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Abstract—The uptake of distribution generation on electricity
distribution networks imposes the operators to install new mea-
surement devices such as phasor measurement units to achieve
network observability. In this paper, we propose a framework for
estimating synchronized phasor measurements for a virtual node
using the measurements from the other nodes in the network.
This system uses a machine learning method, in particular
supervised regression models, to provide estimates. We show the
performance of the proposed framework comparing two widely
used regression methods i.e., Generalized Linear Models and
Artificial Neural Networks. We extensively evaluate the proposed
approach utilizing a real-world dataset collected from a medium
voltage ring feeder. Our results indicate very low error rates; the
average error for voltage magnitude was approx. 0.2V while for
phase angle was 0.7mrad. Such low errors indicate the potential
for reducing the scale of the measuring infrastructure required
on distribution networks and increasing their reliability.

I. INTRODUCTION

Conventionally, distribution networks transported electricity
from the transmission substations to the end consumers. The
one way flow of electricity and radial topology meant that
conservative dimensioning of the network was sufficient to
ensure the correct operation, without too many real-time
measuring points. However, over the last decade, more con-
sumers, communities and businesses have installed distributed
generators. The integration of the electricity system with the
transport (e.g. electric vehicles) and heating (e.g. fuel cell co-
generation units) infrastructures is also taking place at the
medium and low voltage levels of the electricity grid. With
these technologies come a series of challenges which require
the network operators to have complete network observability,
similar to the transmission system operators. However the
distribution network requires significantly more measuring
devices than the transmission network to achieve this.

In this paper, we investigate the performance of a machine
learning (ML) driven engine to replace physical measure-
ment devices on the electricity networks. A dataset of real
measurements from the same network are utilized to train
models for estimating measurements. These trained models
are capable of providing pseudo measurements based only on
the real measurements from the other nodes. The applications
for the ML engine include the reduction of the number
of physical measurement devices installed or, in case of a
temporary failure of the measurement device, fill in for the
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lack of measurements. To evaluate this, we use syncro-phasor
measurements from 7 nodes within a real distribution network
(measurements collected during an innovation project). We
compare the performance of the proposed approach against the
current standards for Phasor Measurement Units (PMUs). We
employ two supervised ML approaches namely, Generalized
Linear Models and Artificial Neural Networks.

Wide Area Monitoring Systems with PMUs are used to pro-
vide phasor measurements (current or voltage) syncronised to
the same time reference. They can offer an accurate snapshot
of the state of the power network they are connected to. Phasor
measurements have been used on the transmission network
for observability and for stability applications. Recently, such
measurement devices have also been installed on the distri-
bution networks. An extensive list of potential applications is
given in [1] including unintentional islanding detection and a
state estimation (SE) algorithm.

SE algorithm is a mathematical method to output a descrip-
tion of the power system by computing the best estimate of
the state variables (V/, #) based on measurements from PMUs
and SCADA system, pseudo-measurements from smart meters
and network topology. The rest of the secondary variables (real
and reactive power flows through the lines and nodal power
injections) can be calculated from the state variables. Because
the PMUs bring direct measurements of state variables and as
they are synchronized they are regarded as accurate and are
expected be assigned higher weights in the SE algorithm.

Different machine learning algorithms applied in power
system sector have been described in the literature to extract
information from measurements either to estimate pseudo-
measurements or network topology. These approaches can be
separated into two categories: network information driven and
network information independent. In the former category, the
formulation of the problem to be solved with ML includes at
least one equation from AC or DC circuit analysis. An example
of this type of algorithm is described in [2] where the topology
of a distribution network is detected using the correlations
between voltage measurements and a sparse Markov random
field. In [3] the state variables (V, #) of a section of a dis-
tribution network are found using a Bayesian linear estimator
based on a linear approximation of the power flow equations
considering smart meter and PMU type of measurements.

The network information independent methods employ a
black box approach, where the variables that need to be
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Fig. 1. Block diagram for estimating phasor measurements using supervised regression models. Training and test phases are separately highlighted.

estimated by the algorithm are not connected to the measure-
ment available through physical equations. These estimated
variables are then used in SE or power flow analysis. In [4] an
ML approach was used for load forecasting. Repeating patterns
hidden inside the load time series are used to define rules
governing the load variation. These were found using a parallel
distributed processing model. In [5] support vector machine
(SVM) and Kohonen network (SOM) have been used to detect
pre-emergency operating points of the network starting from
the voltage measurements, which can help in preventing net-
work voltage collapses. Fault detection considering substation
measurements and weather data using Neural Networks (NN)
and Naive Bayes (NB) was tested in [6].

The ML method introduced in this study with applications
in power systems can be categorized as a network information
independent approach. Our study contributes to the state of the
art with an extensive investigation for estimating directly the
state variables (V/, 0), rather than pseudo-measurements. We
argue that, given enough data points for training, the physical
measurement equipment can be replaced by the virtual mea-
surements based on our approach. Virtual measurements are
obtained by an ML engine using regression models.

The proposed method can be used as a solution to the
multi-stage optimal PMU placement problem [7] in which a
gradual deployment of PMUs across the distribution network
is required because of the high number of nodes. Our ML

engine can create virtual nodes capable of providing estimates
until the physical equipment is installed. Further, when they
are installed and network observability is achieved, the ML
algorithm can offer redundancy and reliability of the solution
in the case of failures in measurement devices.

II. METHODOLOGY

A mathematical representation for the instant voltage is:
v(t) = V2.V - cos(2mft + 6) (D)

Where V' is the RMS value of the voltage amplitude, f is
the instantaneous frequency and 6 is the angular starting point
for the waveform. A PMU reports all the three measurements
needed to reconstruct the instant voltage for a certain time.

The current standard for PMUs, IEEE C37.118 [8], specifies
that the Total Vector Error (TVE) should be kept below
1%. TVE aggregates the errors from the three sources of
error (V. 6, f). If taken separately, the error for the voltage
magnitude limit would be 1%, while the error for the voltage
angle is 10mrad [9].

There are several phasor measurement devices on the
market, suitable for the use in transmission networks, but
suitable devices for the distribution part of the network are
still at development stage. Because of the particularities of
the distribution network (the short length between nodes
and the small reactance of the lines) the accuracy of the
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Fig. 2. SUNSEED Map: Electricity distribution network with PMU locations.

measurement nodes must be higher than of those installed on
the transmission network. The PMU in the SUNSEED! project
offers an accuracy for the voltage magnitude of 0.1%, while
for the voltage angle 0.34mrad. Another issue which needs to
be highlighted is the requirement of a high number of PMUs
to achieve network observability. According to [10], between
1/3 and 1/5 of nodes must be fitted with PMUs in order to
achieve complete observability. This could mean a significant
investment for distribution network operators (DNOs). Our
approach is to reduce this number by using machine learning to
substitute physical equipment with virtual measurement points.

As can be seen in Figure 1 phasor measurements are initially
pre-processed. In this step, pre-processing techniques such
as data interpolation for missing data or filters for noisy
measurements can be used. For evaluation purposes, we extract
an intersection of timestamps where data from all the nodes is
available. This can be utilized at the training phase only where
synchronised data is required to train such a framework. This
step results in a processed data of nodes within a network
with measurements from the same timestamps. This data is
then used for establishing features to train for estimating target
variables.

In our feature representation stage (cf Figure 1), syn-
chronised raw measurements are directly used with minimal
addition of extra features. Due to this, the feature extraction
stage is significantly faster than traditional approaches where
several statistical or geometric features are extracted over a
time window of measurements. They also have a significant
limitation for this application as the output target in such
scenarios is an aggregated estimate whereas the proposed
system has the capability of producing estimates for a given
time stamp based on the real direct measurements. Also note,

Thttps://sunseed-fp7.eu/
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TABLE I
SUMMARY OF VARIOUS ATTRIBUTES RELATED TO THE COLLECTED
DATASET.

Dataset Overview

Total Nodes (V) 7

Total Samples 174213

Sampling Rate 1Hz

Measurements (M) 9 ((Vi,..., V3), (61, ...,03), b, pspy, pspo)
Total Features 7 nodes X 9 measurements = 63
Train/Test Split 75/25

that there is no explicit segmentation stage as each set of
measurements from all nodes at a given timestamp are directly
used (i.e., the total number of segments are the same as the
total number of data points).

In total we use 9 measurements for every node
in the network, as seen in Table I, which include
{(‘/la‘/Zav3)7 (91702593)7h0ur7p8p1hp5p9} where

(V4,Va2,V3) are the voltage magnitudes for each of the
three phases, (61, 02,03) are the voltage phase angles, hour
is the hour of the day feature (computed using the associated
time stamps). psp, and pspy are the positive sequence voltage
magnitude and phase respectively.

Feature data from the previous step is then used to train
individual models for separate target variables.Note, in our
feature representation, no measurements from the test node
are used reflecting a real-world scenario in which a real node
when replaced with a virtual node will have no measurements
from the virtual node.

In this work, we utilize a supervised machine learning
framework in which labeled data is provided in the form of
true measurements at the training stage. In particular, we use
regression models that are appropriate for estimating numeric
measurements (as opposed to using classification models in
which the target is categorical in nature):

a) Generalized Linear Model (GLM): : Input features
f are used to fit GLMs [11] for estimating the target data
individually. The GLM model assigns coefficients to each of
the input feature in the form of a linear equation capable of
estimating the target variable. This linear model is of the form:

Y~ L [fE 4+ [+ L+ fR] 2)

where, M = {ky,ks,...., K}, N = {ny1,no,...,L}, ¢ € M,
peN,r={{r,re,...,R} :r € N and r ¢ p}.

b) Neural Network (NN): : We also use the same set
of input features to train multiple Neural Networks [12] for
all of the target variables. In particular, we use Bayesian
regularization [13] for training the models with 100 nodes.

III. SUNSEED USE CASE

The algorithm described in the previous section was evalu-
ated using real data collected in the SUNSEED project [14].
This project investigate converging communication infrastruc-
tures of DNO and telecommunication companies for future
smart grids applications. The field trial, conducted in Slovenia,
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Fig. 3. Voltage and Phase estimation results are shown using both GLM and NN regression models. Comparisons are made against respective baselines.

Average error rates are also indicated.

involved deploying smart meters, power measurement devices
and PMUs in several locations. Figure 2 shows the GIS map
with nodes labeled by number.

Syncronised voltage phasor measurements are collected
using PMUs installed on two 20kV urban feeders from the
Kromberk area. Apart from the loads, the feeder connect
photovoltaic (PV) panels and a co-generation unit therefore
reverse power flow is common. The feeders are part of a
new strong network with underground cabling. The PMUs
take 3 phase measurements from the secondary side of the
20/0.4kV transformers. The measurements are sent securely
to a Mongodb database and form part of the input of a
distribution state estimation application developed during the
SUNSEED project.

As shown in Figure 1, we evaluate the proposed framework
using the nodes within the same network which are filtered
out and an intersection of timestamps is established. Features,
as described in Section II are then used to train the two
types of supervised regression models. We then compare the
two methodologies against the baseline represented by the
hardware accuracy specified in IEEE C37.118.

A. Experiments and Results

In order to evaluate the performance of the proposed frame-
work using the two regression models, we perform several sets
of experiments. For evaluation purposes, a consistent metric
of Mean Absolute Error is utilised calculated as below:

1 &
e=;;|yi—yil

where s; represent the total number of test samples, y; is
the true value of a target variable (for example Voltage on
a certain node) and ¢y; represents the estimated value for a
target variable.

3)

Figure 3a shows the voltage estimation results using both
GLM and NN. Baseline of 2.30V is used [9]. It can be
seen that in all cases, the estimation results have low errors
compared against the baseline. In general GLM estimation
performs better compared against the NN estimation. Similarly
in Figure 3b, phase estimation results are shown using both
GLM and NN. A baseline of 10mrad is used [9]. In this case,
GLM outperforms both the baseline and the NN estimation
results. NN estimation on average has a higher error rate
compared against the baseline.

Based on these results, it can be inferred that a certain
linear relationship exists between phasor measurements from
different nodes and therefore can be more accurately modeled
using a linear model. However, with more training data and
higher complexity neural networks (such as deep learning
methods), these results can further be improved.

In Figures 4a and 4b), voltage and phase estimation results
are respectively shown using GLM with respect to the number
of samples in the training data. Models are trained using
the total number of samples (x-axis; incremented within the
75% of training data) and errors are reported on the test set
(remaining 25% of data as defined in the previous experiment).
In the case of voltage, estimation results outperform the
baseline at around 1000 samples (representing 1000s of data)
whilst for phase, this is achieved at 44600 samples. This
means that for phase estimation, a substantial amount of data,
compared with the voltage, is required in order to make precise
estimations.

Figure 5 shows an example node and its associated true and
predicted voltage estimation results. Several points in the time
line are zoomed in. It can be seen that error rates are very low
in majority of the cases (i.e., predicted results very closely
match the true measurements on this node).

Figure 6 shows the effect of added number of nodes to
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Fig. 5. True and predicted voltage estimation results for Node 2 of the SUNSEED network. Several parts of the results are zoomed in to illustrate low error

rates even when the true signal has high variance.

both voltage and phase estimation results. In each case, a
single node is tested and training is performed using all the
combinations of the remaining nodes. For example, for 3
number of training nodes, separate models are trained using all
combinations of 3 nodes out of 6 nodes and using the 7th node
for test. This is repeated for all nodes to be tested separately.
Average results are then shown in Figure 6. It can be seen
that as more nodes are added, estimation results improve with
errors reducing. For Voltage, 3 nodes onwards, the results are
stable and in all cases the error is lower than the baseline of
2.30V [9]. For Phase, all 6 nodes are needed for the errors to
be below the baseline of 10mrad [9].

In summary, these results indicate a very high level of
accuracy and shows that data-driven virtual nodes (trained
using machine learning) are capable of replacing physical
measurement equipment used for power system applications.

B. Discussions

Because both voltage magnitude and phase angle have small
variations on the MV and LV networks in comparison to the
transmission system, the estimations of any state variables
must be accurate as they can introduce large errors in the
SE or load flow softwares. The high precision measurements
taken with the PMUs installed in the SUNSEED project are
essential for achieving the performance reported in Section
III-A. The results show that the GLM method described here
performs very well in estimating the voltage magnitude at a
certain network node based on the measurements from other
nodes of the network. Both the error estimated for individual
nodes and the average error are below the precision required
in the C37.118 standard as can also be seen in Figure 3a.
Although they are still below the limit of the standard, the
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estimates of node 1 are less accurate than the rest of the nodes.
For justification we need to observe the network configuration
in Figure 2. Node 1, apart from being connected to the ring
feeder, is also connected to another feeder (left of the map).
This means that the voltage at node 1 is also influenced
by the demand and generation of another feeder where no
measurements were taken, making it harder to estimate.

For phase angle estimation, Figure 3b, the GLM method
outputs an average error below the value specified in the
standard. Node 1 has a higher value due to the network
topology, as described in the previous paragraph.

The minimum number of samples required for GLM to
obtain below 1% error for magnitude was approximately 1000
while for phase angle 44600 samples are required. Therefore,
for an accurate estimation system, higher of the two numbers
must be used, which corresponds to 5.5 hours of data. This
analysis is important as it enables setting the minimum time for
the measuring campaign when installing an ML based solution
for network observability. In Figure 5 we have showed that
the performance of the GLM method does not deteriorate and
stays reliable even with significant network voltage variations.

The results displayed in Figure 6 show that the error in
the target node is heavily dependent on the number of nodes
used for training. For voltage magnitude the largest reduction
in estimation is realized from the first node to the second.
Further on, from 2 to 3 and so on, the gain diminishes
significantly. For phase angle, estimation accuracy increases
almost linearly as more nodes are used in the training data.
Different applications tolerate different error rates, therefore
establishing the number of nodes required to achieve that
accuracy level can be performed with such an analysis. This
can lead to significant cost savings in implementing such
solutions.

IV. CONCLUSION

In this paper, we proposed a method that uses machine
learning to estimate synchronized phasor measurements. We

validated our approach using voltage phasor measurements
from a field trial on an electricity distribution ring feeder.
The results showed that the estimation framework is highly
reliable and capable of replacing the hardware measurement
equipment. The average error for voltage magnitude and
phase angle was 0.2V and and 0.7mrad, respectively. In
particular, GLMs performed better than the NN model and
the baseline. The estimation error decreased with the increase
in the total number of nodes considered for training, however
we found that the rate of decrease is dependent on the type of
measurement.

For future work we aim to quantify the benefits of using
such an ML-driven approach when applied to a state estimation
algorithm.
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