year data are �0.018 �
0.020 and �0.024 � 0.0003. Therefore, for example, the surface
roughness for a surface wind speed of 3 m/s (assume c0 = 0.2)
can be predicted using Eq. (18) as (0.158, 0.202) and (0.170,
0.177) with 1 week and 1 year data, respectively. The effect of
parameter uncertainty on the roughness exponent predictions is
more completely illustrated in Fig. 15 which compares the rough-
ness exponent predictions obtained by Eq. (18) for different surface
wind speeds using two different data sizes 1 week and 1 year. The
figure also plots the complete set of roughness exponents com-
puted using measured wind speeds at 10 m and 60 m. As it can
be seen, while the mean roughness estimates from both data sets
are very similar, the prediction intervals from 1 year data more
accurately captures the actual data (with wider prediction inter-
vals) than 1 week data.

For the frequentist approach, we repeated the analysis outlined
in Sections 4.4 and 4.5 by using the point estimates of the error
variances rather than sampling from their posteriors (i.e. in step
1 we did not sample r2

e but instead used the estimated value in
step 2). It is important to note that for both approaches the distri-
bution of power was the same in the last step of the uncertainty
propagation, so the AEP results from two approaches are expected
to be very similar. We repeated the analysis with the frequentist
approach using the same 1 year data and simulated the posterior
of AEP. Fig. 16 gives the posterior of AEP from the Bayesian
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approach and the simulated AEP distribution from the frequentist
approach. The 99% prediction interval for AEP is obtained as
(6031, 6794) MW h from the Bayesian approach while from the
frequentist approach (6054, 6724) MW h. In the figure the
frequentist approach seemingly shows wider estimation due to
the outliers, but the 99 percentiles show that the lower bound of
the Bayesian is 0.38% lower and the upper bound is 1.0% higher
than the frequentist approach. The difference is because the Bayes-
ian approach accounts for uncertainties due to sample size and
parameter estimation and hence provides a wider bound on the
energy potential estimate.

To better illustrate the capability of the Bayesian approach to
account for additional uncertainties, one of the intermediate steps
is explained below in detail. We will use the prediction of rough-
ness exponent as an illustration, but other steps show similar
behavior. We applied both the frequentist approach and the Bayes-
ian approach to Eq. (18). Only 1-day data (April 1) was used for the
clarity of the presentation. The 1-day data was used to obtain the
parameters of Eq. (18). The frequentist approach then predicts
the roughness exponent using single values of c0, c1, and rn,
whereas the Bayesian approach treats these as random variables
that have distributions. How both models predict the roughness
exponent is compared in Fig. 17. Both models provide similar pre-
dictions, but it is clearly shown that the Bayesian approach pro-
vides a wider interval. When both models are compared to the
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measured roughness exponent of the next 4 days (circle markers),
the Bayesian approach better predicts the data not used in the esti-
mation of the model parameters.

The proposed Bayesian approach opens a new possibility to use
very short-term data (such as days) that conventionally was not
sufficient to obtain the AEP reliably. The Bayesian approach en-
ables us to overcome the uncertainties due to the limited amount
of data. However, our attempts to predict the AEP using the very
short-term data was not successful at this point due to another
major challenge—daily, weekly, and seasonal variations of wind
speeds that appeared to be greater than the uncertainties due to
the limited amount of data. As explained in the introduction, that
challenge belongs to a different category of uncertainty (aleatory)
than the one addressed in this paper (epistemic). Further interdis-
ciplinary research of this subject looks promising, such as collabo-
ration between the engineering and the meteorology, but we leave
it as a future study.
7. Summary and future work

We proposed a new Bayesian approach to estimate the annual
energy production (AEP) of a site where construction of wind tur-
bines is considered (termed as the target site). The approach uses
long-term wind speeds of a nearby weather station (termed as
the reference site), concurrent short-term wind speeds of the refer-
ence and the target, and concurrent short-term wind speeds at two
different heights at the target. For illustration, we used 25 years of
wind speeds at the Yeosu Weather Station and 1 year wind speeds
at the Kwangyang Bay and Yi Sun-sin Bridge site. The following
summarizes the conclusions of our investigations.

(1) When the conventional deterministic approach was used,
the choice of the roughness exponent model significantly
affected the AEP. The AEP changed between 93% and 104%
by selecting a different roughness exponent model. The pro-
posed approach reasonably captured the results of deter-
ministic analyses above.

(2) For the site and the turbine studied, the constant roughness
model of the deterministic analysis provided the closest
match to the mean of the uncertainty analysis. When we
took the mean of the uncertainty analysis as 100%, the AEPs
from deterministic analysis with the constant roughness
model was 99.6%.

(3) The proposed approach provides the AEP as the distribution
rather than a point estimate. Therefore, the probability that
the AEP will lie in certain intervals can be computed in the
proposed approach.

(4) Compared to the frequentist (classical) statistical inference,
the Bayesian approach treats the model parameters as ran-
dom variables. The implication is that the Bayesian approach
better considers the uncertainties due to the limited amount
of data. For example, the prediction intervals from the Bayes-
ian approach proved to be wider than those from the frequen-
tist approach as shown in Figs. 16 and 17. Another advantage
is that it provides distribution of parameters of the prediction
model. For example, in addition to the correlation function
between the reference wind speed and the target wind speed,
expected errors in the prediction are also provided. Such
information will be useful if the AEP needs to be predicted
for another similar site where measurements are limited.

The focus of this paper was to present a new Bayesian approach
in estimating the AEP. The following points were not fully ad-
dressed in this paper. They are recommended as future research
topics.
(1) The proposed Bayesian approach opens a new possibility to
use very short-term data (such as days) that conventionally
was not sufficient to obtain the AEP reliably. However, addi-
tional studies are necessary to address daily, weekly, and
seasonal variations in the AEP estimation.

(2) The current study computationally estimated the AEP for a
hypothetical wind turbine. Its application on a real test case
with measured AEP will provide valuable insight into the
problem.

(3) The current study included only one case study. Its applica-
tion on a different site with different topography and envi-
ronmental conditions merits further research.

(4) We utilized the standard deviation functions from literature
(Eqs. (11) and (19)) in both of the Bayesian and frequentist
approaches. In a fully Bayesian approach the functions would
also be estimated from data. The benefits of the Bayesian
approach are expected to be more pronounced if these equa-
tions were estimated from data and the uncertainties of
these coefficients were also included in the model. A possible
extension of this research is to develop an experimental
approach to include estimation of the standard deviation
functions from the power and wind speed measurements.

(5) Another merit of the Bayesian approach over the frequentist
approach is its ability to include prior information on the
parameters in the form of prior distribution. Expert opinion
on wind behavior can be incorporated into the statistical
model in a formal way. In this study only noninformative
prior distributions were employed. However, the proposed
methodology provides a framework to include informative
priors. Therefore, formulating appropriate priors from expert
opinion and developing posterior distributions for informa-
tive priors could be investigated as a possible future study.
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