Load Balancing Researches in SDN: A Survey

LinLi and Qiaozhi Xut
College of Computer Science , Inner Mongolia Normal University
Hohhot , China
{1019925027,29776716} @qq.com

Abstract—Compared with the traditional networks, the SDN
networks have shown great advantages in many aspects, but also
exist the problem of the load imbalance. If the load distribution is
uneven in the SDN networks, it will greatly affect the
performance of network. Many SDN-based load balancing
strategies have been proposed to improve the performance of the
SDN networks. Therefore, this paper summarizes and classifies
the load balancing schemes in SDN networks, and analyzes the
advantages and disadvantages of them. This paper will provide a
guidance for other researchers in this field and promote the
development of the SDN networks.

Keywords-Load Balancing; SDN; Software Defined Network

L.

With the rapid development of the technologies of Internet,
IoT and mobile network, more and more users share various
resources through the network which bring a large number of
information and data, thus, the storage and processing of these
huge amounts of data pose challenges to the traditional
hardware devices. Compared with the traditional technologies,
virtualization and cloud computing technologies have better
performance and advantages because they can reasonably
allocate resources according to users demands and avoid the
problem of insufficient space. However, the flexibility and
dynamicity of virtualization technology also bring more
pressures and challenges to the configuration of the network.
Therefore, in the context of cloud computing and big data, how
to schedule the limited network resources to meet the dynamic
needs has become the foundation of the further development of
cloud computing and big data.

INTRODUCTION

The traditional network architectures use the static mode to
work and exist some shortcomings, such as, the management
and maintenance inconvenient, lack of flexibility etc. In 2008,
Nick McKeown proposed the OpenFlow protocol and the
concept of SDN to solve some issues in data centers and attract
the attention of academia and industry [1].

If the load distribution is uneven,it will greatly affect the
performance and efficiency of the whole network.Load
balancing technology is one of the important ways to
effectively allocate network resources and improve the network
performance. Compared with the traditional network
architectures, the SDN architectures have higher performance
in many aspects, but still exit the problem of the load
imbalance [2]. Therefore, it is very meaningful to study the
issue of load balancing for promoting the development of the
SDN networks. This paper makes a survey to the load
balancing strategies in SDN, classifies and analyzes the
advantages and disadvantages of these strategies, and it can
provide a guidance for other researchers in this field.

978-1-5090-3025-5/17/$31.00 ©2017 IEEE

403

The remainder of this paper is structured as follows.
Section 2 gives an overview of the related work. Section 3
classifies the load balancing strategies in SDN, and analyzes
the problems of these strategies. Section 4 concludes the load
balancing technology in SDN.

IL.

The core idea of SDN is that network control is decoupled
from forwarding[3], and the standard interaction protocol (such
as OpenFlow) defines southbound interfaces for the control
layer to interact with the forwarding layer.

RELATED WORK

SDN has been applied to a variety of network scenarios to
meet the requirements of centralized automation management,
multi-path forwarding, green energy-saving and load balancing
[4]. For example, by using OpenFlow to plan the path in the
Google's B4, the utilization rate of multiple links were closed
to 100% and the average link utilization rate was as high as
70%, which greatly reduced the cost and enhanced the network
stability[5]. Jupiter used the SDN technology to make the
network bandwidth up to Pbps level, and it can meet the
requirements of the large data centers for bandwidth[6].
Microsoft Corp's SWAN system used the SDN architectures to
achieve the efficient use among data centers and ensure the
resource utilization rate more than 60% [7]. ElasticTree used
the SDN technology to control the global information of the
data centers and reduced the energy consumption to 50% [8].
SoftRAN used the global information of SDN to quickly and
accurately coordinate the wireless equipment managed by the
RAN, and reasonably allocated the spectrum resource and
reduced the energy consumption [9].

Compared with the traditional network architectures, SDN
technology can effectively improve the network performance
and flexibility, but there are still some unresolved issues, for
example, the standardization of the northbound interfaces, the
scalability of the control plane and the load balancing among
the multiple controllers etc. In order to enable researchers to
quickly understand the research progress of SDN technology in
a certain field, it is necessary to summarize and analyze the
research progress in these field. C. K. Zhang et al. summarized
the consistency, fault tolerance and other aspects in SDN[10];
T. Q. Zhou et al. analyzed the relative studies of traffic
engineering based on SDN[11]. S. Scott-Hayward et al.
summarized the security problems in SDN[12]. A. Blenkd et al.
surveyed network virtual hypervisor based on SDN[13]. But so
far, there is still no summary and analysis of the load balancing
algorithms and strategies in SDN networks. This paper
investigates, analyzes and summarizes the latest researches
status and progresses of load balancing in SDN. Also, it can
provide some help to the researchers in the related fields.

1L

Load balancing technology is one of the important ways to
effectively allocate network resources and improve the network
performance and quality of service. Compared with the
traditional network architectures, the SDN architectures have
higher efficiency and performance in many aspects, but also
exit the problem of the load imbalance. This paper classifies
the load balancing researches in SDN networks, as show in Fig.
1. The SDN architectures can be divided into centralized single
controller architectures and distributed multiple controllers
architectures according to the number and organization of the
controllers in SDN networks. In the centralized architectures,
load balancing researches are divided into the data plane and
the control plane. The data plane mainly includes link load
balancing and server load balancing. The distributed
architectures are divided into the flat architecture and the
hierarchical architecture. This paper introduces, analyzes and
summarizes the above several types of load balancing
researches, so that researchers can quickly understand the
relevant knowledge in this field.

LOAD BALANCING IN THE SDN

Load Balancing in Server Load Balancing
Load Balancing in the the Data Plane . .
. (Coralized Awhitecare Link Load Balancing
Load Balancing v Balasibiresii
e D the Control Plane
Lo Babiicin i s ad Balancing in
g In the Data Plane o i
Distributed Architecture mlf;de:],Tfig&
Load Balancing in
the Control Plane Load Bilistig i e
Hierarchical Architecture
Figure 1. The Classification of Load Balancing in SDN

A. Load Balancing in the Centralized SDN Architecture

Generally, the centralized SDN networks have one
controller, multiple SDN switches and servers. In this
architecture, the problems of load balancing mainly focus on
the servers and links. The controller controls the whole
network and also manages and allocates all traffic in the
network. In additional, the controller also can collect the load
of the network in real time as well as dynamically adjust the
load of servers and links according to the load balancing
strategy, which can maximize the utilization of network
resources and improve the network performance.

1) Load Balancing in the Data Plane
In the existing researches, load balancing of the data plane
is mainly to solve the load imbalance of servers and links. In
the following part, this paper introduces, summarizes and
analyzes the server load balancing and link load balancing.

a) Server Load Balancing

When the traffic scheduling scheme in the network makes a
node or link congestion, it may reduce the network
performance and increase the transmission delay. By using the
load balancing strategy to allocate traffic to different servers
can avoid unnecessary network congestion.

For the load imbalance of servers, Stanford University
proposed a web traffic load balancing scheme based on
OpenFlow, called Plug-n-Server [14] (now known as Aster *

404

x[15]). There were three components in the controller, and the
host manager and network manager dynamically collected the
CPU load of each server and network congestion status
respectively. The traffic manager dynamically adjusted the load
of the servers according to the collected information. The
scheme reduced the network latency and improved the network
performance. However, when the number of servers was
increased, it would increase the load of controller and affect the
user’s experience and quality of service.

R. Wang et al. proposed a load balancing strategy which
integrated matching forwarding rules of multiple IP prefixes
into a forwarding rule with wildcard and used the wildcard rule
to aggregate the service requests[16]. This strategy reduced the
load of the controller, but some rules must be pre-installed in
the switch which influenced the flexibility and scalability of the
strategy.

The SBLA load balancing algorithm was proposed in [17]
and it was suitable for server-cluster in virtual environment.
Firstly, the controller used the SNMP protocol to collect the
state information of the servers, then calculated the load of the
servers according to the SBLA algorithm, and finally selected
the lightest load server to respond to the users. The algorithm
minimized the server’s response time, but was unsuitable for
unstructured networks and data centers.

In order to quickly respond to the users’ requests, many
data centers used the IMKVS (In-Memory Key-Value Storage)
cache mechanism. In order to improve the performance of
IMKYVS, a two-phase load balancing method was proposed in
[18]. In the first-phase, the load balancer dispersed the IMKVS
traffic and assigned the load to the virtual machine with
minimum load, so as to avoid the second-phase load balancer
became the bottleneck of the network. In the second-phase, the
load balancer balanced the load and alleviated the servers load
by using several cache servers and replicating the popular
targets. The scheme effectively reduced the load of the servers.
However, it increased the command execution time when
added the virtual machines. In addition, the scheme was only to
handle the IMKVS requests and had some limitations.

b) Link Load Balancing

When multiple flows are mapped to the same link, some of
data flows may suffer from some problems, such as the
increased queuing time, long transmission delay and so on. By
using a certain scheduling strategy to distribute the data flows
to different paths to improve the utilization of the link.

Hedera was proposed in [19] and aimed at the phenomenon
of link load imbalance caused by multiple flows being mapped
to the same path. The scheme run the global first-fit algorithm
and simulated annealing algorithm to make the load balancing
decision and improve the network resource utilization.
However, the scheme was only suitable for the data centers of
Portland topology and lacked of the flexibility and scalability.

ECMP (Equal Cost Multipath Routing) [20]was one of the
most common used schemes for link load balancing. But the
hash algorithm in ECMP only considered the equivalence of
the path and could not dynamically adjust according to the
traffic on the path. The CONGA [21] proposed by Alizadeh et.
al., which used the DRE (Discount Rate Estimator) algorithm

to estimate the load of per link, then the source node balanced
the network load according to the congestion situation of each
link. The CONGA could quickly respond to the burst traffic
in the data centers, but it was poor scalability.

For the defects of CONGA, HULA architecture was
proposed in [22]. By using the distribution of the network link
utilization information and the periodic probe, HULA
performed the distance vector algorithm on the switch, and the
data forwarding decision was made by the next jump address,
but not by the entire path. HULA had good scalability and
could adapt to the dynamic change of the load, but it was quite
difficult to implement.

Y. Li et.al. proposed a dynamic load balancing algorithm
(DLB) in fat-tree topology [23]. According to the single hop
greedy strategy, DLB transferred all traffic from the source
node to the highest level, and then transferred it down to the
destination node. Although this method implemented the
dynamic routing strategy, it only used the single hop greedy
strategy to select the path and did not consider the states of
other links, which could lead to the overload of part of links
and network congestion.

According to the distribution features of the long flows and
the short flows in the data centers, F. Carpio et al. proposed a
DiffFlow scheme[24]. In DiffFlow, the ECMP strategy was
used for short flows to minimize the flow completion time and
improve throughput, and the RPS(Random Packet Spraying)
strategy was used for long flows to efficiently balance load of
the entire network and avoid the congestion. However, when
the switches in ToR layer detected long flows, the controller
needed to inform all the switches in the Agg layer and the Core
layer, it would increase the communication overhead.

R. Gandhi et al. proposed a DUTE scheme which combined
the hardware with the software[25]. The scheme used the
existing switches to build a hardware load balancer to
effectively increase the capacity, reduce the cost and delay, but
the flexibility was poor. Especially, when the switch failed, the
disadvantage was especially obvious. The hardware load
balancer dealt with a large number of traffic, while the software
load balancer served as a backup to ensure high availability and
flexibility, but it was difficult to implement.

J. Li et al. proposed a path load balancing decision
scheme.The fuzzy synthetic evaluation mechanism (FSEM)[26]
was divided into two phases: initial mode and periodic mode.
In the initial mode, there was no traffic in the network, so the
shortest path Floyd algorithm was used to compute k shortest
paths between any two points. When there was traffic in the
network, the scheme went into the periodic mode and
periodically executed the fuzzy evaluation algorithm.The
scheme was simple and easy to implement,however, it assumed
that all nodes and links had the same capacity to handle the
flows which was not consistent with the actual situation.

2) Load Balancing in the Control Plane
The centralized SDN architectures can effectively improve
the network management efficiency and performance, but
when the network’s scale is large and the interaction between
the controller and the switches increase, which would also
greatly increase the load of the controller so that the controller

405

cannot process the switches’ requests in time. Therefore, some
researchers are dedicated to solve the overload problem of
single controller in the centralized architectures.

The DIFANE[27] combined the active and passive
installation of flow tables, and the flows were maintained in the
data plane as far as possible. Only when the network changed,
the rules in DIFANE would be modified, so that avoided the
frequent communication between the controller and the
switches and reduced the load of the controller. But the
structure of the switch was too complex to be suitable for the
large-scale networks. A. R. Curtis proposed DevoFlow on the
basis of DIFANE [28]. DevoFlow used rule replication and
local operation to reduce the information exchange between
switches and controller, but it was not realistic because the
flow table structure and the hardware structure of the switch
needed to be modified in order to implement the function.

Pre-installed rules in the flow table of the switch,which
may reduce the interaction between the controller and the
switches, but it would consume a lot of resources of the TCAM
table, and need to modify the internal structure of the switch, so
it was difficult to realize. In addition, if the controller was
attacked or failed, the network would be out of control due to
the simple processing of the underlying devices. Therefore,
some researchers proposed the distributed SDN architectures,
such as Onix [29] and Hyperflow [30]. The distributed SDN
architectures can effectively solve the problems of single
controller failure, overload and scalability in the centralized
architectures. However, when the load imbalance occurred
among the multiple controllers, it would also reduce network
performance and increase the delay. In this following, this
paper summarizes, induces and analyzes the load balancing
schemes in the distributed multiple controllers architectures.

B. Load Balancing in the Distributed SDN Architecture

The distributed SDN architectures are divided to organize
the controllers: flat and hierarchical[31]. In the flat, all the
controllers are on the same layer. In the hierarchical, the
controllers are located at different layers.

1) Load Balancing in the Flat Architecture

Controller N

Controller 1

Figure 2. The Flat Architecture

Global
Controller

Figure 3. The Hierarchical Architecture

a) Load Balancing based on Switch Migration

Although the OpenFlow protocol does not explicitly
specify the switch migration protocol, the OpenFlowl.3
protocol clearly states that the controller has three roles: master,
slave and equal. The master/equal controller has full control to
the switch, and the slave controller has only read permission to
the switch[32]. When the switch connect to multiple controllers,
the switch has only one master controller and multiple slave
controllers. When the switch needs to be migrated, the switch
needs to choose a slave controller as its new master controller
and the old master controller changes to the slave mode.

The ElastiCon[33] scheme migrated some of switches
connected to the overload controllers to the lighter load
controller according to the switch migration protocol, and
realized the dynamic load balancing by continually optimizing
the load of the switches to the controllers. When the load
exceeded the capacity of all the controllers, ElastiCon added
new controller and triggered the switch migration protocol;
Similarly, when the load reduced to a certain level, it shut
down some controllers to reduce the cost. This scheme could
balance the load of controllers through migrating the switch
dynamically, but when the load was unstable, it would increase
the cost and latency to repeat calculation and migration.

The Pratyaastha[34] scheme divided the data flows into
different regions according to the applications, and the different
regions was separately corresponded to different controllers.
Each controller had different flow processing function and
reported flow arrival rate of the switches and the state of
storage partition in real-time. When the load was imbalance, it
used the switch migration protocol in the[33]. It was
convenient for the controller to process the requests according
to the types of data flows, and reduced the time of flow created.
However, the migrations would be more complex and increase
the cost and latency when multi-controller were load imbalance.

A load balancing scheme based on role was proposed in
[35]. By counting the flow number of requesting to be
processed, the scheme migrated the switch generating most of
the flow requests over a period of time to the idle controller.
However, the paper did not explain how to deal with the
problem of all controllers overload or light load, and it would
migrate switch frequently when the load was unstable.

In order to solve the problems of low efficiency and high
cost caused by the switch migration, PASMM [36] optimized
the switch migration problem to the auction problem of the
remaining resources of the controller. In this mechanism, the
light load controller acted as an auctioneer to auction its
remaining resources, and the migrated switch acted as the
bidder. By improving the trading price of the over-demanded
controller resources, the PASMM algorithm completed the
auction process. Compared with the traditional switch
migration strategy, PASSM had a better load balancing effect.
But in the large scale network, when multiple controllers were
overloaded at the same time, PASMM auctioned for many
times and increased the migration time and migration cost of
the switch.

b) Load Balancing based on Flow Redirection

406

The Balanceflow [37] would forward flows to X-controller
by adding a flow-table item with controller-X action to the
flow table of the switches, thus reducing the load of the
original controller. Balanceflow could flexibly handle the flow
requests, but the super controller may become the bottleneck of
the entire network when it frequently handled the requests from
the ordinary controllers.

P. P. Lin et al. proposed a hierarchical structure of multi-
controller cooperation, named MSDN [38]. In the MSDN, the
load balancer used the different strategies to split a large
number of initialization flows and sent them to different
controllers, and reduced the load of the controllers. The scheme
was mainly aimed at the heavy load on the controllers caused
by a lot of accesses of the switches to the controllers when the
network began to run.

The ASIC system was proposed in [39],which consisted of
three parts: load balancer, controller cluster and a distributed
data sharing. The packets arrived at the load balancer firstly,
and the load balancer executed the relevant algorithm to select
a suitable controller to process the packets. Then, the controller
updated the flow table according to the distributed global
network view and completed the requests process of the
packets. This scheme mainly solved the controller overloaded
caused by a large number of requests in the initial state. In
addition, the load balancer limited the network performance.

F. Cimorelli et al. proposed a distributed load balancing
algorithm for the control traffic based on the game
theory,which allowed the controllers to converge to a specific
equilibrium, known as Wardrop equilibrium [40]. In the equal
mode, all the controllers received and responded to messages
of the switches, so the switches could judge the controllers’
state according to the delay function and select an available
controller to make the data flows to the Wardrop equilibrium,
then achieved the rational use of resources, cost minimization,
delay minimization.

¢) Other Load Balancing

V. Yazici et al. proposed an algorithm to add or remove the
controllers dynamically, which could flexibly manage the
controller pools[41]. This scheme divided the whole network
into two IP networks: controller-controller network and
controller-switch network. Switches and controllers were
mapped by IP aliases, so that a switch could be controlled only
by a controller. When the controller failed, the switch
migration may make the entire network more complex and
difficult to manage.

H. Y. Fu et al. proposed a multi-controller model with
dormancy mechanism [42]. When the load in the control plane
was lighter, some idle controllers were allowed to enter into the
dormant state for energy saving. But it only responded to the
controllers at the light load, and did not handle the state while
the controllers were overloaded.

M. F. Bari et al. realized the redeployment of the controller
and the switch by dynamically changing the number and
position of the controller in the different network
conditions[43]. But this method was not suitable for the
existing network topology, and did not explain the factors
should be considered as migration .

2) Load Balancing in the Hierarchical Architecture
There are two forms in the hierarchical architecture: (1) In
the triangle architecture, the controllers are divided into some
local controllers and a global controller,as shown in Fig. 3; (2)
In the inverted triangle architecture, there exists an
intermediate layer between the controllers and the switches, as
shown in Fig. 4 .

Controller 1

Controller N

Figure 4. Inverted Triangle Architecture

a) Load Balancing in the Triangle Architecture

S. Hassas et al. proposed a two layer controller architecture
Kandoo, the upper layer was a root controller, and the lower
layer were local controllers [44]. The requests were processed
by the local controller firstly, if the local controller could not
handle, it was sent to the root controller which made the
decision and sent back to the switch. The local controller
would directly processed the request without accessing to the
root controller when there was a similar request. The local
controller could reduce the processing burden on the root
controller, but the network performance would reduce when
the root controller was overload or failure.

H. Yao et al. proposed a hybrid load balancing method,
called Hybridflow [45].In the Hybridflow, the super controller
managed multiple controller-cluster, and each cluster consisted
of a plurality of controllers and switches. A double threshold
method was proposed in this paper to determine whether the
load imbalance occurred in the external or the internal of the
controller-cluster. The scheme could effectively solve the
phenomenon of load imbalance in the cluster, but did not
consider how to resolve the overload of the super controller.

b) Load Balancing in the Inverted Triangle Architecture

A. Basta et al. proposed a hypervisor model which added a
hypervisor layer between the controllers and the switches [46].
The hypervisor layer consisted of three parts: hypervisor
instance, hypervisor management and hypervisor proxy. When
the controller-cluster was overload, the hypervisor instance of
the hypervisor layer would be migrated according to the
control path migration protocol proposed in the paper. The
controllers were not aware of the migration of the hypervisor
instance because the hypervisor proxy shielded the migration.
This scheme could effectively hide the differences of the
underlying switches, and the controller needed not to know the
change of the underlying. However, the paper did not mention
of how to handle a hypervisor instance when it was overload.

R. Sherwood et al. proposed the FlowVisor which sliced
the traffic among multi-controller, and each slice could have
different forwarding strategies and respectively correspond to
different controllers[47]. M. Koerner and O. Kao proposed a
multi-service load balancing scheme by using the FlowVisor in

407

which the different controllers controlled different servers and
selected different load balancing methods[48]. This scheme
could make different processing for different services, but
could not solve the problem of the FlowVisor was overload.

In the centralized SDN,load balancing studies focused on
the data plane which could effectively improve the network
performance and reduce congestion. In the distributed
SDN ,the researches of load balancing mainly focused on the
control plane in which included switch migration strategy and
flow redirection strategy. These strategies could solve the load
imbalance among multiple controller to improve the quality of
service and reduce the response delay, but these strategies still
exist some problems. It is important for the development of
SDN to further study and improve these schemes.

IV. CONCLUSION

Compared with the traditional network architectures, the
SDN networks have shown great advantages and become a
research hotspot in recent years, but load imbalance is one of
the unresolved problems. Based on the investigations and
researches to the current load balancing strategies in SDN, this
paper classifies load balancing schemes, analyzes the
advantages and disadvantages of them, and it can provide
guidance for other researchers in this field. Future we will
continually study the load balancing schemes in the distributed
SDN architectures and look for a better load balancing strategy
to better reflection the advantage of the SDN architecture and
promote the further development of the SDN.

ACKNOWLEDGMENT

This work was supported by the Inner Mongolia
Autonomous Region Natural Science Foundation (Grant No.
2012MS0930), and the Scientific Research Project of the Inner
Mongolia Autonomous Region Education Department
(NJZY'12032).

REFERENCES

N. McKeown, “Software-Defined networking”, INFOCOM keynote talk,
2009, vol. 17, pp. 30-32.

D. Kreutz,F. M. V. Ramos,P. Verissimo, “Towards secure and
dependable software-defined networks”, Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined
networking .Hong Kong, China, ACM, 2013, pp. 55-60.

D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, 2014, vol. 103, pp. 10-13.

Q. Y. Zuo, M. Chen, G. S. Zhao, C. Y. Xing , G. M. Zhang , P. C. Jiang,
“Research on OpenFlow-based SDN technologies,”Journal of Software,
2013 , vol. 24, pp. 1078 —1097 [Journal of Software China, p.1078-
1097,2013].

S. Jain , A. Kumar, et al, “B4: experience with a globally-deployed
software defined wan,” ACM SIGCOMM 2013 Conference on
SIGCOMM. ACM, 2013, pp. 3-14.

A. Singh, J. Ong, A. Agarwal , et al, “Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google's Datacenter Network,”
ACM Conference on Special Interest Group on Data Communication.
ACM, 2015, pp. 183-197.

C. Y. Hong ,S. Kandula, R. Mahajan, et al., “Achieving high utilization
with software-driven WAN,” ACM SIGCOMM 2013 Conference on
SIGCOMM.ACM, vol.43, pp.15-26.

(1]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

B. Heller, S. Seetharaman, P. Mahadevan, et al., “ElasticTree: saving
energy in data center networks,” Usenix Conference on Networked
Systems Design and Implementation. USENIX Association, 2010,
pp.17-17.

A. Gudipati, D. Perry, EL. Li, S. Katti, et al., “SoftRAN:software
defined radio access network,” ACM SIGCOMM Workshop on Hot
Topics in Software Defined NETWORKING. ACM, 2013, pp.25-30.

C. K. Zhang, Y. Cui ,H. Y. Tang ,J. P. Wu . “State-of-the-Art survey on
software-defined networking (SDN),” Journal of Software, 2015,vol. 26,
pp. 62—81[Journal of Software China, p. 62-81, 2015].

T. Q. Zhou, Z. P. Cai, J. Xia, M. Xu, “Traffic engineering for software
defined networks,” Journal of Software, 2016, vol. 27, pp. 394-417
[Journal of Software China, p. 394-417,2016].

S. Scott-Hayward, S. Natarajan, S. Sezer, “A Survey of Security in
Software Defined Networks,” IEEE Communications Surveys &
Tutorials, 2016, vol. 18, pp. 623-654.

A. Blen, A. Basta, M. Reisslein, “Survey on Network Virtualization
Hypervisors for Software Defined Networking,” IEEE Communications
Surveys & Tutorials, 2016, vol. 18, pp. 655-685.

N. Handigol, S. Seetharaman, M. Flajslik, N. Mckeown, R. Johari,
“Plug-n-Server:load-balacing Web traffic using OpenFlow,” In ACM
Sigcomm Demo,2009, pp. 268- 270.

N. Handigol, S. Seetharaman, M. Flajslik, N. Mckeown, R. Johari,
“Aster* x: Load-Balancing Web Traffic over Wide-Area Networks,”
Geni Engineering Conference. 2010.

R. Wang, D. Butnariu, J. Rexford, “OpenFlow-based server load
balancing gone wild,” Usenix Conference on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services. USENIX
Association, 2011, pp. 12-12.

W. Chen, Z. Shang, X. Tian, H. Li, “Dynamic server cluster load
balancing in virtualization environment with openflow,” International
Journal of Distributed Sensor Networks, 2015.

A. F. R. Trajano, M. P. Fernandez, “Two-phase load balancing of In-
Memory Key-Value Storages through NFV and SDN,” IEEE, 2015, pp.
409-414.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” NSDIL
vol. 10, pp.19, 2010.

C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,”
Editor, 2000.

M. Alizadeh, T. Edsall, S. Dharmapurikar, et al., “CONGA: distributed
congestion-aware load balancing for datacenters,” ACM Conference on
SIGCOMM. ACM, 2014, pp. 503-514.

N. Katta, M. Hira , C. Kim , et al., “HULA: Scalable Load Balancing
Using Programmable Data Planes,” the Symposium. 2016, pp. 1-12.

Y. Li, D. Pan, “OpenFlow based Load Balancing for Fat-Tree Networks
with Multipath Support,” IEEE International Conference on
Communication(ICC), 2013

F. Carpio, A. Engelmann, A. Jukan, “DiffFlow: Differentiating Short
and Long Flows for Load Balancing in Data Center Networks,” 2016.

R. Gandhi, H. H. Liu, Y. C. Hu, et al., “Duet: cloud scale load balancing
with hardware and software,” ACM, 2014.

J. Li, X.. Chang, Y. Ren, Z. Zhang, G. Wang, “An Effective Path Load
Balancing Mechanism Based on SDN,” IEEE, International Conference
on Trust, Security and Privacy in Computing and Communications.
IEEE, 2014, pp. 527-533.

M. Yu, J. Rexford, M. J.Freedman, J. Wang, “Scalable Flow-based
Networking ~ with DIFANE,” ACM SIGCOMM Computer
Communication Review,2010, vol. 41, pp. 351-362.

A. R. Curtis, J. C. Mogu, J. Tourrilhes, et al. “DevoFlow:scaling flow
management for high-performance networks,” ACM SIGCOMM 2011
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, Toronto, On, Canada, August. DBLP,
2011, pp. 254-265.

T. Koponen, M. Casado, N. Gude, et al, “ Onix : a distributed control
platform for large-scal production networks,” In OSDI, 2010, pp. 1-6.

RFC

408

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A. Tootoonchian, Y. Ganjali, “HyperFlow: a distributed control plane
for OpenFlow,” Internet Network Management Conference on Research
on Enterprise NETWORKING. USENIX Association, 2010.

S. Schmid, J. Suomela, “Exploiting locality in distributed SDN control,”
ACM SIGCOMM Workshop on Hot Topics in Software Defined
NETWORKING. ACM, 2013, pp. 121-126.

Consortium O F. OpenFlow switch specification[J]. 2015.

A. Dixit, H. Fang, S. Mukherjee, T.V. Lakshman, R.R. Kompella,
“ElastiCon: an elastic distributed sdn controller,” Proceedings of the
tenth ACM/IEEE symposium on Architectures for networking and
communications systems.ACM, 2014, pp. 17-28.

A. Krishnamurthy, S. P. Chandrabose, A. Gember-Jacobson,
“Pratyaastha: an efficient elastic distributed SDN control plane,” The
Workshop on Hot Topics in Software Defined NETWORKING. ACM,
2014, pp. 133-138.

Y. P. Yu, H. Qin, “Research on load balancing strategy of controller in
OpenFlow network,” Network Security Technology and Application,
2015, pp. 6-7.[Network Security Technology and Application China, p.
6-7,2015].

F.Y. Chen, B.Q. Wang, B.W. Wang, Z. M. Wang, “Progressive auction
based switch migration mechanism in software define network,” Journal
of Computer Applications, 2015, vol. 35, pp. 2118-2123.[Journal of
Computer Applications, 2015].

Y. Hu, W. Wang, X. Gong, X. Que, S. Cheng, “BalanceFlow: Controller
load balancing for OpenFlow networks”[C]// Cloud Computing and
Intelligent Systems. IEEE, 2012, vol. 2, pp. 780-785.

P.P. Lin, J. Bi, HY. Hu, X. K. Jiang, “MSDN : a Mechanism for
Scalable Intra-domain Control Plane in SDN,” Journal of Chinese
Computer Systems, 2013, vol. 34, pp. 17-20.

P.P. Lin, J. Bi, H. Hu. “ASIC:an architecture for scalable intra-domain
control in OpenFlow,” International Conference on Future Internet
Technologies. 2012, pp. 21-26. [International Conference on Future
Internet Technologies China, p. 21-26, 2012].

F. Cimorelli, F. D. Priscoli, A. Pietrabissa, et al., “A distributed load
balancing algorithm for the control plane in software defined
networking,” Mediterranean Conference on Control and Automation.
2016, pp. 1033-1040.

V. Yazici, M. O. Sunay, A. O. Ercan, “ Controlling a Software-Defined
Network via Distributed Controllers,” Eprint Arxiv, 2014.

H.Y. Fu, J. Bi, J.P. Wu, Z. Chen, Wang K, Luo M. “A Dormant Multi-
Controller Model for Software Defined Networking,” China
Communications, 2014. [China Communication,2014].

M. F. Bari, A. R. Roy, S. R. Chowdhury,Q. Zhang, “Dynamic Controller
Provisioning in Software Defined Networks,” International Conference
on Network and Service Management. IEEE, 2013, pp.18-25.

S. Hassas Yeganeh, Y. Ganjali, “ Kandoo: a framework for efficient and
scalable offloading of control applications,” The Workshop on Hot
Topics in Software Defined Networks. ACM, 2012, pp. 19-24.

H. Yao, C. Qiu, C. Zhao, L. Shi, “A multicontroller load balancing
approach in software-defined wireless networks,” International Journal
of Distributed Sensor Networks, 2015, pp. 1-8.

A. Basta, A. Blenk, H. B. Hassine, “Towards a dynamic SDN
virtualization layer: Control path migration protocol,” International
Conference on Network and Service Management. 2015, pp. 354-359.

R. Sherwood, G. Gibb, K. K. Yap, et al. “Can the production network be
the testbed?,” OSDI 2010, vol. 10, pp. 1-6.

M. Koerner, O. Kao, “Multiple service load-balancing with OpenFlow,”
IEEE, International Conference on High PERFORMANCE Switching
and Routing. IEEE, 2012, pp. 210-214

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

