AD HOC AND SENSOR NETWORKS

From Radio Telemetry to Ultra-Low-Power Sensor Networks: Tracking Bats in the Wild

Falko Dressler, Simon Ripperger, Martin Hierold, Thorsten Nowak, Christopher Eibel, Björn Cassens, Frieder Mayer, Klaus Meyer-Wegener, and Alexander Kölpin

ABSTRACT

Sensor networks have successfully been used for wildlife monitoring and tracking of different species. When it comes to small animals such as smaller birds, mammals, or even insects, the current approach is to use extremely lightweight RF tags located using radio telemetry. A new quantum leap in technology is needed to overcome this limitation and enable new ways to observe larger numbers of small animals. In an interdisciplinary team, we are working on the different aspects of such a new technology. In particular, we report on our findings on a sensor-network-based tracking solution for bats. Our system is based on integrated localization and wireless communication protocols for ultra-low-power systems. This requires coding techniques for improved reliability as well as ranging solutions for tracking hunting bats. We address the technological and methodical problems related to system design, software support, and protocol design. First field experiments have been conducted that showcase the capabilities of our system.

INTRODUCTION

Wildlife tracking was one of the early applications in wireless sensor networks (WSNs) and remained, among a few others, one of the most successful [1, 2]. Sensor-networking-based wildlife monitoring provides more sophisticated methods for biologists to study individuals of a specific species in terms of gathering a huge amount of data by long-term observations. When it comes to tracking smaller animals like very small mammals or birds, radio telemetry is still considered state of the art [3]. This means that for localizing a single individual, at least two radio receivers operated by biologists in the field are needed to obtain a single position sample per triangulation. Here, both the rate of localization samples is very low — too low for continuous tracking — and the observation is usually restricted to very few individuals.

In the scope of the BATS! project, we are developing a new sensor-network-based system for monitoring group dynamics of bats in their natural habitat. In particular, we go one step further than related activities and investigate potentials of ultra-low-power sensor systems carried by the bats to monitor contacts or encounters between individuals and to track their routes at high spatial and temporal resolution. Tracking bats is especially challenging because direct observations on flying bats are almost impossible due to their nocturnal activity and high mobility. Mouse-eared bats (Myotis myotis), one of the most protected species in the European Union, are the main study target. The key challenge is that the animals, with an average body weight of about 20 g, can carry sensors of at most 2 g (including a 1 g battery), which is even less weight than a sheet of paper in A5 format. Comparable sensors published in the literature typically weigh more than 100 g, with EncounterNet tags being outstanding with a weight of only 10 g — which is one order of magnitude higher compared to our requirements [2]. This poses a series of fundamental research questions that need to be addressed from a multi-disciplinary perspective ranging from hardware design, system support, and communication protocol engineering.

Our bat tracking scenario involves a variety of functions that need to be integrated with a main focus on energy efficiency. In a first stage, we aim at tracking flying bats using a stationary ground network. The concept is outlined in Fig. 1. The ground stations localize and track the bats using a combination of received signal strength (RSS) and phase-based localization techniques. Given the energy constraints of the mobile nodes, special modulation schemes are needed. When talking about the mobile nodes, we need to emphasize that a 1 g battery cannot directly power the microcontroller and the radio transceiver for a longer time period — in particular, we have to charge a capacitor first to provide peak operating current for the system. We investigated a combination of wake-up receiver (WuRs) and carefully controlled duty cycling to recharge the capacitor.

In a second stage, the system is also used to observe larger numbers of small animals.
Figure 1. Conceptual scenario for bat tracking in the wild: stationary ground nodes are used to localize and track bats based on emitted beacon messages. The mobile nodes are also used to monitor encounters and download this data to the ground network to increase the observation range beyond the ground station area.

exchange contact information among the mobile nodes to increase the observation range beyond the ground station area. The encounter information is then downloaded to the ground network when in communication range, as determined by the WiRs. In the following, we refer to this data as chunks representing sets of contact information collected by a mobile node on the bat. The download follows the same power constraints and needs to be integrated with the localization signal. As the channel quality varies quickly in the given environment, additional error control mechanisms need to be integrated. We explored the capabilities of erasure codes (ECs) and were able to show that substantial improvements are possible.

Right now, the project is going beyond initial fundamental research on all the aspects mentioned. First field experiments have been completed in Germany as well as Panama showcasing the capabilities of the envisioned architecture. In this article, we summarize all the related inherently inter-disciplinary research challenges and outline conceptual approaches solving the problems, toward a novel ultra-low-power sensor networking solution for tracking bats in the wild.

Our main contributions can be summarized as follows:
- We report on first field tests using our 2 g sensor platform enabling, for the first time, tracking of animals weighing as few as 20 g;
- We developed a novel system architecture supporting precise localization and tracking;
- We summarize system design aspects from the operating system to wake-up receiver design;
- We finally outline the novel integrated wireless communication and localization protocols from PHY to forward error control using erasure codes;
- We briefly report about first successful outdoor experiments in Germany and Panama.

RELATED WORK: STUDYING BATS IN THE WILD

The first projects relied on typical sensor platforms as used in academic research labs (e.g., the Great Duck Island project) or on special hardware that is even robust enough to be carried by larger animals (e.g., the ZebraNet project). More recently, tracking has become a major application besides the collection of several sensor readings. Also, technological advances have enabled new generations of sensor nodes that can be used to track much smaller animals such as the Iberian lynx [1]. Wireless digital transceiver technology has even rendered the automated mapping of social networks in wild birds possible (e.g., in the Encounternet project) [2]. From these successful approaches to wildlife monitoring using sensor networks, we learned about hardware design issues, network management, and data collection techniques.

The state-of-the-art technology for bat tracking is still radio telemetry. However, this method requires high labor costs since two or more persons must manually observe one or a few individuals at a time. The reward for this great effort is a minimal number of animal positions that are separated by several minutes and usually contain localization errors of tens of meters.

Observing the movements of individual animals in their natural habitat is one of the most difficult tasks in the field of behavioral biology; however, it is key to understanding complex biological processes such as foraging, social interactions, migration, and gene flow. Recent technological advances in satellite-based animal localization and automated data acquisition are restricted to medium-sized to large mammals and birds due to the considerable weight of available transmitters [4].

The most promising approach for tracking large-scale movements of small animals from space is represented by the ICARUS initiative. It is expected to start in 2016, and tags will initially weigh 5 g but should become considerably lighter within a couple of years [5]. Until ICARUS finally launches and tags undergo further miniaturization, traditional radio telemetry still represents the state of the art of bat tracking as radio transmitters are available with a weight down to 0.2 g. However, this technique can only provide a rough estimate of foraging movements based on animal positions that are separated by several minutes and contain localization errors of at least tens of meters. However, the number of individuals as well as the observable area are limited.

The study of social interactions among individually identifiable bats is especially challenging in the wild. To date, the only option to automate this is to use extremely light passive integrated transponder tags (PIT-tags), which can be identified within known roosting sites that are equipped with PIT-tag readers [6]. The only possibility to document group dynamics while foraging is again radio telemetry [7].

The BATS sensor network aims at implementing both automated high-precision positioning of many individuals at a time and documenting interactions of the observed bats. The high temporal and spatial resolution of data will render the reconstruction of individual flight trajectories possible. Communication among mobile nodes will shed light on interactions among bats at the individual level during the nightly activity phase, which were impossible to study until now. The advances of the BATS system hold the potential
to gain deeper understanding of bat behavior, for example, habitat use, analysis of flight maneuvers, and group dynamics.

**THE BATS GROUND NETWORK**

**EXPERIMENT MANAGEMENT**

Many projects on wildlife tracking mentioned in the introduction have used a data-stream management system (DSMS) to collect the data. This has the advantage of processing the data early (i.e., selecting and aggregating them), which has proven to reduce power requirements for WSNs. This in general is favorable, as battery lifespans increase and maintenance costs are reduced.

Queries are deployed to the ground network and later even to the mobile nodes on the bats to define the early processing. The stream operators invoked by the queries can be adjusted or even replaced if the biologists want to tweak resolution to support their experiments. It is still a research issue to conduct dynamic stream operator replacement efficiently in sensor networks.

Due to technical restrictions, especially the communication data rate between mobile nodes and ground nodes, not all acquired data can be sent. For example, providing a timestamp and duration of a meeting, which is mandatory for further analysis, uses almost 70 percent of the available data rate. Other data like different received signal strength indicator (RSSI) values cannot be sent without any violation against data rate requirements. Therefore, only a subset of acquired data can be sent to the base station network. Thus, a decision has to be made to select the most suitable data to send. Depending on the current research focus, the system will be adapted to increase the quality of the relevant data while balancing the other goals: providing additional data for later offline analysis and increasing node lifespans.

**GROUND NODES**

The ground nodes consist of MicroZed boards equipped with a custom software defined radio (SDR) RF frontend based on the Analog Devices AD9361 transceiver chip as we assume no tight energy constraints for the ground nodes. This versatile SDR platform allows exploitation of the localization methods described above. Comprising a field programmable gate array (FPGA) and a dual ARM core, the ground nodes feature enough processing power to enable complex range estimation and direction finding algorithms.

The ground nodes also have to wake up the mobile nodes in order to initiate and coordinate transmissions when the mobile nodes are in range of the network. Periodic beacon signals allow the mobile nodes to be loosely synchronized with the ground stations. Using these beacon signals, mobile nodes can decide whether to transmit localization signals or to save energy.

**GROUND NETWORK**

In order to support both localization as well as data collection from the mobile nodes, an efficient and decentralized distributed data storage and lookup is needed. A promising concept is a distributed hash table (DHT) integrated with ground network routing capabilities. There are various protocols for sensor networks providing standard DHT functionalities [8]; however, most of them rely on globally valid topology information, need geographic location information, or do not take into consideration the physical position of nodes, which leads to increased routing paths. We selected the Virtual Cord Protocol (VCP) [8], which overcomes many of these shortcomings. VCP supports routing in the ground network topology using a virtual cord based on neighborhood information. For data management, each node is then responsible for data with a hash value that matches its virtual node identifier.

**MOBILE NODE DESIGN**

**HARDWARE DESIGN**

The building blocks of the mobile node and a successfully used prototype are depicted in Fig. 2. Due to its high energy density, a lithium primary coin battery is used to power the tag. Caused by the maximum current of lithium cell supply capacity, a buffer capacitance is applied. A DC/DC switching converter down converts the variable capacitor voltage to a constant system-on-chip input voltage of 1.8 V. The system on chip (SoC), which is the key component of the tag, comprises a microcontroller, a dual-band front-end for transmission and reception in the 868 MHz and 2.45 GHz bands, and a WuRx operating in the 868 MHz band. The first prototypes containing a Cortex-M0+, an Si4460, and an AT86RF233 have been built to set up a system demonstrator. Besides the SoC, an accelerometer is placed on the tag to facilitate motion detection. A dual-band antenna is shared by the regular transceiver and the WuRx. The whole hardware assembly is protected against physical influences (e.g., humidity or the attempt of the bat to scratch it off) by an epoxy sealing.

The WuRx must be suitable for two different operating conditions: the communication between mobile nodes and the communication between ground node and mobile node. Defined by the spacing of ground nodes, the maximum distance for ground node to mobile node communication is approximately 50 m. According to the communication channel, this corresponds to an attenuation of 65 dB (free space path loss).
to 78 dB (free space plus linear fading with 0.25 dB/m) at 808 MHz. Given a transmission power of 10 dBm, this leads to a minimum required sensitivity of −55 dBm and −68 dBm, respectively. We rely on the concept described in [9], which is suitable for both operating conditions.

**POWER MANAGEMENT**

The lithium primary battery offers high capacitance, but still the current that can be drawn is limited to ~0.5 mA. However, the SoC, especially the transceiver, demands several milli-amperes when active. To satisfy this demand a buffer capacitance is integrated, which has to be charged by the battery before it is discharged by the SoC. Hence, continuous operation of the transceiver is not feasible. Furthermore, a trade-off between active period and recharging time exists: the longer the transceiver is active, the longer the capacitor has to be recharged. With the assumption that the current drain during the sleeping phase of the tag and the recharging during the active period is negligible, the dependency between the maximum active period and the minimum recharging time is visualized in Fig. 3. The fact that the capacitor’s voltage decreases during its discharge leads to the existence of an absolute maximum time limit of the active period; that is, when the voltage of the capacitor at the end of the active period falls below the 1.8 V input voltage of the SoC. The value of $U_L$ is also given in Fig. 3 and determines the limit of the active period to be about 10 ms. The resulting protocol design challenges are discussed in the following section.

**COMMUNICATION PROTOCOLS**

*Protocol Design*

When it comes to the design of low-energy communication protocols in sensor networks, three main approaches have been identified in the literature:

- Duty cycling, that is, periodically switching between active and passive state to power off the main components in the passive stage, with synchronization explicitly required
- Low-power listening, that is, “waking up” the receiver node using multiple transmission attempts (either full messages or wake-up preamble) to dismiss the synchronization requirement
- Wake-up medium access control (MAC) protocols, that is, using dedicated hardware to wake up the node in case of an upcoming transmission (e.g., PW-MAC [12])

Given the energy constraints discussed, the

---

Figure 3. Dependency of the active period and the recharging time.
Communication protocol for mobile to ground communication needs to be designed in a completely novel way. First of all, duty cycling is an inherent feature given the recharging cycles of the capacitor that powers the radio transceiver. Furthermore, unnecessary transmissions need to be prevented when the bat is not in communication range of at least one ground node. Here, a multi-stage WuRx is used to completely power off both the radio transceiver and the microcontroller.

These two concepts can be combined to benefit from both advantages. Duty cycling helps reduce the energy consumption (and supports recharging the capacitor) when the bat is in range of a ground node, and the multi-stage WuRx triggers initiation of this duty cycling and turns off all digital components if not needed. The entire cycle is controlled by the ground network (i.e., all ground nodes are assumed to be synchronized). We assume a frequency of wake-up pulses of up to 10 Hz for trajectory estimation.

In each cycle, a wake-up pulse disseminated by the ground nodes wakes up the mobile nodes. In a second phase of the project, we aim to encode data on the wake-up signal. This information can be used to coordinate channel access in order to avoid collisions if multiple bats are within range of a ground node.

Obviously, more than a single mobile node needs to be supported by the mobile to ground communication protocol and track multiple individuals at the same time. Timing is controlled by the base station, which initiates the process. We picked BOC modulation to increase the robustness of the protocol even though (without an uplink signal) this limits the number of mobile nodes to the number of available time slots. Furthermore, guard intervals have been introduced because the sensor nodes are not synchronized perfectly and the oscillators might drift considerably.

**Encoding and Modulation for Combined Localization and Data Communication**

As energy awareness is one of the most crucial aspects of our system, the energy spent on RF activity for localization and communication has to be minimized. We recently proposed a signaling scheme that combines localization and data signals [13]. In the presented approach, binary offset carrier (BOC) modulation is used to simultaneously transmit data and provide accurate range measurements.

BOC modulation is well known in the field of global navigation satellite systems (GNSSs). In contrast to GNSS and due to the limited energy, very short burst signals are used for communication and localization instead of continuous signals. A further motivation for burst signals is to avoid near-far effects in local real-time locating systems (RTLSs) by time-division multiplexing.

Due to the limited observation area, pure subcarrier tracking is applied in the BATS system as this approach maximizes signal-to-noise ratio (SNR) bandwidth and thus leads to a minimum range estimation variance. Data transmission is realized by modulation of the subcarriers. This modulation broadens the subcarriers and also decreases the RMS bandwidth, but still has only a negligible impact on the range estimation accuracy. However, data decoding errors have a rather substantial influence on the distance estimation as they result in a mismatch of the correlated sequences, which then leads to signal-to-noise ratio (SNR) degradation. This significant increase in the range estimation variance is shown in Fig. 4.

**Improving Communication Reliability**

The channel quality may vary quickly due to the continuous movements of bats and the heterogeneous forest environment; thus, the communication is in general assumed to be highly unreliable, and error control techniques (ECs) have to be applied. We consider ECs as a specific class of forward error correction codes and a promising approach in our BATS scenario. ECs are widely employed to improve the reliability in wireless transmissions [14]. Compared to the simplistic approach of sending chunk replica together with the original data as well as to the classic automatic repeat request (ARQ) mechanism, ECs offer better performance with reduced costs in terms of energy consumption. Likewise, ECs show better efficiency than on demand chunk retransmissions realized by acknowledging successfully transmitted chunks.

The significant difference between the various ECs is the mathematical background of the encoding and decoding algorithms. Reed-Solomon (RS) codes such as Cauchy and Vandermonde share the same algorithms; however, they work on different kinds of matrices, whereas codes like Tornado vary significantly in the algorithm itself. We investigated the mentioned codes for their applicability in our scenario [15]. These codes support different code rates that essentially define the possible error correction vs. the overhead for additional coding data. To the best of our knowledge, there is no study on the feasibility of ECs for scenarios with spontaneous connectivity such as the scenario we are investigating with its specific channel properties.

The usage of ECs and replicated sending inevitably increases energy consumption. Primarily, the sending of redundant chunks drains energy; however, in the former case the execution of the encoding algorithm has to be taken into consideration as well. This trade-off between

![Figure 4. Impact of data transmissions on the maximum achievable range estimation performance.](http://www.itrans24.com/landing1.html)
improved reliability and the overhead caused by redundant chunks is outlined in Fig. 5. The graph illustrates the gain in reliability for the different error control techniques in comparison to the energy efficiency. The plotted results have been collected in a series of simulations based on the discussed mobile to ground communication protocol and assuming a typical packet error rate of about 20 percent in addition to the used two-ray path loss model to resemble multipath fading effects in the simulation.

As we move from left to right in the graphs, reliability measured against the amount of recovered data increases, whereas moving from bottom to top the energy efficiency decreases with increasing overhead. For reference, the non-replicated sending is also indicated, obviously not inducing any overhead but at the cost of very low reliability.

As we can see, ARQ as well as Tornado-based ECs either significantly increase the overhead or lead to only marginal reliability improvements. However, combining the wireless communication with a chunk-based RS code, we observe substantial improvements at acceptable energy costs. This especially holds for code rates of $r = (4/7)$ to $r = (4/8)$.

**First Experiments on Wild Bats**

The basic functionality of the BATS concept has been validated on the target species *Myotis myotis*, the greater mouse-eared bat, and on the tropical fringe-lipped bat, *Trachops cirrhosus*, in Panama. In order to demonstrate the technical feasibility of building an energy-efficient proximity sensor node of less than 2 g with a theoretical battery life of at least one week, we performed a field test on four individual bats in a maternity colony of mouse-eared bats in Upper Franconia. The presence and absence of the tagged individuals in the colony has been documented, and interactions among the tagged individuals have been surveyed. Communication of mobile nodes with the base station served as an indicator of presence in the colony, while RSSI measurements were used to estimate the distance between two bats. During a second field experiment conducted in Gamboa, Panama, we successfully documented encounters among members of a social group of the fringe-lipped bat outside the roost while hunting. Furthermore, we tracked foraging movements of individual bats in a small area of about 20 m × 25 m based on field strength measurements. Tagged animals of the focus species *Myotis myotis* and *Trachops cirrhosus* are shown in Fig. 6.

**Conclusion and Future Work**

We have reported on our findings toward a new era of ultra-low-power sensor systems used for tracking bats in the wild. Even though the BATS sensor network has been designed to observe bats (i.e., small animals that are moving in three dimensions at high speed), it will also be applicable to a wide range of vertebrates, including mammals, birds, and reptiles, and even certain invertebrates (e.g., large beetles). In our first field tests, we succeeded in collecting contact information of bats in their natural environment and documented foraging movements. These very promising early results encourage further investigations and research in this inherently interdisciplinary project. Many of the scientific findings can be adapted to other application fields — we believe that our technical solutions will substantially impact research on ultra-low-power sensor networks in general.

Certainly, there are still many open research questions and big challenges to be addressed. This particularly includes the option to provide even more reliable wireless communication without increasing the energy budget. Such
functionality is needed, for example, for online reconfiguration and even software updates of the mobile nodes. We are also thinking about integrating sensors to combine physiological and environmental data with tracking data. The applicability to a wide species spectrum across taxa (not only bats) may even be increased by further miniaturization.

ACKNOWLEDGMENTS
This work has been supported in part by the German Research Foundation (DFG) under grant no. FOR 1508.

This project is inherently multi-disciplinary, and many faculty members and students have been involved in making the presented system possible. We acknowledge support from the following people: Bastian Bloessl, Markus Hartmann, Sebastian Herbst, Rüdiger Kapitza, Margit Mutschlechner, Niels Hadaschik, Lucila Patino-Studencka, Wolfgang Schröder-Pries, Jörn Thielecke, Thomas Ussmüller, and Robert Weigel.

REFERENCES