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Abstract
The environmental-economic focus of wastewater treatment and management attracts growing attentions in recent years.
The static efficiencies and their dynamic changes are helpful to systematically assess the environmental performance of
the water agencies and wastewater treatment plants (WWTPs). Additionally, identifying key factors of efficiencies is
critical to improve the operation of WWTPs. In this study, the window method of data envelopment analysis (DEA) was
applied to estimate the annual efficiency for four Canadian WWTPs and to explore the variations of annual efficiency
under different window lengths. Meanwhile, the Tobit regression analysis was developed to determine the driving forces
for WWTPs’ efficiency. The empirical results showed that: (i) the selected DEA window length remarkably affected both
the average efficiency and the variations; however, it had no impact on the ranking of plants’ efficiency; (ii) lower
efficiencies were observed in plants with larger capacities due to higher infrastructure and operation investments in-
volved; (iii) both the influent total phosphorus concentrations and influent flow rates had significant effects on the
WWTPs’ performance. Moreover, the staff and utility expenditures should be reduced to generate greater potential cost
savings and efficiency improvement given the treatment technologies employed.
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Introduction

Wastewater treatment plants (WWTPs) have been designed
and operated worldwide since the late nineteenth century to
protect the environmental sustainability and human health.
WWTPs are complex systems that involve various biological,
physical, and chemical interactions. Moreover, they suffer
constant changes in multiple operational inputs including the
inflow rates and wastewater characteristics (Ge et al. 2012;
Lorenzo-Toja et al. 2015). These complexity and variations
challenged the efficiency assessment of the WWTPs and their
long-term sustainability (Molinos-Senante et al. 2016; Piao
et al. 2016). Therefore, more robust and credible methodolo-
gies are required to assess these challenges and thereby to
improve the WWTPs’ performance.

A large number of efficiency evaluation models and
methods have been developed and applied in the wastewater
treatment sector, including Performance Measurement System
(PMS) (Guerrini et al. 2016a), Data Envelopment Analysis
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(DEA) models (Gómez et al. 2017; Molinos-Senante et al.
2016), Meta Frontier approach (Molinos-Senante and Sala-
Garrido 2016), Life Cycle Assessment (LCA) (De Feo and
Ferrara 2017), and hybrid models (Saha et al. 2017; Wang
et al. 2017) (see a summary in Table S1 in Supporting
Information). Comparatively, DEA is considered as an effective
and most widely used approach for comparing the inputs and
outputs of homogenous decision-making units (DMUs), due to
less requirements for data and model assumptions (Fuentes
et al. 2015; Sun et al. 2017; Yang and Yang 2015; Yang and
Yang 2016). Unfortunately, most studies only performed the
cross-sectional data analysis and focused on the static efficiency
of evaluated WWTPs at a certain time, failing to evaluate the
changes in plants’ efficiency. Some previous studies tried to
obtain the dynamic eco-productivity change by different DEA
models, such as the weighted Russell directional distance func-
tion Gémar et al. (2018) and the Malmquist productivity index
(Fuentes et al. 2015; Molinos-Senante and Sala-Garrido 2016).
However, these tools are not suitable for small sample cases.

The dynamic operational efficiencies in different periods of
time are also critical to identify the annual performance of the
WWTPs and further improve their operation and manage-
ment. As for small sample evaluations, an extended DEA,
namely the DEAwindow analysis using the moving average
method, has been developed/designed to comprehensively de-
scribe the dynamic changes of the efficiency of each DMU,
both horizontally and vertically. More importantly, the num-
ber of DMUs increases with varied window length set. This
could enhance the discriminating power when a limited num-
ber of DMUs was available (Halkos and Tzeremes 2009). Al-
Refaie et al. (2016) assessed the energy efficiency of the in-
dustrial sector using the DEAwindow analysis andMalmquist
index. To the best of the authors’ knowledge, few studies were
reported with this method to evaluate the dynamic efficiency
of wastewater treatment facilities. Recently, Lorenzo-Toja
et al. (2017) explored the eco-efficiency by using the DEA
windowmodel based on the data of 47WWTPs during 2009–
2012, in order to determine the changes in the efficiency of
individual plants and the divergences among them.
Nevertheless, only the eutrophication net environmental indi-
cator (ENEI) was considered as the output without consider-
ing the removal of the pollutants in wastewater.

A wide range of indicators such as the plant size, influent
quality, and treatment capacity had significant effects on the
efficiency ofWWTPs (Dong et al. 2017; Guerrini et al. 2016b;
Rodriguez-Garcia et al. 2011; Romero-Pareja et al. 2017).
Numerous models were developed to evaluate the factor ef-
fects on the WWTPs’ efficiencies such as analysis of variance
(ANOVA) (Lorenzo-Toja et al. 2017), artificial neural net-
work (ANN) (Güçlü and Dursun 2010), and non-parametric
test (Molinos-Senante et al. 2014). Comparatively, the Tobit
model was designed to estimate linear relationship among
variables when there was either left- or right-censoring in the

dependent variables. Therefore, this model was appropriate to
conduct the influencing factor analysis for the efficiency of
WWTP that was usually constrained in a certain range of 0–1
(Lv et al. 2015). Li et al. (2017b) applied the Tobit model to
identify the key influencing factors for the county sewage,
ammonia, chemical oxygen demand, and biochemical oxygen
demand reduction in China, with the capital, operating costs,
labor, and energy consumption as input indices. Studies con-
sidering more comprehensive inputs such as the influent char-
acteristics will help understand the relationship between fac-
tors and the WWTP efficiency. In addition, most studies com-
pared the efficiency of WWTPs with different treatment tech-
nologies in various locations that greatly vary in conditions
such as climate, economic levels, and labor markets. These
may result in an inaccurate or unreal efficiency evaluation.

In this study, fourWWTPs located in Toronto, Canada, that
have similar natural, social, and economic conditions were
selected. It is strongly believed that the current paper moved
forward with four innovative explorations. First, the DEA
window analysis was performed to explore the efficiency
based on small sample, and the Tobit regression model was
applied to identify the key factors affecting the efficiency.
Second, the efficiency values and their dynamic changes of
both individual plants and the total sample between 2007 and
2016 were presented. Third, this study discussed the develop-
ment laws of WWTPs’ annual average efficiency and varia-
tions under different DEA window lengths, which were re-
ported firstly to use this technique in this area. Finally, it de-
termined the driving forces of efficiency and at least partially,
the theoretical basis for improving the WWTPs’ operational
performance in addition to measures for cost savings.

Materials and methods

WWTPs

Four wastewater treatment plants (WWTPs) located in
Toronto, Canada, including Ashbridges Bay Treatment Plant
(ABTP), Highland Creek Treatment Plant (HCTP), Humber
Treatment Plant (HTP), and North Toronto Treatment Plant
(NTTP), were inventoried in this study to develop the DEA
window and Tobit regression (Table 1).

Built in 1910, ABTP is the largest of four wastewater treat-
ment plants operated by the City of Toronto. HCTP is located
in Scarborough, with its construction completed in 1956 and
followed by several phases of expansion. HTP is located at
130 The Queensway, at the border of the old City of Toronto
and City of Etobicoke. The smallest of the wastewater plants,
North Toronto, is located in the Don Valley at 21 Redway
Road. Commissioned in 1929, North Toronto was one of the
first plants in North America to use the biological activated
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sludge process. All four WWTPs were operated with the con-
ventional waste activated sludge process during 2007–2016.

DEA window analysis

DEA model selection

DEA is widely used in measuring relative efficiencies of
plants with handling multiple inputs and outputs. It estimates
the effective production frontier based on a set of input-output
observations. While for the DEAwindow analysis, it not only
makes the DMUs reused to increase the sample size, but also
takes different periods of the same DMU as different DMUs
(Al-Refaie et al. 2016). In this case, the efficiency of a DMU
in a certain period can be compared with both the same period
of the other DMUs and the efficiency of this DMU in other
periods, to obtain more real efficiency evaluations. In this
study, therefore, the annual data of each WWTP is regarded
as an independent DMU, which makes the comparison of
different WWTPs in the same period feasible as well as of
the same DMU in different periods meaningful (Asmild
et al. 2004). In particular, the variable return to scale was
adopted here because high efficiencies are usually observed
in WWTPs with large capacities (Dong et al. 2017).
Moreover, the input-oriented approach was implemented that
allows for the minimization of input costs rather than maxi-
mizing outputs, while maintaining the quality of the effluent.
According to Banker et al. (1984), the Banker-Charnes-
Cooper (BCC) model assumed variable returns to scale
(VRS), where an increase in the input might result in a dis-
proportionate increase in the output. Consider the number of
WWTPs evaluated as n = {1, 2,⋯,N}, each facility having p
inputs and q outputs. The efficiency score for rth units DMUr

can be estimated as the suggested BCC model in Eq. (1).

Min μ
subject to :

μxin− ∑
N

n¼1
δnxin≥0; i ¼ 1;⋯; p

∑
N

n¼1
δnyjn≥yjr; j ¼ 1;⋯; q

∑
N

n¼1
δn ¼ 1

δn≥0; n ¼ 1;⋯;N

ð1Þ

The DEA window analysis with the period τ = {1,⋯,
T}was constructed. It was assumed that DMU τ

n denoted an
observation n in the periodτwith the input X τ

n to produce the
outputY τ

n, which could be described in Eq. (2).

X τ
n ¼ x1τn ;⋯; xpτn

� �0
Y τ
n ¼ y1τn ;⋯; xqτn

� �0 ð2Þ

The input and output could be further expressed in
Eq. (3) when the DEA window began at the time t (t =
1, 2,⋯, T) with the lengthl (l = 1,⋯, T − t + 1). The
DEA window analysis could then be applied for the
efficiency assessment when the Eq. (3) was incorporated
into the model (1).

X tl ¼
xt1 xt2 ⋯ xtN
xtþ1
1 xtþ1

2 ⋯ xtþ1
N

⋮ ⋮ ⋱ ⋮
xtþl
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N

2
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3

775 Y tl ¼
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N

⋮ ⋮ ⋱ ⋮
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N

2

664

3

775

ð3Þ

Determination of input and output

Based on the main findings of input-output variables in
studies such as Choubert et al. (2017) and Cossio et al.
(2017), four different costs were included as input vari-
ables in order to evaluate the efficiency of WWTPs: (i)
utility cost, which includes charges on water, hydro, and
gas used at the WWTPs); (ii) staff cost, which includes
employees’ salaries and social expenditure; (iii) chemical
consumption, which contains charges on polymer, ferrous
chloride, chlorine, and sodium hypochlorite; and (iv) op-
erational cost, which consists of equipment, services, and
other costs. Meanwhile, three pollutant removal rates in
the effluent were chosen as representatives of outputs: (i)
removal rate of suspended solid (SS), (ii) removal rate of
5-day carbonaceous biological oxygen demand (cBOD5),
and (iii) removal rate of total phosphorus (TP). The de-
scriptive statistics of input and output variables are listed
in Table 2.

Table 1 Configurations of WWTPs evaluated

WWTP Location Effluent discharged Treatment capacity (m3/day) Treatment technology Employees

ABTP 43°39'26''N, 79°19'15''W East Toronto Lake Ontario 818,000 WAS 174

HCTP 43°46'04''N, 79°09'01''W Northeast Toronto Lake Ontario 219,000 WAS 67

HTP 43°38'00''N, 79°28'44''W West Toronto Lake Ontario 473,000 WAS 62

NTTP 43°41'58''N, 79°21'22''W North Toronto Don River 45,500 WAS 10
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Tobit regression model

The Tobit model, also known as the sample selection model
and the limited dependent variable model, is a kind of limited
dependent variable regression. It is expert in dealing with de-
pendent variables constrained in a certain range, which coin-
cides with the calculated efficiency values in our study. The
Heckman two-step method is usually used to estimate the
Tobit model, that is, to estimate the selection equation first
and then to estimate the limited dependent variable model.
In the second stage, the Tobit regression analysis was carried
out to explore the key impact factors of efficiency. In general,
the Hausman test is applied to determine a suitable model
between the random effect model and the fixed effect model.
Taking the fixed effect model as an example, it can be illus-
trated by Eq. (4).

Ef f it ¼ αi þ Zitβ þ εit ð4Þ

Further, Eq. (4) can be expanded to Eq. (5).

Ef f it ¼ αi þ β1PEit þ β2ISSit þ β3IcBODit þ β4ITPit

þ β5Iflowit þ εit ð5Þ

where Effitis the VRS efficiency of WWTP i in the period t;
αiindicates the fixed effect; εitrepresents the interferences;
Zitreflects the explanatory variables (or independent vari-
ables). The selected five independent variables included (i)
equivalent population (PE) representing plant scale, (ii) SS
concentration in influent (ISS), (iii) cBOD5 concentration in
influent (IcBOD5), (iv) total phosphorus in influent (ITP)
reflecting influent characteristics, and (v) average daily influ-
ent flow rate (Iflow) as a representative of treatment capacity.

Results

In this section, the WWTPs’ annual efficiency was eval-
uated and compared under different window lengths

including l = 1, l = 5, and l = 10 by the DEA window
method. Based on these empirical results, the driving fac-
tors of WWTP’s efficiency were then explored through
the Tobit regression analysis.

Efficiency estimation of WWTPs using DEA window
analysis

The length of the DEA window should be large enough to
ensure sufficient samples to be covered, and as small as pos-
sible to minimize or avoid unfair comparisons caused by time
factors (Al-Refaie et al. 2016). In this study, four Toronto-
located WWTPs serving an average population of 699,250
PE were selected from 2007 to 2016. Without loss of gener-
ality, three window lengths were set for the collected input and
output data over the 10-year period: l = 1, l = 5, and l = 10.l = 1
indicated a cross-section analysis between WWTPs in the
same year. On the contrary, l = 10denoted a globally
intertemporal comparison between WWTPs in 10 continuous
years (across the entire study period). However, l = 5 implied
that each efficiency estimation had a 5-year span (i.e., 2007–
2011, 2008–2012, etc.). Detailed information on the window
length is summarized in Table S2 and Table S3. The annual
average efficiencies for both the individual facility and four
WWTPs as a whole are listed in Table 3. The numbers of
efficient years and the variations of efficiencies are presented
in Fig. 1.

For l = 1, ABTP, HTP, and NTTP exhibited similar perfor-
mance with high efficiencies of 1.000 over the 10 years stud-
ied. However, the efficiencies of HCTP were found to be less
than 0.8 in the years of 2011, 2012, 2015, and 2016. This
resulted in an average efficiency of 0.840 and significant dif-
ferences between the annual average efficiencies of four
WWTPs (Table 3). Specifically, the annual efficiency of
HCTP in 2015 was only 0.826, which was as high as 1.000
in both 2007–2010 and 2014–2015 (Table 3). The average
efficiency of four WWTPs was 0.960 with the variation of
0.135 (Table 3).

Table 2 The descriptive statistics of input-output variables for DEA
window analysis. All the data for variables comes from the annual reports
of four WWTPs between 2007 and 2016, which are publicly distributed

online at https://www1.toronto.ca/wps/portal/contentonly?vgnextoid=
da8807ceb6f8e310VgnVCM10000071d60f89RCRD

Variable Index Obs Mean SD Min. Max.

Input variables Utility ($) 40 6,318,622 4,892,196 228,061 17,435,419

Staff ($) 40 7,060,065 5,500,058 751,267 17,525,550

Chemical ($) 40 1,827,899 1,822,290 61,856 5,667,169

Operational ($) 40 6,173,927 7,997,029 168,070 23,243,822

Output variables SS (mg/L) 40 262.21 63.05 158.50 432.90

cBOD5 (mg/L) 40 186.10 62.46 83.50 312.60

TP (mg/L) 40 4.61 0.88 3.30 6.80

Obs observational value, Mean mean value, SD standard deviation, Min. and Max. minimum value and maximum value of variables
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For l = 5, NTTP achieved the highest annual efficiency
(0.996), and it lasted for 9 years except for 2011 (Fig. 1).
Compared to l = 1, the numbers of efficient years for HTP,
ABTP, and HCTP decreased to 6, 3, and 2 years from 10,
10, and 6 years, respectively, resulting in lower average effi-
ciencies of 0.846, 0.829, and 0.552, respectively (Table 1).
The overall average efficiency dropped to 0.806 (Table 3),
and the efficiency variance increased up to 0.258 (Fig. 1).

The numbers of the efficient year for WWTPs decreased
when the window length was extended to 10. To be specific,
NTTP was only operated efficiently for 7 years, followed by
HTP (5 years), ABTP (2 years), and HCTP (1 year),

respectively (Table 3). Unsurprisingly, the annual efficiencies
dropped to 0.985, 0.721, 0.650, and 0.354 for NTTP, HTP,
ABTP, and HCTP, respectively. A significant drop (n 0.678 in
Table 3) was also observed in the overall average efficiency and
the efficiency variation increased again up to 0.328 (Fig. 1).

Contributions of multi-factors to the efficiency based
on Tobit model

Compared to the cross-section analysis of l = 1 and the
global analysis of l = 10, the efficiency evaluations of
l = 5 could reflect the relative performance of WWTPs

Fig. 1 Comparisons of a the number of efficient years during 2007–2016
and b the efficiency forWWTPs with different window lengths. The term
BAverage^ corresponds to the average value of 10-year efficiencies of

four WWTPs, while the term BVariation^, measured by the standard
deviation, represents the degree of dispersion relative to the mean value
during 2007–2016

Table 3 The annual efficiency of WWTPs during 2007–2016 based on different window lengths

l = 1

WWTP 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average

ABTP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

HCTP 1.000 1.000 1.000 1.000 0.752 0.797 1.000 1.000 0.306 0.544 0.840

HTP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NTTP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Average 1.000 1.000 1.000 1.000 0.938 0.949 1.000 1.000 0.826 0.886 0.960

l = 5

WWTP 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average

ABTP 1.000 0.590 0.844 0.472 0.945 0.863 0.763 0.813 1.000 1.000 0.829

HCTP 0.467 1.000 0.935 1.000 0.352 0.340 0.310 0.414 0.306 0.396 0.552

HTP 0.327 0.532 0.901 1.000 1.000 1.000 0.702 1.000 1.000 1.000 0.846

NTTP 1.000 1.000 1.000 1.000 0.962 1.000 1.000 1.000 1.000 1.000 0.996

Average 0.699 0.781 0.920 0.868 0.815 0.801 0.694 0.807 0.826 0.849 0.806

l = 10

WWTP 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average

ABTP 0.614 0.395 0.516 0.301 0.723 0.658 0.583 0.713 1.000 1.000 0.650

HCTP 0.131 0.788 0.187 1.000 0.124 0.140 0.138 0.330 0.306 0.396 0.354

HTP 0.144 0.282 0.621 0.630 1.000 1.000 0.532 1.000 1.000 1.000 0.721

NTTP 1.000 1.000 0.983 0.968 0.900 1.000 1.000 1.000 1.000 1.000 0.985

Average 0.472 0.616 0.577 0.725 0.687 0.699 0.563 0.761 0.826 0.849 0.678

Environ Sci Pollut Res (2018) 25:32649–32659 32653



better in every 5 years. With the expectation of the best
balance of the in formativeness and stability of the effi-
ciency scores, the window length of l = 5 was selected to in-
vestigate the effects of the plant size and influent pol-
lutant concentrations on the WWTPs’ efficiencies. Both
the correlation analysis and the Hausman test suggested
the establishment of a fixed effect Tobit regression model.
The Tobit regression analysis was conducted with a de-
pendent variable (Eff) and five independent variables (PE,
ISS, IcBOD5, Iflow, and ITP). The descriptive statistics of
these variables are listed in Table 4. The results of Tobit
regression analysis are given in Table 5.

The Tobit regression model showed statistically signif-
icant with a value of P = 0.0000 (Table 5). Results indi-
cated that at a level of 5%, variables such as PE, ITP, and
Iflow had significant influences on the WWTPs’ efficien-
cies. Comparatively, a negative correlation with a coeffi-
cient of − 3.24e-06 was observed between PE and Eff.
This finding was consistent with the observation of the
size effect obtained by the DEA window method
(Table 3). Moreover, the WWTP tended to be more effi-
cient with the increase of ITP (0.6734) and Iflow (0.0047).
It was obvious that the influences of ISS and IcBOD5 on
efficiencies were not significant though their coefficients
turned out to be completely opposite signs.

Discussions

Effect of the DEA window length on the evaluation
of WWTPs’ efficiencies

First, the DEA window model systematically revealed the
dynamic changes of WWTPs’ efficiencies. Based on the
empirical results, along with the change of the window
lengths, obvious regularities could be found in plants’
annual efficiency, the average efficiency of the total sam-
ple, and their variabilities. It indicated that the DEA win-
dow analysis method was suitable for identifying the dy-
namic characteristics of the sewage plant efficiency. This

finding was consistent with the view that the DEA win-
dow model was effective for the identification of the op-
erational performance or environmental efficiencies of
WWTPs and could handle small samples that failed to
meet the ‘thumb rule’ (Al-Refaie et al. 2016; Hemmasi
et al. 2011).

Second, the efficiencies of WWTPs remarkably varied
with the window length selected during the DEA window
analysis. As the window length increased from 1 to 5, and
then to 10, both the individual and overall average effi-
ciencies of WWTPs decreased while the efficiency varia-
tions increased. This suggested that the impacts of the
window lengths on WWTPs’ efficiency presented consis-
tent outcomes. The effects of the window length settings
on efficiency were also verified by some of the previous
literature (Lorenzo-Toja et al. 2017; Řepková 2014).
However, the selected window length did not appear as
an important factor for the ranking of WWTPs’ annual
efficiency. Irrespective of the window lengths (l = 1, 5,
and 10), similar rankings of annual efficiencies of four
WWTPs were obtained (NTTP > HTP > ABTP > HCTP),
indicating that the selection of window length had little
influence on the relative efficiency scores of WWTPs.
This was in accordance with the findings that, regardless
of window length, consistent rankings of plants’ efficien-
cies were observed while the efficiency variation for
plants varied.

Table 5 Results of Tobit regression model

Eff Coef. SD T P > |t| [95% Conf. Interval]

PE − 3.24e-06 9.71e-07 − 3.34 0.002 − 5.21e-06 − 1.27e-06

ISS 0.0034 0.0018 1.88 0.069 − 0.0003 0.0070

IcBOD5 − 0.0026 0.0016 − 1.63 0.112 − 0.0059 0.0006

ITP 0.6734 0.1672 4.03 0.000 0.3339 1.0130

Iflow 0.0047 0.0020 2.31 0.027 0.0006 0.0089

_cons − 2.038 0.6759 − 3.02 0.005 − 3.4102 − 0.6660

Prob > chi2 = 0.0000

Table 4 The descriptive statistics
of dependent and independent
variables for Tobit regression
analysis

Variable Index Obs Mean SD Min. Max.

Dependent variables Eff 40 0.81 0.26 0.31 1.00

Independent variables PE 40 683,325 530,364.90 55,000 1,524,000

ISS (mg/L) 40 273.45 63.74 165.50 446.00

IcBOD5 (mg/L) 40 191.29 63.14 86.60 318.00

ITP (mg/L) 40 5.24 0.93 3.80 7.50

Iflow (ML/day) 40 279.85 221.40 17.60 697.60

Obs observational value,Meanmean value, SD standard deviation,Min. andMax.minimum value andmaximum
value of variables
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Third, the annual average efficiencies decreased with
the increase of the window lengths applied. This decrease
was in different degrees, leading to substantial variations
in the ranking of WWTP’s annual average efficiencies.
For instance, the lowest average efficiency for l = 1, l =
5, and l = 10arose in the years 2015, 2013, and 2007,
respectively, suggesting that the window length settings
had a non-negligible effect on the average efficiencies of
individual years. This was also supported by Lorenzo-
Toja et al. (2017) who divided the plants into the large,
medium, and small size groups and found that the effi-
ciencies of individual plants varied in substantial different
degrees with the increases of window lengths under three
scale groups, and therefore, the levels of maximum and
minimum efficiencies appeared in different years for dif-
ferent window lengths and plant sizes.

Effect of the plant size on the WWTPs’ efficiencies

The plant size was an important contributor to the
WWTPs’ efficiencies according to our empirical results.
As observed by the Tobit model, the impact of the plant
size on the WWTPs’ efficiencies passed the significance
test. Meanwhile, both the DEA window and the Tobit
regression analysis concluded that WWTPs with larger
scale had lower efficiencies. However, the influencing
directions of the plant scale on the efficiencies and the
efficiency variations were completely opposite. Among
NTTP, HTP, and ABTP, the greater the scale was, the
lower the efficiencies and the larger the efficiency var-
iations were, respectively. This implied that large
WWTPs performed less efficiently than the small ones
did.

Outputs
(1)Removal of SS: Lorenzo-Toja et al.

(2015); Dong et al. (2017); Zeng et al.

(2017).

(2)Removal of COD/BOD: Dong et al.

(2017); Zeng et al. (2017).

(3)Nitrogen (N): Dong et al. (2017); Zeng et

al. (2017).

(4)Phosphorus (P): Dong et al. (2017);

Zeng et al. (2017).

(5)Eutrophication potential: Hernández-

Sancho et al. (2011); Lorenzo-Toja et al.

(2016;2017).

(6)Global warming potential: Hernández-

Sancho et al. (2011); Lorenzo-Toja et al.

(2016); Zeng et al. (2017).

(7)Wastewater treated: Li et al. (2016).

Inputs
(1)Energy:Hernández-Sancho et al. (2011);

Lorenzo-Toja et al. (2015;2017); Li et al.

(2016); Dong et al. (2017); Zeng et al.

(2017).

(2)Staff: Hernández-Sancho et al. (2011); Li

et al. (2016).

(3)Operation: Hernández-Sancho et al.

(2011); Li et al. (2016).

(4)Chemicals: Hernández-Sancho et al.

(2011); Lorenzo-Toja et al. (2015;2017); Li

et al. (2016).

(5)Waste management: Hernández-Sancho

et al. (2011); Li et al. (2016).

(6)Sludge: Lorenzo-Toja et al. (2015;2017);

Li et al. (2016).

(7)Capital: Li et al. (2016); Dong et al.

(2017); Zeng et al. (2017).

Models
(1)DEA: Hernández-Sancho et al. (2011).

(2)DEA+other models: Lorenzo-Toja et al. (2015);

Dong et al. (2017).

(3)LCA + LCC: Lorenzo-Toja et al. (2016).

(4)LCA + DEA window: Lorenzo-Toja et al.

(2017).

(5)Distance function (DF): Zeng et al. (2017).

Scale effect
(1)Positive: Hernández-Sancho et al. (2011);

Lorenzo-Toja et al. (2015;2017); Li et al.

(2016); Dong et al. (2017); Zeng et al. (2017).

(2)Uncertain: Lorenzo-Toja et al. (2016).

Efficiency and its

determints of WWTPs

Independent variables
(1)Plant size: Hernández-Sancho et al. (2011);

Lorenzo-Toja et al. (2015;2016;2017); Li et al.

(2016); Dong et al. (2017); Zeng et al. (2017).

(2)Plant age: Hernández-Sancho et al. (2011).

(3)Influent loading: Hernández-Sancho et al.

(2011); Lorenzo-Toja et al. (2015); Dong et al.

(2017).

(4)Treatment capacity: Zeng et al. (2017).

(5)Technology: Hernández-Sancho et al. (2011); Li

et al. (2016); Zeng et al. (2017).

Fig. 2 Research summaries regarding the plant size effects on WWTP efficiencies. LCC refers to life cycle costing
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Figure 2 summarizes studies regarding the scale effects
on the WWTPs’ efficiencies. Most of previous studies
pointed out that the facility size had a positive effect on
the efficiency (Hernández-Sancho et al. 2011; Lorenzo-
Toja et al. 2015, 2017). For example, Dong et al. (2017)
and Zeng et al. (2017) believed that large-scale facilities
had higher environmental efficiencies. However, these
were totally different with what we observed in this study.
What is the root cause? The potential reason could be
explored by examining deep into the features of
WWTPs evaluated in these studies, which reported that
the high efficiency obtained in large-scale facilities was
usually attributed to the relatively advanced wastewater
treatment technologies employed (Li et al. 2017a; Longo
et al. 2016). In other words, these plants enjoyed, at least
in part, the benefits of the efficiency improvement result-
ed from the advanced treatment technologies (Laitinen
et al. 2017; Panepinto et al. 2016). However, this was
not the case in this study where similar conventional ac-
tivated sludge treatment technologies were adopted in
four WWTPs. It could be certainly taken away of the
possibility of the wastewater treatment processes for the
controversy observation. In fact, it was speculated that the
excessive increase of the input costs such as utilities,
chemical, staff, and operation (Fig. 3 and Fig. 4, detailed
discussion in section BThe composition of inputs and cost-
saving considerations^) in the large-scale WWTPs con-
tributed to the decrease of the efficiencies. In addition, it
was argued that the scale effect turned out to be uncertain
(Lorenzo-Toja et al. 2016). According to the authors, in
terms of operation costs, the small and large WWTPs

performed much better than the medium ones. Hence,
there was no certain correlation between the economic
cost and the plant size. In conclusion, it was necessary
to explore further the scale effect under the control of
other factors including technological influence.

It is worth noting that the ranking for HCTP was an excep-
tion when the efficiency was taken into consideration. Based
on our empirical results, with similar scales (PE), HCTP pre-
sented lower efficiencies (0.84, 0.54, 0.35 under l = 1, l = 5,
l = 10, respectively) than HTP did (1.00, 0.90, 0.72 under l =
1, l = 5, l = 10, respectively), because the inputs far exceeded
the outputs in HCTP. In 2016 as an example (Table S2), with
the similar other inputs such as utilities, staff, HCTP had 1.25-
fold higher of chemical consumption and 3.2-fold higher op-
erating costs than HTP did, respectively, whereas the removal
rates of pollutants at HCTP in 2016 were far less (230.20,
235.30, and 4.80 for SS, cBOD5, and TP, respectively) than
those at HTP (298.00, 293.30, and 5.10 for SS, cBOD5, and
TP, respectively).

The composition of inputs and cost-saving considerations

It is well known that the input variables are strong driving
forces affecting the plant efficiency and its techno-
economic viability. Figure 3 describes the differences on
average in the four specific input cost items investigated
when the outputs were at similar levels in four plants.
Obviously, for four types of inputs, ABTP occupied the
top positions among four plants, while NTTP held the
smallest part in each cost item. Meanwhile, HCTP was
higher in three kinds of costs except for the utilities com-
pared to HTP, indicating that the ranking of cost inputs
was negatively correlated with the order of the efficiency.
Therefore, the cost control might be a useful method to
improve the WWTPs’ performance.

When analyzing the cost structure of each WWTP during
2007–2016 (Fig. 4), the authors found that chemical expendi-
ture took the least proportions in the total costs of four plants.
That was related to the conventional secondary treatment tech-
nologies applied. Moreover, it should be noted that the staff
salaries were an important contributor for all four plants,
which were 29.20% for ABTP, 39.50% for HCTP, 37.14%
for HTP, and 57.25% for NTTP, respectively. This suggested
that the application of automatic control systems throughout
the entire treatment process should be considered to improve
the performance of WWTPs and economic operation
(Guerrero et al. 2011).

Limitations

DEA is regarded as an efficient method in evaluating the per-
formance of DMUs without strict requirements on the data
and hypotheses on model parameters. Therefore, DEA

Fig. 3 The comparison on 10-year average costs in inputs among four
WWTPs
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window analysis is suitable for the efficiency assessment
with limited data of WWTPs. This guarantees the ratio-
nality of the methods applied in this study. However, four
Toronto WWTPs studied had similar treatment technolo-
gies, climatic features, economic development, and other
conditions, and only ten operation years between 2007
and 2016 were considered. This might limit the interpre-
tation and application of the observations obtained here to
some extent.

With regard to the cost savings, different cost items should
be cut down for individual plants. However, the potentials of
cost-cutting for each facility were not estimated, because
when inefficient units reduced some cost items, some other
characteristics of these units would also change together.
Moreover, considering the fact that the plants evaluated in this
study applied relatively inefficient treatment technologies
throughout the study period, it might be more important to
upgrade the technological system in addition to the control
of high cost items.

Conclusions

Relying on the flexible data processing and robust results,
the DEAwindow method proved suitable for assessing the
cost efficiency of WWTPs. By using the cost items of
utilities, staff, chemicals, and operation as input variables,
and the removal rates of influent SS, cBOD5, and TP as
output variables, dynamic efficiencies of four WWTPs
during 2007–2016 were estimated under three window
lengths of l = 1,l = 5, and l = 10. The empirical results

showed that the selection of window lengths did not affect
the ranking of WWTPs’ efficiency. However, the efficien-
cies for both individuals and the whole sample decreased
with the increase of window length. Under the assumption
of technical similarity, plants with larger size tended to
perform poorly. In addition, Tobit regression analysis
showed that three variables including the PE, influent
TP, and influent flow rate were found to affect the effi-
ciency at different degrees and in different directions.
With the control of other factors such as the technology,
operation cost, personnel or utilities significantly contrib-
uted to large potentials of the cost savings and efficiency
improvement.

Despite the reliability and rationality of the results pro-
duced by the models of DEA window and Tobit regression,
there were still some limitations on the application of the find-
ings obtained from this study. Therefore, it is strongly sug-
gested that more attention should be paid to integrated effects
of the plant size and the treatment technology on theWWTPs’
efficiencies, as well as on to the distribution features of the
efficiency embodied in different groups of wastewater treat-
ment facilities.
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