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Abstract - This paper describes the receding horizon sigma point 

Kalman FIR filter for tightly coupled DR/CPS hybrid navigation 
system. In order to overcome the flaws of the EKF, the SPKF is 

merged with the receding horizon strategy. This filter has several 

advantages over the EKF, the SPKF, and the RHKF filter. The 

advantages include the robustness to the system model uncertainty, 

the initial estimation error, temporary unknown bias, and etc. The 

computational burden is reduced. Especially, the RHSPKF filter 

works well even in the case of exiting the unmodeled random walk of 

the inertial sensors, which can be occurred in the MEMS inertial 

sensors by temperature variation. Therefore, the RHSPKF filter can 

provide the navigation information with good quality in the DR/CPS 

hybrid navigation system seamlessly. 
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1. INTRODUCTION 

Commercial navigation technology has been become the 
core technology in telematics (TELEcommunications and 
InforMATICS) industry because telematics provides various 
location based services. The navigation system in telematics 
system is called CNS (Car Navigation System) because the 
telematics is utilized based on a car. CNS is comprised of a 
GPS receiver and a digital map, generally. And CNS is 
expanded into DR (Dead Reckoning)/GPS hybrid system to 
calculate the position information even in the urban area 
seamlessly. DR system for CNS must be implemented as 
low-cost to extend a market. Therefore, the DR system may 
include low-cost sensors instead of an IMU. In this paper, it 
is assumed that the DR system is implemented using an 
accelerometer and a gyro [1,2]. 

Currently, the DRlGPS hybrid navigation system has been 
developed using the extended Kalman filter (EKF). The EKF 
is the well-known approach in the integration of the nonlinear 
systems. However, the several flaws of the EKF exist, which 
may lead to sub-optimal performance and sometimes 
divergence of the filter. In recent years, various-type filters 
have been investigated to overcome the flaws. The sigma 
point kalman filter (SPKF) and the receding horizon Kalman 
FIR (RHKF) filter are the representative alternative filters 
[3,4]. 

If initial estimation error is large in the EKF, this filter 

may diverge because the Jacobian matrix for implementing 
the EKF has serious problem. The SPKF does not need to 
calculate the Jacobian matrix. Therefore, the SPKF is robust 
to the initial estimation error, unlike the EKF. When system 
has an unmodeled error or temporary unknown bias, the EKF 
is under the full influence of the errors. In order to reduce the 
effect of these kinds of errors, the RHKF filter has been 
researched. Since the FIR filter utilized finite measurements 
over the most recent time interval, this filter is known to be 
robust against temporary modeling uncertainties that may 
cause a divergence phenomenon in the case of the IIR 
structure filter [5]. However, the SPKF does not have the 
merits of the RHKF filter and the RHKF filter also does not 
have the advantages of the SPKF. In this paper, a novel filter, 
called the receding horizon sigma point Kalman FIR 
(RHSPKF) filter, is presented. The RHSPKF is made by 
fusing the advantages of the two filters. 

In this paper, the performance of the EKF, the SPKF, and 
the RHSPKF filter is compared in the various situations of 
the DRlGPS hybrid navigation system. The results show that 
the SPKF and the RHSPKF filter work well even in the case 
of the initial large azimuth error. Moreover, the performance 
of the RHSPKF filter is better than the other filters in the 
cases that the inertial sensors have unmodeled random walk 
errors or have temporary unknown bias. The result is verified 
by some simulations. 

II. SPKF AND RHKF FILTER 

The EKF has various drawbacks in the estimation problem. 
One of the main drawbacks is that the state distribution is 
approximated by a Gaussian random variable, which is then 
propagated through the first-order linearization of the 
nonlinear system. When the initial estimation error is large, 
the propagated mean and covariance may have large errors, 
which may lead to sub-optimal performance and sometimes 
divergence of the filter. Another weak point is that EKF may 
have large error in the cases of model uncertainty, unknown 
time varying bias, etc. because of IIR structure. In this 
chapter the alternative filters are introduced. 

A. Sigma Point Kalman Filter 
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The main idea of the SPKF: with a fixed number of 
parameters it should be easier to approximate a Gaussian 
distribution than it is to approximate an arbitrary nonlinear 
function [3]. The fixed number in the SPKF is the minimal set 
of weighted sample points chosen deterministically, called 
sigma points. Generally, the number of sigma points is 2L + 1 
(state dimension L ). The SPKF is constructed as follows [4]: 

0) A discrete time nonlinear system 

xk+l=f(xk) +Gwk, wk�N(O,Q) (1 a) 

h=h(xk) +Vk, vk�N(O,R) (1 b) 

1-1) Initialization: augmented states and covariance 

x; =E[x� vJ =[x� Or (2) 

(3) 

1-2) Initialization: weights 

Wo(m) =AI(L+A) (4a) 

Wo(C) =AI(L+A)+(I-a2+p) (4b) 

w,(m) =w,(C) =1I2(L+A), i=I,"',2L (4c) 

where A = (a2 -1)L is a scaling parameter. a means the 

spread of the sigma points around Xo (set to 1:0:; a:O:; le-3) and 

p is used to incorporate prior knowledge of the distribution 

of x (2 for Gaussian distribution). 
2) Sigma points Calculation 

Xk-l = [Xk-l Xk-l ± �IT(L-+----:- A')P-k_-l j (5) 
3) Time propagation 

X:lk-l = f (x: -l )+ GX�-l (6) 

A_ _ (m) x 
2L (,r 

) h - L w, h i,klk-l i=O 
4) Measurement update 

PYkYk = f: w,(C) [h(,ri\lk-I)-y; Ih(,r�klk-l)-y; r i=O 
2L lr I (,r ) r P = w(c) x -x- h x _ A_ 

XkYk L 1 i,klk-l k i,klk-l Yk i=O 
K =P p-l k XkYk YkYk 
Xk =x; +Kk(h -Y;) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
(13) 

Pk =Pk- -KkPYkYkK[ (14) 

The equations (2 )�( 4) are preprocessed before processing 
the main SPKF. Then the SPKF is processed using the 
equations (5)�(14) , recursively. 

It is well-known fact that the SPKF can overcome the 
flaws of the EKF such as inaccurate Jacobian matrices caused 
by the linear approximations of nonlinear functions with large 
initial estimation error. Therefore, it can be expected that the 
SPKF can drive the DRlGPS hybrid navigation system no 
mater what the estimated initial heading error is large. 

B. Receding Horizon Kalman FIR Filter 

If a filter has a model uncertainty or an unknown 
temporary time-varying bias, the estimation performance is 
dependent upon the filter property. Unfortunately, the EKF 
cannot estimate the state variables exactly because the EKF 
has an IIR structure. In order to enhance the filter 
performance in the system that has a model uncertainty or a 
time-varying bias, this paper introduces the RHKF filter. 

Figure 1 shows the concept of the RHKF filter. As can be 
seen in this figure, the current state, xk' is estimated only 

using the current measurements on the horizon [k -N, k 1 
(N is a horizon size). The RHKF filter has a fast estimation 
property and is influenced restrictively by the errors such as 
model uncertainty, temporary time-varying bias, etc. due to 
the FIR construction. And it can be also utilized irrespective 
of singularity problems caused by unknown information 
about the horizon initial state in the linear systems. However, 
the research on the RHKF filter for nonlinear systems is 
insufficient by this time. The linear filters for nonlinear 
systems need the linearization of the nonlinear functions, 
which problem has decelerated the studies of the RHKF filter 
for nonlinear systems [5]. In order to apply the merits of the 
RHKF filter into the DRlGPS hybrid navigation system, this 
paper utilizes the concept of the sigma point. And an 
advanced RHKF filter for nonlinear systems is presented in 
the next chapter. 

III. RHSPKF FILTER 

In this chapter, a novel filter, called receding horizon 
sigma point Kalman FIR filter, is proposed by merging the 
two filters introduced in the previous chapter. And a tightly 
coupled DRlGPS hybrid navigation system is designed using 
the RHSPKF filter. 

i ! t t t 
t k-N t k-N+1 t k-N+2 t k t hl t h2 

xk Xhl Xh2 
� 

Figure 1. Concept of the RHKF filter 
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A. RHSPKF Fil ter 

The RHKF filter is designed using the inverse covariance 
form of the Kalman filter because it is assumed that the initial 
information of the states is unknown in the linear system. So, 
the initial value of the inverse covariance matrix is set by O. 
However, the initial information must be obtained with small 
error in the nonlinear system because of the linear 
approximations of nonlinear functions. So, the RHKF filter 
has a restriction in the linearization process. In this paper, the 
RHSPKF filter is designed to weaken the restriction of the 
RHKF filter. As mentioned previously, the SPKF works well 
even in case of large initial estimation errors. The RHSPKF 
filter merges the merits of the RHKF filter and the SPKF to 
guarantee the robustness in the state estimation. 

The concept of the RHSPKF filter is shown in Figure 2. In 
this figure, k N means the receding interval. The SPKF driven 

from time t k provides the estimated solution in the interval 

It k+kN' t k+2kN j . Simultaneously, the SPKF for the posterior 

horizon is processed from time t k+kN . And the estimated 

solution is provided by the SKPF for the posterior horizon in 
the interval It k+2kN' t k+3kN j. 

The RHSPKF filter has three advantages over the EKF, 
RHKF filter, and SPKF. First, the RHSPKF filter has a robust 
estimation property by the FIR characteristics of the RHKF 
filter. Secondly, the RHSPKF filter also has robustness to the 
horizon initial condition due to the strong point of the SPKF. 
Finally, the RHSPKF filter solved the heavy computational 
burden of the RHKF filter by extending the receding interval 
from 1 to kN• 
B. Tig h tly Coupled DRlGPS using t he RHSPKF Fil ter 

It is well-known factor that the visibility of the satellites is 
low in the urban areas. In these ill-conditioned environments, 
tightly coupled method is better than loosely coupled method 
in the DRlGPS implementation. Figure 3 shows the block 
diagram of the tightly coupled DRlGPS hybrid navigation 
system using the RHSPKF filter. 

It is assumed that the DR system is constructed by an 
accelerometer and a gyro. The accelerometer measures the 
forward acceleration of the vehicle and the gyro measures the 
z-axis angular velocity. 

Initialization Initialization Initialization 
I I SPKF I 
I SPKF I 
I I II 

SPKF 

T T T 
tk tk+hN tk+2hN 

Figure 2. Concept of the RHSPKF filter 

The states to be estimated are set by 2D position on the 

navigation frame ( PN, PE) , velocity on the body frame (Vb), 

azimuth ((}z), accelerometer bias (V), gyro bias (E), and 

receiver clock bias in meters (c ) . 
First, the sigma points are generated using (5). Then the 

time propagation is processed as follows: 
for j= J : 2L+J 

X(4,j) = 1'( 4,j) + (g z -X(6,j) )d t (15) 

X(3,j) = X(3,j) + (ax -X(5,j) )d t (16) 

x(l, j) = x(l, j) + 1'(3, j) cos(x( 4, j) )d t (17) 

1'(2, j) = 1'(2, j) + 1'(3, j) sin(x( 4, j) )d t (18) 

end 
where ax 

denotes the accelerometer output and gz means 

the gyro output. 
In the EKF, the relations between states are denoted 

clearly in the Jacobian matrix. In the RHSPKF filter, the 
relations are shown in the time propagation of the sigma 
points as equations (15)�(18). 

After time propagation, the pseudorange domain 
information is generated to process the measurement update. 
In this paper, only pesudorange is used in the filter 
measurement. The pseudorange is calculated as follows: 

for j= J : 2L+J 

p; (j) = �r-(x-; --
x
-
u -y -+-(y -

; -
-
y

-
u

-Y -
+

-(z-
; -

-
z

-
u -Y + 1'(7, j) 

end 

Accelerometer � 
Gyro V ! 

Sigma Points 
r+ 

Time 
Generation Propagation 

rc 
X 

Measurement 
Update 

h I GPS I PI � Pn 

Error Compensated 
Navigation Information 

Generation of the 
Pseudorange Domain 

Information 

PI � Pn [ X, 
P = : ' . 

Xn 

YI 

Yn <, 1 Zn 

Figure 3. Block diagram of the tightly coupled DRlGPS 

using the RHSPKF filter 

(19) 
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where [Xi Yi Zi 1 is the ith satellite position and can be 

obtained from the GPS receiver. [xu Yu zJ is the user 

position on the ECEF frame and can be calculated as follows: 
[Lu lu hJ=[Lo +PN1Re 10 +PEIRecosL hol (20) [xu ]

_ 
[(Re + hu )cos Lu c�s Iu ] 

Yu - (Re + hJcosLu sm1u 

Zu (Re + hu )sinLu 
(21) 

where [Lu lu hu 1 means the user latitude, longitude and 

height. [Lo 10 ho 1 denotes the user's initial position, and 

Re is the earth radius. 

Finally, the measurement update is carried out by 
equati ons (1 0 )�(14 ) . 

As can be seen in this chapter, the RHSPKF filter does not 
have any complex Jacobian matrixes even in the tightly 
couple DRlGPS hybrid navigation system. Moreover, this 
filter does not have complex equations required in the RHKF 
filter. Therefore, the proposed filter can be easily utilized to 
implement the DRlGPS hybrid navigation system. 

IV. SIMULATION AND RESULTS 

In order to verify the performance of the proposed filter, 
some simulations are carried. The four situations are made 
and the EKF, the SPKF, and the RHSPKF filter are driven in 
these situations. Then the performance of these filters is 
compared. The simulation results are summarized in Table 1. 

A. Situation I 

• Sensor bias is random walk. 
• The filters consider the sensor bias as random walk. 

Usually, the biases of low-cost inertial sensors show non­
zero mean and non-stationary behavior, the errors are 
modeled as random walk as follows: 

V'k=V'k-l +WV,k' wv�N(O,Qv) (22a) 

30 

25 

20 

15 

10 

time [sec] 

(a) Position error 

-100L--�20'------�40--60�----'8�0 - �,()(),,----------,J'20 
time [sec] 

(b) Azimuth error 
Sensor Bias Estimation Error 

" O :� ¥ 0 t;. . 
ciS : .. . o • if • 
!;, -0.5 (9 i 

-1 0C--�20'------�40--60,c:-----'8�0 -�,()(),,----------,J'20 
time [sec] 

( c) Sensor bias estimation error 
Figure 4. Results ofthe situation I 

Ck =ck-1 +WE,k' WE � N(O,QE) (22b) 
where the process noise must be set by Qv and QE ' 

As can be seen in Figure 4, the performance of the filters 
is similar to one another. 

B. Situation II 

• Sensor bias is random walk. 
• The filters consider the sensor bias as random constant. 

In general, the biases of inertial sensors can be modeled as 
random constant. However, the biases of low-cost inertial 
sensors may have random walk process. In this situation, the 
biases are modeled as random walk. But the filters are 
considered the sensor biases as random constant. 

As can be seen in Figure 5, the estimation errors of the 
EKF and the SPKF diverge gradually. First, the gyro bias 
estimation error increases with time. Second, the azimuth 
error is expanded under the influence of the gyro bias 
estimation error. Finally, the position data diverges. On the 
other hand, the RHSPKF filter has bounded errors. Therefore, 
the RHSPKF filter is robust against the model uncertainty. 
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time [sec] 

(a) Position error 

60 
time [sec] 

80 

(b) Azimuth error 
Sensor Bias Estimation Error 

100 120 

i .o� o 20 40 60 80 100 120 

C. Situation III 

time [sec] 

(c) Sensor bias estimation error 
Figure 5. Results of the situation II 

• Sensor bias is random walk. 
• The filters consider the sensor bias as random walk. 
• Accelerometer error has a temporary unknown bias. 

In this situation, a temporary unknown bias is occurred in 
the accelerometer as follows: 

v\ = V k-j + Ba,k +WV,k' Wv � N(O,Qv) 

B =
{2[mIS2] ,30:O:;k:O:;60 

a,k 
0 , otherwise 

(23) 

The result is shown in Figure 6. It can be seen that the 
errors of the RHSPKF filter are less than that of the EKF and 
the SPKF. The reason is that the RHSPKF filter is influenced 
restrictively by the unknown bias due to the FIR construction. 

40'---�----�----�----r=��====� 
35 

time [sec] 

(a) Position error 

-1 

-2 

-3 

-4 

-5 

-6 

_7L_�_�_�-�===:::'J o W � 00 00 100 1W 
time [sec] 

(b) Azimuth error 
Sensor Bias Estimation Error 

1 ��� 1' 0.5 ". o �. � .. 
-0.5 • .. ' 

-1 0"---�20------C4� 0 ----�60------c8� 0 ----�,()()c------.J,20 
time [sec] 

( C) Sensor bias estimation error 
Figure 6. Results of the situation III 
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D. Situation IV 

• Initial azimuth has a large error. 
The initial azimuth information cannot be obtained unless 

a magnetic compass or a high-grade gyro module is utilized. 
Therefore, the initial azimuth error exists unavoidably. In this 
situation, the initial azimuth error is set by 160degrees. 
Figure 7 shows the simulation results. 

350 
300 J 
250 I 200 
150 { 100 ( 

time [sec] 

(a) Position error 

40 60 
time [sec] 

80 

(b) Azimuth error 
Sensor Bias Estimation Error 

100 120 

4L---�----�--��--�----�--� o 20 40 60 80 100 120 

50 

. :�K--.�-� o 20 40 60 80 100 120 
time [sec] 

(c) Sensor bias estimation error 
Figure 7. Results of the situation IV 

Table 1. Results of the simulation 
(Mean value of the estimation error) 

� 
Position Azimuth AccBias Gyro Bias 

[m] [deg] [m/s2] [deg/sec] 

(1) 1.4858 -0.3429 0.0293 0.0742 
I (2) 2.3736 -0.2792 0.0444 0.0417 

(3) 2.1889 -0.0290 0.0521 0.0328 
(I) 32.1380 -9.6005 0.0655 0.5828 

II (2) 30.5878 -8.8680 0.0554 0.5376 
(3) 2.3861 -0.0038 0.0452 0.0444 
(I) 6.3339 -0.7554 0.0410 0.0623 

III (2) 7.0553 -0.4358 0.0550 0.0351 
(3) 3.5784 -0.0046 0.0413 0.0406 
(I) 94.4472 00 0.1204 -99.9573 

IV (2) 5.7376 -3.4950 0.0702 -1.3536 
(3) 5.7813 -3.0563 0.0189 -1.6293 

(1) EKF (2) SPKF (3) RHSPKF filter 

As can be seen in Figure 7, the EKF errors diverge with 
time. However, the SPKF and the RHSPKF filter have good 
performance. This phenomenon is owing to the Jacobian 
matrix error. The SPKF and the RHSPKF filter need not to 
calculate the Jacobian matrix. Therefore, the proposed filter is 
robust to the initial large estimation error, also. 

V. CONCLUSION 

The RHSPKF filter for tightly coupled DRlGPS hybrid 
navigation system is developed and simulated in the various 
situations. The proposed filter has a robust estimation 
property by the FIR strategy. This filter also has robustness to 
the initial large estimation error due to the merit of the SPKF. 
And the flaw of the RHKF filter, heavy computational burden, 
is overcome in this filter. It can be expected that the RHSPKF 
filter can be utilized in DRlGPS hybrid navigation system 
with robust properties. 
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