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A B S T R A C T

The southeastern U.S. produces the most industrial roundwood in the U.S. each year, largely from commercial
pine plantations. The extent of plantation forests and management dynamics can be difficult to ascertain from
periodic forest inventories, yet short-rotation tree plantations also present challenges for remote sensing. Here,
we integrated spectral, temporal, and structural information from airborne and satellite platforms to distinguish
pine plantations from natural forests and evaluate the contribution from planted forests to regional forest cover
in the southeastern U.S. Within flight lines from NASA Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT)
Airborne Imager, lidar metrics of forest structure had the highest overall accuracy for pine plantations among
single-source classifications (90%), but the combination of spectral and temporal metrics from Landsat gener-
ated comparable accuracy (91%). Combined structural, temporal, and spectral information from G-LiHT and
Landsat had the highest accuracy for plantations (92%) and natural forests (88%). At a regional scale, classi-
fications using Landsat spectral and temporal metrics had between 74 and 82% mean class accuracy for plan-
tations. Regionally, plantations accounted for 28% of forest cover in the southeastern U.S., a result similar to
plot-based estimates, albeit with greater spatial detail. Regional maps of plantation forests differed from existing
map products, including the National Land Cover Database. Combining plantation extent in 2011 with Landsat-
based forest change data identified strong regional gradients in plantation dynamics since 1985, with distinct
spatial patterns of rotation age (east-west) and plantation expansion (interior). Our analysis demonstrates the
potential to improve the characterization of dynamic land cover classes, including economically important
timber plantations, by integrating diverse remote sensing datasets. Critically, multi-source remote sensing
provides an approach to leverage periodic forest inventory data for annual monitoring of managed forest
landscapes.

1. Introduction

Growing global demand for wood products, combined with efforts
to conserve natural forests, have spurred a 65% increase in the global
extent of planted forests since 1990 (FAO, 2015a). Approximately half
of all industrial roundwood production in 2012 came from forests es-
tablished artificially, through either planting or seeding (Payn et al.,
2015). The United States is the largest producer of industrial round-
wood, accounting for 17% of global production, with an estimated 41%
of U.S. production from planted forests that account for only 9% of U.S.
forest area (FAO, 2015a; Oswalt et al., 2014; Payn et al., 2015; Wear
et al., 2016). The majority of U.S. planted forest area (~61%) and wood
volume (~57%) is concentrated in industrial pine forest “plantations”

in the southeastern U.S. (FAO, 2015b; Oswalt et al., 2014). These in-
tensively managed planted forests are predominantly monocultures of
three native pine species (loblolly pine (P. taeda), shortleaf pine (P.
echinata) and slash pine (P. ellotii); Oswalt et al., 2014).

Despite their importance for global wood production, pine planta-
tions in the southeastern U.S. are not well characterized in terms of
their total area, spatial arrangement, or management dynamics (Zhang
and Polyakov, 2010). Recent studies suggest that pine plantations are
expanding in the region and replacing both natural forests and non-
forest habitats (Hanberry, 2013; Wear and Greis, 2013), with natural
forest conversion to plantations estimated at 0.45% per year between
1989 and 1999 (Wear and Greis, 2002). Current estimates of plantation
area are largely derived from U.S. Forest Inventory and Analysis (FIA)
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plots (Oswalt et al., 2014; Pan et al., 2011; Wear and Greis, 2013;
Zhang and Polyakov, 2010). With uniform sampling methods since the
year 2000, FIA data provide robust estimates of planted forests at large
scales (county or state administrative units; O'Connell et al., 2015;
Schroeder et al., 2014; Wear and Greis, 2002; Zhang and Polyakov,
2010). However, FIA plots sample a small proportion of the landscape
(0.6 ha per 2428 ha; O'Connell et al., 2015), reducing their utility for
characterizing fine scale (1–100 ha) land use patterns or lower fre-
quency events such as forest disturbances, natural regeneration on
abandoned lands, and plantation expansion (Boisvenue et al., 2016;
Czaplewski, 2010; Schleeweis et al., 2013; Schroeder et al., 2014;
Williams et al., 2014).

By contrast, satellite remote sensing data provide complete spatial
coverage at spatial resolutions consistent with plantation forest man-
agement, yet dynamic plantation landscapes remain a challenge for
traditional land cover classification or forest change products. National
and regional land cover maps do not isolate tree plantations as a map
class (Hansen et al., 2013; Masek et al., 2013; Ruefenacht et al., 2008;
Xian et al., 2009; Yeo and Huang, 2013, but see Drummond et al.,
2015). Previous remote sensing studies in the southeastern U.S. have
characterized forest change without attribution to planted or natural
forest types (Hansen et al., 2013; Jin et al., 2013; Masek et al., 2013). In
addition to timber harvests, management of pine plantations through
thinning, burning, or herbicidal treatments may be detected as forest
change at Landsat resolution (Cohen et al., 2016; Harris et al., 2016;
Masek et al., 2013; Schleeweis et al., 2013). A number of studies have
used optical or lidar remote sensing to characterize pine plantations
across small areas (Banskota et al., 2011; Blinn et al., 2012; Petersen
et al., 2016; Popescu et al., 2004; Shamsoddini et al., 2013; Van Aardt
and Wynne, 2007). However, relying on a single type of remotely-
sensed data can limit the ability to isolate tree plantations, especially
for native tree species that are spectrally and structurally similar to
natural vegetation (Drummond et al., 2015; Fagan et al., 2015;
Puyravaud et al., 2010). The potential to overcome these limitations by
integrating different data types has not been extensively explored for
mapping tree plantations. Classifications of “tree crops” (tree planta-
tions for crop production) such as rubber and oil palm have benefitted
from optical-SAR fusion (Chen et al., 2016; Dong et al., 2013; Gutiérrez-
Vélez and DeFries, 2013; Joshi et al., 2016; Qin et al., 2016; Torbick
et al., 2016), but timber plantations often have greater structural re-
semblance to natural forests than tree crop plantations (Brockerhoff
et al., 2008).

Tree plantations have several distinct spectral, structural, and
temporal characteristics that may increase the likelihood of detection
using a diversity of remote sensing data types. First, most plantations
established for wood production are single-species monocultures, which
leads to spectral homogeneity at spatial scales consistent with moderate
resolution (30m) multispectral and hyperspectral imagery (Danson and
Curran, 1993; van Aardt and Norris-Rogers, 2008). Second, even-aged
monoculture stands tend to have homogenous canopy structure, which
could be detected using very high resolution imagery (Shamsoddini
et al., 2013), lidar, or radar (e.g., Dong et al., 2013; Donoghue et al.,
2007). Finally, the temporal signal of regular stand harvesting and re-
planting may be discernable using long time series of passive or active
remote sensing data (le Maire et al., 2014). Algorithms to detect annual
or subannual forest disturbance and regrowth in moderate-resolution
optical data (e.g., Cohen et al., 2017) provide estimates of forest cover
change since 1984 using Landsat data. In the southeastern U.S., timber
harvests are common in both natural forests and pine plantations, but
intensive management in pine plantations typically results in shorter
harvest rotations than natural pine and mixed deciduous forests (Smith
et al., 2006; Wear and Greis, 2002; Zhou et al., 2013).

In this study, we quantified the extent of plantations in the south-
eastern U.S. using structural, spectral, and temporal data from airborne
and satellite remote sensing platforms. Specifically, we evaluated the
ability of three main types of remote sensing data, alone and in

combination, to distinguish pine plantations from natural forests of
mixed pine and deciduous species. Along flight lines of NASA Goddard's
Lidar, Hyperspectral, and Thermal (G-LiHT) Airborne Imager, we first
assessed (1) structural data from small footprint lidar, (2) spectral data
from Landsat NDVI, lidar apparent reflectance, and national land-cover
classifications derived from Landsat imagery, and (3) temporal data on
forest disturbance derived from Landsat time series. We hypothesized
that structural or temporal data alone would each be more effective
than spectral data for distinguishing pine plantations, given variability
within and among plantations based on the diversity of age classes,
management impacts (e.g., thinning), and species composition (Wear
and Greis, 2002). Second, after evaluating methods for mapping plan-
tation forests using only spectral and temporal metrics from Landsat,
we estimated the regional extent of plantation forests and harvest dy-
namics. Regional maps of plantation forests are critical for quantifying
spatiotemporal differences in forest management and the impacts of
plantation forests on habitat connectivity, landscape fragmentation,
and the contribution from forest management to U.S. forest carbon
sources and sinks (Coulston et al., 2015; Wear and Greis, 2013; Zhou
et al., 2013).

2. Methods

2.1. Study area and system

The study region encompassed two large ecoregions (Olson et al.,
2001), the southeastern mixed forests and the middle Atlantic coastal
forests (Fig. 1), and covered most of the coastal plains and piedmont of
the southeastern U.S. where industrial pine forests are common. Pine
plantation monocultures in the study region originate either through
direct planting, direct seeding, or natural regeneration followed by
herbicidal removal of competing deciduous species. Thinning of timber
stands is common, either through selective felling or direct removal of
young trees in rows. Upland natural habitat in this landscape is domi-
nated by mixed conifer-deciduous forests, with occasional stands of
longleaf pine on sandy soil, and riparian habitats are dominated by
deciduous bottomland forests.

2.2. Data sources

2.2.1. Structural data
Lidar data were collected in June–August of 2011 by NASA's G-LiHT

Airborne Imager (Nelson et al., 2017). The G-LiHT lidar uses a 1550 nm
wavelength, with 5–10 pulses/m2 and a maximum of 4 returns per pulse
(Cook et al., 2013). Lidar data were restricted to the central 30° field of
view. A total of twelve flight lines fall within the study region (Fig. 1),
totaling ~81,000 ha (2700 km×0.3 km; Nelson et al., 2017). G-LiHT
data are available online at https://gliht.gsfc.nasa.gov/.

G-LiHT lidar data were used to characterize vegetation structure in
tree plantations, natural forests, and open habitats along the flight lines.
We calculated standard lidar metrics at 15-m resolution to be consistent
with both the 7.3 m radius of FIA sub-plots and 30m Landsat data.
Three novel metrics that characterized spatial variability in the vertical
profile of lidar returns are described in more detail in the
Supplementary materials. A total of 24 metrics (Table S1) were used to
capture structural attributes of plantation forests and other vegetation
after eliminating highly correlated metrics (r > 0.9).

2.2.2. Spectral data
We used three main sources of spectral data to discriminate plan-

tation forests, natural forests, and non-forest land cover classes. First, to
characterize the phenology of evergreen and deciduous vegetation, we
calculated seasonal NDVI metrics from Landsat 5 composites in Google
Earth Engine. Cloud- and snow-free spectral composites for 2011 were
created using median pixel values of all available imagery for summer
(June–August) and winter (November–February). Seasonal metrics

M.E. Fagan et al. Remote Sensing of Environment 216 (2018) 415–426

416

https://gliht.gsfc.nasa.gov/


included winter NDVI, summer NDVI, the difference between winter
and summer NDVI, and standard deviation in NDVI metrics (3× 3
window; Table S1). Second, the National Land Cover Database (NLCD,
Homer et al., 2015) land cover map for 2011 was reclassified into eight
main land cover types, including five forest types (Table S2). Third,
lidar apparent reflectance (1550 nm) was calculated using instrument-
calibrated, range corrected reflectance values for single return laser
shots (Cook et al., 2013; Pfennigbauer and Ullrich, 2010). We calcu-
lated summary metrics of lidar apparent reflectance at 15m resolution
(see Table S1). Lidar reflectance data were available only along the G-
LiHT flight lines, while the Landsat-derived spectral data extended
across the entire study area.

2.2.3. Temporal data
We used two sources of Landsat-derived data on forest disturbance,

the Hansen et al. (2013) global forest change dataset (HGFC;
2000–2011) and the Vegetation Change Tracker dataset (VCT;
1985–2011) developed by the North American Forest Dynamics (NAFD)
study (Huang et al., 2010; Masek et al., 2013; Zhao et al., 2018). From
the HGFC dataset, we used annual products of forest gain and year of
loss. We calculated several additional temporal metrics from the annual
VCT dataset describing forest dynamics, including the age of forest
regrowth (reforestation), the total number of disturbances, the occur-
rence of regrowth after recent disturbance, the disturbance of existing
regrowth, and the time elapsed as nonforest between disturbance and
regrowth (Table S1: see Supplementary materials). The VCT algorithm
identifies regrowth when it reaches a stage where the regrowing trees
are spectrally similar to a forest; in our processing of the VCT data, a
regrowth event refers to this point in time, when a pixel transitions
from nonforest to forest cover. In this paper, we refer frequently to the
HGFC forest gain product (“HGFC gain”) and the VCT reforestation age

(“VCT forest age”).

2.3. Land use classification

2.3.1. Development of training and testing data along lidar flight lines
A sample of 21 lidar flight line segments was randomly selected

from the 420–7 km segments of G-LiHT data in the study region for
training and validation of land use classification products. Land cover
patches ≥2 ha within each flight line segment were assigned to one of
three land cover types using high-resolution image time series available
in Google Earth: pine plantations, natural forests, and open (non-forest)
cover types (see Supplementary materials for details). Where image
time series were unavailable, data were cross-checked in the corre-
sponding GeoEye or DigitalGlobe data (Neigh et al., 2013).

2.3.2. Classification along lidar flight lines
Within G-LiHT lidar flight lines, structural, spectral, and temporal

metrics were used alone and in combination to discriminate tree
plantations from other land uses (Fig. 2). Landsat-based spectral and
temporal data were resampled (nearest neighbor) to the 15m grid re-
solution used for lidar structural metrics. Training and testing data for
all classification models were created by dividing the reference data in
each flight line segment randomly into two groups (North and South,
separated by a 150m buffer in the middle), with one half randomly
assigned to training data and the other to testing data. Testing data
locations were then randomly subsampled (100 pixels per flight seg-
ment; 4.7% of the total number of pixels within testing polygons) to
decrease the influence of spatial autocorrelation within testing poly-
gons.

For each combination of input data, we developed a decision tree
model (CART: Breiman et al., 1984) to classify the data and analyze

Fig. 1. A map of the southeastern U.S., delimiting the study region (white lines) and the G-LiHT lidar flight lines (dark blue lines). The map shown is the 2011
National Land Cover Database (NLCD; see the full legend at https://www.mrlc.gov/nlcd11_leg.php). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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specific variable contributions. Decision tree models were created with
default parameters and a uniform pruning criterion (alpha= 0.002).
All classification analyses were conducted in R 3.02 (R Core Team,
2013) using the rpart package (Therneau et al., 2015).

2.3.3. Regional land use classification and accuracy assessment
A second land use classification for the broader southeastern region

was developed using only the Landsat-derived spectral and temporal
metrics (Fig. 2). Training data for the regional classification models was
derived from the flight line land use polygons described above. For the
regional classification, three combinations of input data were used to
develop classification models: spectral, temporal, and combined tem-
poral and spectral data. The predicted regional, three-class map was

sieved; clusters with< 25 contiguous pixels were reclassified using the
majority land cover of neighboring pixels (GDAL sieve algorithm, queen
connectivity). This 2.25 ha minimum mapping unit improved overall
map accuracy by decreasing speckle within plantations and natural
forests (Tables S3, S4).

Regional map accuracy was assessed using two independent sets
derived from FIA field plots (n=2938) and Google Earth imagery
(n= 300), with a post-stratified estimator (Olofsson et al., 2013). Pine
plantations were identified in the database of FIA field plots based on
the dominant species, age < 50 years, and stand origin status as
planting or artificial seeding. The FIA stand origin definition thus ex-
cludes industrial forests created through herbicide and thinning of
naturally regenerating pine stands. We assessed model predictions (in

Fig. 2. A diagram of the workflow in this study. Part A shows the analysis focused on the G-LiHT flight lines, and Part B shows the regional analysis with Landsat-
derived data.
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0.81 ha plots) against all FIA field plots (0.6 ha) from 2010 to 2012 (see
Supplementary for details). To correct for potential inconsistences in
the definition of planted forest between FIA data and our training data,
an additional 300 testing data locations (0.81 ha) were randomly lo-
cated across the region. At each location, the full available time series of
high-resolution imagery in Google Earth was used to identify conifer
monocultures under intensive plantation management.

We also assessed the accuracy of existing land cover maps using a
similar methodology. We evaluated four products, including NLCD land
cover, VCT forest age, and HGFC forest gain, along with a composite
map (“NLCD-VCT-HGFC”) to see if it was possible to map plantations by
simply selecting key forest types that were recently disturbed. The
composite map predicted plantations where NLCD evergreen and shrub
forests classes were classified as regrowth in either the VCT or HGFC
maps. The performance of these land cover maps was assessed using the
flightline reference data (training and testing) and independent FIA and
Google Earth validation data.

2.4. Forest dynamics analysis

Spatial patterns in tree plantation expansion, disturbance frequency,
and rotation rates were analyzed by combining the regional classifica-
tion of pine plantations in 2011 with VCT forest change data from 1985
to 2011. Plantation expansion was identified based on the establish-
ment of pine plantations following ≥8 years of consecutive nonforest
classification, to avoid counting reforestation after harvesting as ex-
pansion (see Supplementary materials). Disturbance frequency for areas
classified as pine plantations in 2011 was estimated by tallying ob-
served disturbance events in the VCT time series. Rotation age was
calculated for pine plantation areas in 2011 with a history of one re-
growth event followed by a disturbance event (pixels without both
regrowth and disturbance events were not included in rotation age
calculations). To analyze regional differences in disturbance rates, ex-
pansion area, and rotation age, pixels were aggregated to 5 km grid
cells, and second-order trend surfaces were fit to test for general spatial
trends. At the local scale, clustering in the expansion of pine plantations
was analyzed based on edge-to-edge distance between expansion areas
and existing plantation forests.

To further characterize rates of plantation regrowth across the re-
gion, the consistency between estimated plantation age (VCT) and
lidar-derived tree height (mean CHM height) was assessed along G-
LiHT flight lines. The height-filtering methodology described by Neigh
et al. (2016) was used to correct for scale-mismatches between lidar-
measured individual tree heights and VCT-derived clearing age (i.e.,
seed trees left behind after clearing events).

3. Results

3.1. Classification with structural, spectral, and temporal data

Overall accuracy for the flight-line classifications was> 85% for
every model (Fig. 3; Table S3). The all-data model had the highest
overall accuracy (92.1%), but results from the two-source models were
comparable (91.1–92.0%). Forest classes were readily distinguishable
from nonforest using only one data source—structural, spectral, or
temporal data (Table S3).

Mean class accuracy for tree plantations varied more among models
(Fig. 3). In the flight line classification, lidar-derived structural metrics
best discriminated tree plantations from other forest types, with 79.6%
mean class accuracy (Fig. 3). Classification accuracy of pine plantations
improved with the addition of the other data types (83.1% mean class
accuracy for all-data model; Fig. 3). However, the pairwise combination
of spectral and temporal data had the highest mean class accuracy
(85.8%) for distinguishing tree plantations within G-LiHT flight lines.

The best overall decision tree model for flight line classification
highlighted the relative contributions from structural, temporal, and

spectral data. Structural data on canopy height variability were selected
in the top two decision tree splits, first dividing the data into forest/
nonforest and then separating short forests from medium and tall for-
ests (Fig. S1). Further divisions were made using all three data sources,
with important contributions from spectral data (NLCD, lidar re-
flectance). In general, temporal data were less important than spectral
and structural data, but three temporal metrics were among the top ten
most important variables in the all-data model (presence of regrowth,
regrowth age, and time between disturbance and regrowth). Data types
differed in their ability to distinguish land uses, and the top 15 variables
in the all-data model were not equivalent to the top 5 variables for the
three single data-source models (Table S4). Four of the five most im-
portant variables were structural, providing further support that
structural data were best suited to distinguish among all three land use
classes. Structural variables that clearly distinguished between natural
forest and plantations include several metrics of canopy variability
(e.g., standard deviation of return height), fractional cover, and the
percentage of returns that reached the ground (10th percentile; see Fig.
S1). Mean return height, a common metric for modeling forest biomass,
was not used for classification due to high correlation (r= 0.9) with
other lidar metrics.

Plantation tree height within the lidar coverage increased as a
function of Landsat-derived stand age (Fig. 4; fpower law fit,
p < 0.0001, r2= 0.72). The plantation site index (i.e., expected stand
height at a given age) estimated along the lidar flight lines had a mean
prediction of 17.1 m at 25 years, with a 95% confidence interval be-
tween 10 and 29.5 m (Fig. 4). Across a number of timber production
field plots, plantation site index ranged from 12 to 30m at 25 years
(median of 18m; Sabatia and Burkhart, 2014). In our study, growth
rate filtering decreased the variance of the estimated growth rates, but
not the overall shape of the best fit trendline. The high variability in the
height-age relationship is to be expected from both methodological is-
sues (e.g., time lags for the detection of regrowth in imagery, missed
disturbance events, seed tree silviculture), and differences in site con-
ditions and management that influence productivity across the region.

3.2. Regional classification with spectral and temporal data

Overall, regional classification models created using only Landsat-
derived spectral and temporal metrics had lower accuracy than the
classification models created with all three data sources within G-LiHT
flight lines (Fig. 3). The combined spectral-temporal data model had the
highest overall classification accuracy among the regional models
(88.3% overall accuracy, LSPEC-TEMP; Fig. 3). The spectral-temporal
model classified tree plantations with 77.8% mean class accuracy
(Fig. 3, Table S3), and post-classification filtering of clusters< 2.25 ha
further improved mean tree plantation class accuracy to 82.2% (Table
S5). Both spectral and temporal metrics contributed to the best com-
bined model. NLCD forest type was the first split, separating the dataset
into forest and nonforest. Subsequent splits in the decision tree ac-
counted for the presence of regrowth, before forest age, NLCD type, and
NDVI thresholds were selected to separate regrowth into plantation and
natural forests, and to a lesser extent, separate natural forest from older
(non-regrowth) plantations (Fig. S2).

An independent, post-stratified accuracy assessment using Google
Earth imagery of the filtered best regional land-use map was compar-
able to accuracy using the flightline testing data, with 92.6% overall
accuracy and 81.8% mean class accuracy for plantations (Tables 1B,
S6B). Independent post-stratified FIA estimates of mean class accuracies
for the filtered map were lower (n= 5404; Tables 1A, S6A; 85.2% for
natural forests and 73.6% for tree plantations). When restricted to FIA
plots in conifer-dominated forests< 50 years in age, the ability of the
classifier to distinguish natural forests from tree plantations decreased
dramatically along with the sample size of natural FIA plots (n= 364,
Table S6C; 39.6% mean class accuracy for natural forests and 78.9% for
tree plantations).
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3.3. Tree plantations in existing maps

The accuracy of plantation forest estimates from existing forest
maps differed by 11–21% (mean class accuracy) from results using the
multi-source classification approach in this study (Table 2). Based on
reference data, the NLCD map had high errors of omission for pine
plantations (Table 2); only 53% of the reference data for tree planta-
tions was classified as evergreen forest in NLCD (Fig. S3), with 20%
considered woody wetlands, 22% shrublands, and smaller proportions
classified as mixed (2%) or deciduous forest (4%). By definition, re-
growing pine would be categorized as a shrub class in NLCD (<5m in
height), but the NLCD shrub class included both plantations and natural

forests (Fig. S3) across a wide range of mean canopy heights
(mean= 7.3m, SD=4.5m; Fig. S4). This limited its utility in identi-
fying young pine plantations, even in regions such as the southeast U.S.
with few natural shrubland cover types. If the NLCD evergreen and
shrub land cover classes were used together to estimate plantation ex-
tent in the flight-line reference data, they would omit 25% of the
plantations and assign 26% of natural forests to the plantation category.

Similarly, the presence of pine plantations was poorly predicted by

Fig. 3. Classification accuracy among models derived from
the different data sources, and all possible data source com-
binations. Model accuracy was compared using the flight-line
reference data (21 flight line segments) for both the flight-line
classification models (all three data sources) and the regional
classification models (only Landsat-derived data inputs).

Fig. 4. Estimated forest age predicted tree plantation height well, with a
median and range of variation that closely matched field plot estimates. Shown
here is a regression of LiDAR tree height (mean of canopy height model in a
15m cell) of tree plantations against estimated forest age derived from the
Vegetation Change Tracker (VCT) dataset. Tree height data were filtered to
biologically realistic growth rates to remove outliers resulting from post-harvest
seed-tree retention, following Neigh et al. (2016). The black dots show the
median height values, the black lines the first and third quartiles, the gray line
the power law regression line prediction, and the dotted gray lines show the
95% confidence intervals on the regression.

Table 1
Regional map accuracy was high using two independent assessments, as shown
in the confusion matrices for the regional classification (created using only
Landsat-derived spectral and temporal data and filtered to a 2.5 ha minimum
mapping unit). Post-stratified accuracy estimates come from a) independent FIA
plot data and b) independent reference data derived from Google Earth ima-
gery. The post-stratified error matrix is expressed in terms of estimated area
proportions (see Table S6 for the count error matrix).

A) Regional map accuracy FIA reference data

Predicted Natural 

forest

Nonforest Tree 

plantations

Total User 

Acc.

Natural forest 0.37 0.03 0.04 0.45 82.8

Open
0.01 0.37 0.01 0.39 95.0

Tree plantations
0.04 0.00 0.12 0.16 75.8

Total
0.42 0.41 0.17 1.00 Overall

Prod. Acc. 87.6 91.7 71.3 86.5

B) Regional map accuracy Google Earth reference data

Predicted Natural 

forest

Nonforest Tree 

plantations

Total User 

Acc.

Natural forest 0.42 0.00 0.03 0.45 93.2

Open
0.01 0.37 0.01 0.39 94.9

Tree plantations
0.02 0.003 0.14 0.16 85.7

Total
0.45 0.37 0.18 1.0 Overall

Prod. Acc. 92.9 99.2 78.0 92.6

M.E. Fagan et al. Remote Sensing of Environment 216 (2018) 415–426

420



map products tracking forest disturbance and regrowth (Table 2). VCT
forest age was a poor predictor of plantations, with 42.1% commission
error compared to flight-line reference data, as many forests< 25 years
in age were natural forests, not plantations (Fig. S5). The HGFC was
similarly inaccurate, with plantation omission error of 54.8%. Estimates
of regrowth differed between VCT and HGFC (Fig. S5), underscoring the
complexity of forest dynamics in the southeastern U.S. Finally, the
simple composite NLCD-VCT-HGFC map fared the best among the ex-
isting forest maps, with producer's accuracies for forest types only ~5%
lower than the multi-source map (Table 2).

3.4. Pine plantation dynamics

Using the best performing spectral-temporal model, industrial pine
plantations cover an estimated 17.6 ± 3% of the southeastern ecor-
egion in 2011, or about 28.1% of the total forest area (Fig. 5). In-
dividual patches of pine plantations ranged in size from 2.25 to
49,757 ha, with a mean patch size of 22 ± 161 ha. Mapped industrial
forests had a mean age of 11.2 ± 9.8 years, with no apparent spatial
trend in age, while most natural forests were> 25 years in age (pre-
1984) (Fig. S6). Mapped industrial pine plantations comprised a larger
fraction of the landscape in the southern half of the study region, from
the coast to the interior (Figs. 5, 6a; trend surface model p < 0.00001,
r2= 0.20).

Estimated spatial dynamics of plantation expansion, disturbance,
and rotation age were not uniform across the region, and were char-
acterized by rapid turnover and regrowth. From 1992 to 2011, pine
plantations expanded into nonforest at a mean rate of 1.08% a year.
Expansion was more common in the interior and southern portions of
the study region (Fig. 6b; trend surface model p < 0.00001,
r2= 0.12), with most new plantations adjacent to existing industrial
forests (mean expansion distance=145m, expected random dis-
tance=1086m, p < 0.0001). By contrast, the area of stand-clearing
disturbances of pine plantations largely mirrored the occurrence of pine
plantations (Fig. 6c; trend surface model p < 0.00001, r2= 0.06).
Disturbances were identified in 78% mapped pine plantations since
1985, with an estimated mean disturbance rate of 3.6% per year of
plantations mapped in 2011. The area of stands disturbed at least twice
during the Landsat record was also concentrated in the coastal south-
east of the study region, with small hotspots of frequent disturbance
(Fig. S7; trend surface model p < 0.00001, r2= 0.08). The rotation
age of pine plantations had a distinct spatial pattern, decreasing to the
southwest of the study area (Fig. 6d; trend surface model p < 0.00001,

r2= 0.09). The mean rotation age across the study area was
14.0 ± 3.1 years.

4. Discussion

4.1. Mapping pine plantations with structural, spectral, and temporal data

Industrial pine plantations can be accurately separated from natural
forests using either structural information from airborne lidar or a
combination of spectral and temporal Landsat metrics. Only structural
metrics derived from small footprint lidar achieved> 90% classifica-
tion accuracy in distinguishing forest types without other data sources.
The combination of spectral and temporal Landsat metrics was more
accurate than either source independently, and rivaled the accuracy of
lidar-derived structural data in discriminating pine plantations.
Importantly, combining information from more than one source of re-
mote sensing data to map plantations led to improvements in classifi-
cation accuracy over existing map products. Our findings demonstrate
the potential to improve national and global map products of dynamic
land cover types in human-dominated landscapes using multi-source
remote sensing data. Multi-source regional maps revealed novel, spa-
tially disaggregated patterns in plantation forest cover and dynamics,
consistent with plot sampling across the southeastern U.S. but at finer
temporal and spatial scales than can be achieved using inventory data.

Lidar provides novel information on forest structure that comple-
ments existing approaches to map forest cover and dynamics with
passive optical remote sensing data. Both large and small footprint lidar
have been successfully used to detect forest structure and disturbance
across multiple ecosystems (e.g., Bright et al., 2012; Fagan and DeFries,
2009; Frolking et al., 2009; Goetz et al., 2009). Where forest types may
be more readily distinguishable based on structure rather than species,
as in the case of native tree plantations, using lidar to map forest
composition is a natural extension of previous work (Asner et al., 2008;
Donoghue et al., 2007; Gopalakrishnan et al., 2015; Zhang et al., 2011).
We found that simple lidar metrics played an important role in im-
proving forest classification, including the standard deviation in return
height, the lowest decile of LiDAR canopy height (p10), and fractional
tree cover. The global extent of lidar data is growing, and lidar can be
integrated with other structural information derived from stereoscopic
high-resolution imagery or InSAR data (Neigh et al., 2016; Qi and
Dubayah, 2016). In this study, more detailed metrics of forest structure
(CHM and vertical profile variability) further improved discrimination
of forest types. The upcoming launch of the Global Ecosystem Dynamics
Investigation (GEDI) lidar to the international space station will provide
a large sample of temperate and tropical forests (Qi and Dubayah,
2016). As we demonstrate, integrating lidar data with spectral and
temporal data from Landsat, Sentinel-2, and other moderate resolution
imagers offers great promise for large-scale assessments of managed
forest landscapes.

Harvest or conifer dominance by themselves are not unique pre-
dictors of plantation forests, as forest management occurs in both pine
plantations and natural mixed conifer/deciduous forests (Schroeder
et al., 2014). Maps of forest regrowth (VCT, HGFC) did not distinguish
plantation harvesting and regrowth from that of natural forests. Simi-
larly, the generic NLCD classes assigned pine plantations (a land use) to
multiple land cover classes (e.g., evergreen, shrub, and mixed forest
cover in NLCD). Existing land cover products are not well suited to
capture the diversity of vegetation physiognomies that comprise the
cycle of plantation growth and harvest. These individual products were
not specifically designed to monitor plantations, but their mapping of
forest disturbance and type was quite informative when taken together.
In the final regional decision tree model, integrating NLCD land cover
data with data on the occurrence of regrowth set up broad classes that
could be separated into natural and industrial forests by applying
spectral thresholds to different forest ages. Conifer-dominated forests of
different ages can have distinct but overlapping spectral signatures

Table 2
Existing forest map products have relatively poor accuracy predicting tree
plantations and natural forests, based on flight-line reference data. Maps are
compared using mean class accuracy, user's accuracy (100-error of commis-
sion), and producer's accuracy (100-error of omission). Forest map predictions
(NLCD, VCT Forest Age, HGFC Forest Gain, and simple composite of the three,
VCT-HGFC-NLCD) are compared to the best regional model (LSPEC-TEMP) and
the filtered regional model (2.5 ha minimum mapping unit). The
Supplementary materials details how tree plantation presence was predicted
from prior forest maps.

Prediction
inputs

Producer's accuracy User's accuracy Mean class
accuracy

NF TP NF TP NF TP

LSPEC-TEMP
(filt)

88.4 82.2 90.9 90.1 89.7 86.2

LSPEC-TEMP 84.3 76.5 87.3 79.1 85.8 77.8
VCT-HGFC-

NLCD
79.6 71.9 88.1 78.8 83.8 75.2

HGFC forest
gain

91.0 45.2 73.9 84.4 82.5 64.8

VCT forest age 65.3 86.6 91.5 57.9 78.4 72.3
NLCD 71.3 84.2 92.7 64.8 82.0 74.5
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(Song et al., 2007), and industrial plantations had larger patch sizes
than natural conifer patches in this study (and potentially distinct
shapes; see Boschetti and Huo, 2016). The spectral-temporal classifi-
cation results in this study indicate that integrating conifer cover de-
rived from Landsat-derived seasonal phenology metrics with annual
disturbance estimates could improve the discrimination of pine plan-
tations from natural pine forests with less frequent disturbances. This
computationally intensive approach has been pioneered by several
groups (Brooks et al., 2014; Zhu et al., 2012).

This study capitalized on a relatively unique spectral signature that
separated the target plantation species from other natural forest species;
evergreen phenology of conifers. Where such spectral differences exist
between native species, spectral data can be effectively and simply used
to discriminate potential monocultures. Where spectral differences be-
tween plantation and natural forests are minimal, a combination of
structural and temporal data could still be effective in identifying dis-
turbance and regrowth cycles typical of short-rotation plantation
management or even-aged canopy structure in plantations. Although
the availability of lidar data provides limited spatial and temporal
coverage, other remotely-sensed measures of forest structure from SAR
(Reiche et al., 2016) and high-resolution stereo imagery (Neigh et al.,
2016) cover large areas and time series of these measurements span a
decade or more. As in many remote sensing studies, the complementary
nature of independent remote sensing data types can provide multiple
constraints on complex aspects of the Earth system. In this study,
overall accuracy results clearly demonstrated the value of adding data
types. However, not all combinations led to improved classifier per-
formance with the CART decision tree algorithm, possibly due to cor-
related predictor combinations (Hayes et al., 2015).

4.2. Challenges with using multiple remote sensing products to map
plantations

Despite the potential benefits for mapping native tree plantations,
synchronizing multiple remote sensing products across space and time
remains a challenge. Differences in the locations of disturbance and
regrowth between the VCT and HGFC datasets were common, as were
differences in forest cover predicted by the airborne lidar, NLCD, VCT,
and HGFC datasets. Planted forests are a dynamic forest type with
frequent disturbances, so differences in mere months between image
acquisition dates may account for some of the discrepancies between
the VCT and HGFC map products. The algorithms underlying current
forest change products also differ in their sensitivity to forest man-
agement (Cohen et al., 2017).

Three additional temporal challenges also impact the maps of pine
plantations developed in this study. First, the relatively short Landsat
historical record (1985–2011) limited our ability to detect harvesting
and regrowth patterns on plantations with longer management cycles.
Although pine plantations> 26 years were spectrally distinct from
natural forests, best practices for timber plantations in the southeastern
U.S. recommend a rotation age of 25–35 years (Sohngren and Brown,
2008). Therefore, it is possible that the total area of older pine plan-
tations in the southeastern U.S. was underestimated. Second, spectral
and structural separability of plantation and natural forests differed as a
function of stand age. The fate of young regrowth is particularly un-
certain in the years following harvest (Fig. S6). Alternative manage-
ment strategies for thinning or establishing more productive pine stands
may also introduce confusion for older age classes. Third, a single-date
map of tree plantations cannot detect historical conversion of natural
forests to pine plantations or vice versa (“cryptic deforestation” sensu

Fig. 5. The dominance of tree plantations as a land use in the study region is shown by the final classified map, created using the best regional model (LSPEC-TEMP,
filtered). The classified map is overlaid on top of the NLCD map, with two insets that compare the 2011 map classification against recent high resolution imagery
(Bing; winter 2015). Pine plantations appear as large dark green patches in the high-resolution imagery. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Puyravaud et al., 2010). The practice of replacing natural with planted
forests is widespread in the region and quite important for regional
biodiversity and carbon storage (Hanberry, 2013; Wear and Greis,
2013).

Harmonizing forest cover definitions between field and remote
sensing studies may also improve the utility of satellite products for
forest managers. For example, different definitions of plantations may
partially explain the inconsistencies between FIA validation data and
satellite-derived estimates of plantation forest cover in this study. FIA
land use codes consider forest embedded in a nonforest matrix as
nonforest (O'Connell et al., 2015), and the majority of nonforest com-
mission error in this analysis resulted from forest elements embedded in
other land uses (unpublished data; see also Johnson et al., 2015, 2014).
Industrial pine plantations in this study were defined as managed, even-
aged pine monocultures, which includes both artificially planted or
seeded forests and semi-natural planted forests (SNPF) managed to in-
crease the proportion of desirable species. Unlike the FAO, the FIA
definition of planted forest excludes SNPF (Jürgensen et al., 2014;
O'Connell et al., 2015). However even-aged pine monocultures re-
sulting from intensively managed succession are common in the region
(Wear and Greis, 2002), with seed tree silviculture followed by hard-
wood removal and thinning of pines. These management practices were
directly observable in the high-resolution imagery time series used to
develop the reference and validation data, yet SNPF are largely indis-
tinguishable from planted forests after stand closure and thinning. Ex-
panding the description of FIA stand origin to include a broad range of

forest management practices would better align FIA inventories with
remotely-sensed estimates of plantation forests.

4.3. Distribution and dynamics of plantation forests

Regional maps of plantation forest cover were consistent with ex-
isting estimates of pine plantation extent, growth rates, and harvest
dynamics, albeit with finer spatial detail. Pine plantations mapped in
this study made up a slightly higher percentage (28.1%) of regional
forest cover than previous, plot-based estimates for the larger southern
or southeastern region as a whole (18.1–25%; Oswalt et al., 2014; Wear
and Greis, 2013, 2002; Zhang and Polyakov, 2010). The spatial dis-
tribution of mapped plantations were also in accordance with previous
county-level maps of tree plantation cover (Wear and Greis, 2013;
Zhang and Polyakov, 2010). However, the finer spatial scale of Landsat
data identified hotspots not indicated in previous work, most notably
the occurrence of linear bands of high plantation cover across the
coastal Carolinas, interior Carolinas to Georgia, and central Alabama.
Plantations were increasingly dominant in flatter southern and coastal
regions, exceeding 70% of total cover in selected locations. Height and
age relationships for plantations based on VCT forest age data and lidar
in this study were quite similar to yield estimates from managed lo-
blolly pine across the region (Devan and Burkhart, 1982; Diéguez-
Aranda et al., 2006). Despite potential underestimation of stand age, as
VCT considers both clear-cut harvest and thinning events as stand-
clearing disturbances (Masek et al., 2013), VCT estimates of stand age

Fig. 6. Pine plantations across the study region in 2011 showed distinct patterns for A) estimated area, B) area of plantations that expanded into nonforest
(1992–2011), C) area of plantations in 2011 disturbed at least once between 1985 and 2011, and D) plantation rotation age. Area was summarized as frequency of
occurrence in 5 km grid cells, while rotation age was summarized as the median value in 5 km grid cells.
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could be used in conjunction with lidar or stereo imagery (Neigh et al.,
2016) to evaluate regional carbon dynamics in managed pine planta-
tions.

Maps of plantation forests and harvest dynamics offer specific in-
sights into regional forest management. Although estimated rates of
stand disturbance (3.6%/year) and plantation expansion into nonforest
(1.08%/year) were consistent with FIA plot data (3.1% and 1.10% per
year respectively; Wear and Greis, 2002), our analysis revealed distinct
spatial patterns for plantation expansion and overall plantation dis-
turbance. The ability to disaggregate regional forest trends using spa-
tially explicit estimates of plantation dynamics may uncover different
underlying biophysical and socioeconomic drivers of plantation ex-
pansion and harvest (Wear and Greis, 2013, 2002; Zhang and Polyakov,
2010). For example, the estimated average rotation age of 14 years was
concordant with regional plot data, which shows a peak in harvesting
from 10 to 15 years (Coulston et al., 2015). This relatively short rota-
tion may result from the mix of average harvest ages for timber
(25–35 years; Sohngren and Brown, 2008) and pulp/biomass (10+
years; Wear and Greis, 2013). Rising prices for biofuels and wood
pellets are projected to incentivize early harvesting (Abt et al., 2014;
Abt and Abt, 2013; Coulston et al., 2015), and predicted spatial trends
in demand for pulp and bioenergy production roughly correspond with
the observed east-to-west decrease in rotation age in this study (Abt
et al., 2014). In future work, it may be possible to combine high-re-
solution maps of plantation area and forest disturbances to track the
impacts of changes in market demand and management on forest age
and harvesting.

4.4. Broader implications

Mapping and monitoring of industrial pine monocultures is possible
based on multi-source remote sensing of their distinct phenology, dis-
turbance history, age-specific reflectance, and patch size. Mapping
plantations with satellite imagery offers an opportunity to leverage
periodic plot measurements of planted forests to generate spatially-
explicit estimates of planted area (e.g., Schroeder et al., 2014). The
growing extent of industrial pine plantations in the southeastern U.S.
contributes to changes in future regional carbon sequestration, wood
production, and habitat availability (Coulston et al., 2015; Masek and
Collatz, 2006; Wear and Greis, 2013; Zhou et al., 2013). Given their
regional significance, adding a tree plantation class to regional and
national land cover maps (e.g., NLCD) would better capture the distinct
influence of industrial forests in studies of land cover dynamics, bio-
diversity, and biogeochemical cycling. The integration of structural,
spectral, and temporal data may also yield benefits for mapping other
cover types in managed landscapes. Growing data availability from
moderate resolution passive optical imagery and active radar and lidar
sensors will support the routine use of data fusion approaches for re-
gional and global-scale mapping efforts.
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