

Hardware Tro jans – Prevention, Detection,

Countermeasures

(A Literature Review)

ABSTRACT

A Hardware Trojan is a malicious, undesired, intentional modification of an

electronic circuit or design, resulting in the incorrect behaviour of an electronic

device when in operation – a back-door that can be inserted into hardware.

A Hardware Trojan may be able to defeat any and all security mechanisms

(software or hardware-based) and subvert or augment the normal operation of

an infected device. This may result in modifications to the functionality or

specification of the hardware, the leaking of sensitive information, or a Denial

of Service (DoS) attack.

Understanding Hardware Trojans is vital when developing next generation de-

fensive mechanisms for the development and deployment of electronics in the

presence of the Hardware Trojan threat. Research over the past five years has

primarily focussed on detecting the presence of Hardware Trojans in infected

devices. This report reviews the state-of-the-art in Hardware Trojans, from the

threats they pose through to modern prevention, detection and countermeasure

techniques.

1 Introduction

Electronic systems have proliferated over the past few decades to the point that most

aspects of daily life are aided or affected by the automation, control, monitoring, or com-

putational power provided by Integrated Circuits (ICs). The ability to trust these ICs to

perform their specified operation (and only their specified operation) has always been a

security concern and has recently become a more active topic of research (Chakraborty,

Paul & Bhunia 2008, Tehranipoor & Koushanfar 2010, Rajendran et al. 2010). ICs are the

building blocks for all modern electronic systems; they form the information backbone of

many critical sectors including the financial, military, industrial, and transportation sec-

tors. Without trust in these ICs, the systems they support cannot necessarily be trusted

to perform as specified and may even be susceptible to attack by a malicious adversary.

A new disruptive threat has surfaced over the past five years1, a hardware-based se-

curity threat known as the Hardware Trojan. A Hardware Trojan is a malicious, unde-

sired, intentional modification of an electronic circuit or design, resulting in the incorrect

behaviour of an electronic device when in operation. Akin to a software Trojan Horse

program (Thompson 1984), a Hardware Trojan is a back-door that can be inserted into

hardware. The added advantages of a Hardware Trojan include residing at the lowest

level of information processing, and being persistent – the threat is present as long as the

infected hardware is in use. A Hardware Trojan may be able to defeat any and all security

mechanisms (software or hardware-based) and subvert or augment the normal operation

of an infected IC. The modification can affect any type of IC, including processors, mem-

ory, Digital Signal Processors (DSPs), Application Specific Integrated Circuits (ASICs),

and even configuration bit-streams for reconfigurable logic. The undesired behaviour can

include modifications to the functionality or specification of the hardware, the leaking

of sensitive information, or a Denial of Service (DoS) attack. Effects may range from a

subtle degradation of service through to a complete and permanent shut-down of a sys-

tem. Hardware Trojans can affect a system by themselves alone, or provide a foothold

for software based attacks (King et al. 2008), where colluding software is aware of the

inserted Trojan. Hardware Trojans most often remain dormant and are only activated

when triggered by, for example, the passing of time, some specific activity, or external

events. The spectrum of Hardware Trojans – their capabilities, size, trigger mechanisms,

and payloads – is enormous, and the state-space of IC development both physically and

procedurally provides ample opportunity for concealment.

The ease with which Hardware Trojans can make their way into modern ICs and

electronic designs is concerning. Modifications to hardware can occur at any stage during

the design and manufacturing process, including the specification, design, verification and

manufacturing stages. Hardware Trojans may even be retro-fitted to existing ICs post-

manufacture, as proposed by Abramovici & Bradley (2009). Maintaining tight control

over the IC design life-cycle is costly; the current trend is towards separation of design

from manufacture, relying on a handful of large CMOS fabrication facilities world-wide,

mostly located within Asia. This trend towards out-sourcing is not limited to manufacture;

designers trust third-party Electronic Design Automation (EDA) tools, utilise third-party

Intellectual Property (IP) cores – many of which are provided only as a binary net-list –

1 Existence of such threats has been mooted since the early 1990s (Schwartau 1994).

UNCLASSIFIED 1

DSTO–TN–1012 UNCLASSIFIED

and outsource to contract-design houses. With so many entities and individuals involved,

there is ample opportunity to insert a Trojan into the final hardware. A Hardware Trojan

might be as simple as a paragraph change in the specification, an extra source-code line

in the Hardware Description Language (HDL), a modification of the silicon die at the

fabrication plant, or just a modulation of the CMOS geometries used.

Ensuring an IC is authentic and does not contain any Trojans is a very difficult prob-

lem (Tehranipoor & Koushanfar 2010). Hardware Trojans are poorly observable during

traditional IC design-verification and testing phases; their payload and trigger states are

difficult to find, becoming exponential in the number of circuit nodes (Chakraborty, Paul

& Bhunia 2008). Most ASIC designs are too large for either exhaustive testing or formal

verification, so it is likely that many Trojans will never be detected. The life-cycle stage at

which a Trojan is inserted and its logical structure also affects the effectiveness of existing

detection methods.

For a country like Australia, keeping the entire design and manufacturing process in-

house is infeasible for all but the smallest ASIC designs. Our reliance on the globalisation

of the electronics industry is critical for developing both our commercial and military

capabilities. The Hardware Trojan threat must therefore be taken seriously and our ap-

proach must ensure that we are able to either trust the operation of ICs used or, better

still, be able to safely utilise Commercial-Off-The-Shelf (COTS) electronic devices and ICs

regardless of their trust.

Current research is investigating all aspects of Hardware Trojans. The Embedded Sys-

tems Challenge (Polytechnic Institute of New York University 2010) actively promotes the

development of Hardware Trojans and detection mechanisms through an annual adversar-

ial challenge against a specific embedded system. DARPA has initiated its Trust-in-ICs

program (Microsystems Technology Office, DARPA 2007), an R&D program developing

tools and techniques to ensure ICs are authentic and free of Trojans post-manufacture.

The Australian Department of Defence (Anderson, North & Yiu 2008) raised an aware-

ness of the threat and proposed broad classes of Hardware Trojans and countermeasures.

Most other public research is conducted by university groups, focusing on techniques to

prevent the insertion of Hardware Trojans into a design or detect the presence of Trojans

post-manufacture.

This report introduces the threats posed by Hardware Trojans and the variety of

manners in which they might be activated. It also presents the state-of-the-art in preven-

tion, detection, and countermeasure techniques currently being researched. Unfortunately,

current methods are not suitable for providing adequate protection – at best

statistical guarantees can be provided on preventing or detecting a Hardware Trojan. In

the near future, if not now, it will become necessary for hardware systems to be able to

operate securely in the presence of Hardware Trojans. Recently, researchers have looked

at op- erating securely despite the potential presence of Hardware Trojans. Some of

this work is sponsored by DARPA, AFRL and Rockwell Automation. Future research

will need to focus on combining the best prevention, detection, and countermeasure

techniques to provide the requisite security through a defence-in-depth approach. We

conclude that it is likely, however, that a small subset of hardware will always need to be

trusted to provide the root of trust for any Hardware Trojan resistant system developed.

2 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

2 Threats

Due to the large number of insertion vectors and potential low-level actions a Hardware

Trojan could perform, the danger posed by this threat is grave. Hardware Trojans are

persistent; once a system has been infected the threat remains whenever the system is

powered on. Hardware Trojans have the potential ability to undermine confidence in all

modern electronic systems, by infecting and changing the behaviour of any integrated cir-

cuit. The effects of a Hardware Trojan can range from simple targeted attacks through

to sophisticated attacks that provide footholds for higher level software attacks. Example

targeted attacks could include performing a bit-flip that changes the integrity of stored

data, weakening the functionality of cryptographic cores, or leaking confidential infor-

mation. Systems may also be infected by multiple Hardware Trojans that can together

subvert a supposedly secure system.

Although the threat is ultimately bounded by the actions a Hardware Trojan can take,

considering the insertion vectors and activation mechanisms at the same time gives a

greater insight into the power and stealth of a Hardware Trojan. Hardware Trojan threats,

insertion vectors, and activation mechanisms will continue to develop concurrently and will

need to be countered by the best prevention, detection, and countermeasure techniques to

maintain the security of deployed ICs.

When examining the threat posed by a Hardware Trojan, one must first consider its

inherent attributes in order to determine its effect on an information system. There have

been several Hardware Trojan taxonomies proposed to describe such attributes, with the

aim to enable a systematic study of Hardware Trojan characteristics, to aid the develop-

ment of detection and mitigation techniques for given classes, and to facilitate benchmark-

ing for detection and mitigation strategies.

Figure 1: Hardware Trojan Taxonomy: Chakraborty, Narasimhan & Bhunia (2010)

Chakraborty, Narasimhan & Bhunia (2010) proposed a classification (Fig. 1), ex-

tended from Wolff, Papachristou, Bhunia & Chakraborty (2008) that is based upon trigger

and payload mechanisms. Wang, Tehranipoor & Plusquellic (2008) proposed a taxon-

omy (Fig. 2) based upon physical characteristics, triggering mechanism and functionality.

Rajendran et al. (2010) reorganise and extend this taxonomy further (Fig. 3), by consid-

eration of design phase, abstraction level and location.

UNCLASSIFIED 3

DSTO–TN–1012 UNCLASSIFIED

Figure 2: Hardware Trojan Taxonomy: Wang, Tehranipoor & Plusquellic (2008)

Figure 3: Hardware Trojan Taxonomy: Rajendran et al. (2010)

The majority of research in the Hardware Trojan area glosses over how a Hardware

Trojan can influence its environment, with two primary exceptions. The Embedded Sys-

tems Challenge, run by the Polytechnic Institute of New York University (2010) gives the

students the “source code” to an IC implemented in reconfigurable logic to attempt to

infect with a Hardware Trojan that has to leak specific data. Anderson, North & Yiu

(2008) speculate about some of the payloads that are possible when the Trojan is located

in different ICs; for example, in a CPU, a hard disk, attached to network hardware or on

a memory bus. In this section, the functionality or actions that a Hardware Trojan may

enact – thus representing the true threat to an information system – is presented.

2.1 Insertion Phase and Location

There are numerous stages associated with the design and manufacture of an IC. These

are typically regarded as specification, design, fabrication, testing and assembly (Karri

et al. 2010) and directly influence how an adversary might introduce a Hardware Tro-

jan. During the specification stage, system characteristics such as usage model and

expected functionality are defined. The specification is then realised into specific tar-

4 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

get technologies with consideration of functional and physical constraints during the

design phase. In the fabrication phase, mask sets are created and silicon wafers pro-

duced and probed to verify both functional and physical characteristics. Wafers are then

finally cut into die, packaged and tested in readiness for deployment and monitoring.

Chakraborty, Narasimhan & Bhunia (2010) assert that the only stages not vulnerable to

the insertion of Hardware Trojans by an adversary are during specification, package test-

ing, and deployment and monitoring (Fig. 4). All other stages, in practice, are vulnerable

to security attacks due to the reliance on third party vendors for design tools, intellectual

property design, manufacture and test facilities. For these same reasons, however, it can

be argued that all stages in reality could be influenced by an untrusted party, for example

by Trojan retrofitting during supply chain or testing. Thus the complete design cycle

needs to be examined when considering effective prevention and detection strategies.

A Hardware Trojan may be added to an information system in a variety of locations.

The location is not necessarily limited to a single component but may be distributed

across multiple components such as the processor, memory, IO, power supply or clock grid

(Karri et al. 2010). A particular location influences the complexity of design, difficulty of

insertion, as well as the actions or system effect of a Trojan. The emphasis for this section,

is to examine such possible actions and effects and to present specific real world examples

highlighting the threat of the Hardware Trojan.

Figure 4: Vulnerable phases of IC development cycle: Chakraborty, Narasimhan & Bhu-

nia (2010)

2.2 Hardware Tro jan Actions

Hardware Trojans are a relatively new system security threat that extend the information

system attack surface traditionally focused on software vulnerabilities. Given software

security layers are written on the premise of trust in the underlying hardware, software

security mechanisms may be bypassed by malicious hardware, thus presenting a complex

challenge to ensure security in systems. Hardware Trojans can be implemented as hard-

ware modifications to ASICs, COTS components, microprocessors, DSPs, or as firmware

modifications to Field Programmable Gate Array (FPGA) bit-streams (Wang, Tehra-

nipoor & Plusquellic 2008). Given the low insertion level of a Hardware Trojan, a broad

range of actions are possible. These actions can be categorised into classes of modify func-

tionality, modify specification, leak information and denial of service (Wang, Tehranipoor

& Plusquellic (2008)). A particular Hardware Trojan implementation could perform any

or all of these actions.

UNCLASSIFIED 5

DSTO–TN–1012 UNCLASSIFIED

2.2.1 Modify Functionality

A Hardware Trojan that modifies a device’s functionality, either through additional logic

or by removing or bypassing existing logic, directly compromises the integrity of an in-

formation system. Examples include modifying stored data, or affecting a computation

operation or communications channel. Functionality modifications are limitless; the ac-

tions resulting from this class of Trojan are only constrained by the resources, imagination,

and skill of an adversary. Agrawal et al. (2007) present a scenario whereby a simple yet

destructive Trojan could insert a fault in the Chinese Remainder Theorem (CRT) inver-

sion step of an RSA signature computation leading to the compromise of the RSA key.

Karri et al. (2010) refer to a modification to cause an error detection module to accept

inputs that should be rejected.

It is certainly conceivable that errors in ICs, such as the Intel FDIV bug2 , could be

reproduced by a Hardware Trojan with selective triggering to avoid detection. Karri et al.

(2010) indicate how a particular Trojan could be designed to alter the order in which CPU

instructions are executed, leak data through side-channel effects, and change the contents

of programmable read only memory, thus introducing integrity issues. Modifying function-

ality could also be used to support more generic attacks. King et al. (2008) noted that “a

single hard coded attack in hardware greatly understates the power of malicious circuitry”

and developed an example of a modified CPU to support a raft of software attacks. These

included a memory access and firmware modification that facilitated privilege escalation,

login back-door and password stealing attacks.

2.2.2 Modify Specification

The modify specification class describes Hardware Trojans that attack by changing the

target IC’s parametric properties or an IC’s non-functional specification. Parametric prop-

erties that could be affected include clock or timing parameters and power usage. This

is achieved by directly influencing the intrinsic IC properties including that of wire and

transistor geometries. In contrast to the modify functionality class, this category of Trojan

as described by Wang, Tehranipoor & Plusquellic (2008), modifies only existing wires and

transistors thus their disruptive actions would normally be restricted to those trending

toward system failure. It could be hypothesised, however, that additive Trojan hardware

could be coupled in such a manner as to similarly influence intrinsic IC properties yet

provide extended capabilities for triggering and action characteristics.

This class of Hardware Trojan could perform a variety of actions, including limiting the

processing capability of a system by modifying system clock, or by replacing computational

or IO units that are functionally equivalent but have reduced throughput performance.

Other specification changes that might affect performance include gate placement and

routing, functionally equivalent circuits, or extraneous passive components. These perfor-

mance impacts could be introduced in a load-based degradation approach whereby system

performance is degraded as a result of the introduction of timing errors during high load

activity. Chakraborty, Narasimhan & Bhunia (2010) provide circuit examples whereby

2 The FDIV bug involved certain floating point divisions returning incorrect results beyond four signif-

icant digits

6 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

a bridging fault is introduced by insertion of a resistor and by increasing net delay by

increasing a capacitive load property.

2.2.3 Leak Information

This class of Trojan encompasses hardware modifications that aim to transmit sensitive

information from an information system to an adversary without the knowledge or coop-

eration of the affected information system or system user. Transmission mechanisms could

use existing internal or external system paths, or alternatively, exfiltrate via side-channels.

For example, Rajendran et al. (2010) note that information could be leaked by means such

as radio frequency, optical, thermal, power and timing side-channels and also via interfaces

such as RS232 and JTAG. Transmissions may also be hidden within the noise margins of

either functional or physical features of the IC. For example, Jin & Makris (2009) leak

encryption keys via wireless transmission amplitude or frequency margins that occur due

to process variations, and Lin, Burleson & Paar (2009) leak data below the noise floor of

the CMOS process using a spread spectrum side-channel technique.

2.2.4 Denial of Service

Low-level modifications to the hardware provides a broad range of possibilities for imple-

menting DoS actions that range from partial service degradation to complete and perma-

nent disabling of a device by the introduction of a “kill switch” (Adee 2008). Rajendran

et al. (2010) refer to Trojans that affect service by exhausting scarce resources such as

bandwidth, computation, and battery power and note that physical effects that disable

or alter the configuration of a device could be temporary or permanent. A Hardware

Trojan could be designed to consume excess battery energy by preventing circuits from

going to sleep (Wolff et al. 2008) or by insertion of excess buffers in IC interconnections

(Karri et al. 2010), thus limiting the service life of a device between charges. A Trojan

could also be designed to exert control of a memory Write-Enable signal, over-writing an

existing value with a random value, and causing a service side effect on a system or simply

disable partial or all power supply to a device (Karri et al. 2010). Other forms of service

degradation could be induced by early failure of a device. Chakraborty, Narasimhan &

Bhunia (2010) provide an example circuit that generates excessive activity accelerating the

aging process of an IC and thus shortening a device’s life span without otherwise affecting

functionality. Similarly, Rajendran et al. (2010) infer that chemical compositions may be

altered to increase the electron-migration in critical circuitry like power supply and clock

trees which could accelerate failures.

2.3 Hardware Tro jan Implementations

Hardware Trojans have only recently received research attention, thus to date very few

actual published implementations exist. Those referred to in current publications typically

are simplistic, “single hard-coded” solutions that have been used solely for the purpose of

experimenting with detection and countermeasures verification. Very little in-depth con-

sideration has been given to the system-wide effects of a single or coordinated Hardware

UNCLASSIFIED 7

DSTO–TN–1012 UNCLASSIFIED

Trojan attack, or the practicalities associated with implementing (or detecting) command

and control for such attacks. The more interesting published Hardware Trojan implemen-

tations are further examined here.

2.3.1 Illinois Malicious Processor

King et al. (2008) implement two general purpose mechanisms for designing malicious

CPUs. The authors show how Hardware Trojan circuits can be embedded into a CPU

to realise attacks such as stealing passwords, enabling privilege escalation, and allowing

automatic logins into compromised systems. The work represents a general platform to

support a wide variety of attacks with the possibility of dynamic upgrades. Two malicious

modifications on a CPU are performed: a memory access mechanism that allows an at-

tacker to access protected memory regions, and a shadow mode that allows an attacker to

execute hidden “firmware”. One of the attacks presented that exercises the properties of

these malicious modifications, a login attack that allowed an attacker complete and high

level access to the machine, was implemented in only 1341 gates.

This work represents the first published Hardware Trojan implementation that can

be used as a generic programmable platform for attacks. The authors introduced modi-

fications at the VHDL level and provided both simulation and synthesised results using

a 40MHz Leon 3 SPARC target platform. Some analysis of detection by consideration

of analogue and digital perturbations of introduced hardware was given: the software

component of the memory access mechanism is visible to the Operating System; and tim-

ing effects introduced due to the use of debugging style trap mechanisms are detectable.

Additionally, a brief section on general defence against malicious processors was provided.

2.3.2 Cyber Security Awareness Week

During the 2008 Cyber Security Awareness Week (CSAW) Embedded System Challenge

held at the Polytechnic Institute of NYU a hypothetical scenario was posed whereby teams

were tasked to compromise an FPGA-based cryptographic device, “Alpha”, by insertion of

a set of Trojans but still pass validation testing. The teams were provided HDL source code

and given a month to present designs. The top teams, Baumgarten, Steffen, Clausman &

Zambreno (2011) and Jin, Kupp & Makris (2009), provided a mechanism to leak secret

keys from an IO channel and a DoS attack respectively. Upon examination of all entries,

90% of Trojans were inserted in the design phase, 50% were activated by user input and

75% were located in IO units (Rajendran et al. 2010).

2.3.3 Malicious Off-chip Leakage Enabled by Side-channels

Lin, Burleson & Paar (2009) explore the design space of Hardware Trojans and propose

a design that is less than 50 gates in size to generate power side-channels, suitable for

covertly leaking secret information. The technique, Malicious Off-chip Leakage Enabled

by Side-channels (MOLES), is implemented in an AES cryptographic circuit targeting

a 45nm CMOS technology. Spread spectrum techniques were employed in the MOLES

design capable of leaking multi-bit information below the noise floor of the power level

8 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

of the host IC to avoid detection. The authors claim the technique would be resistant

to most detection strategies such as optical inspections, functional tests and physical

fingerprinting analysis. Although the leakage circuit has a low gate count, computational

effort for recovering the leaked data given the low signal to noise ratio and process variation

aspects is noted to be a critical issue.

The authors provide a generalised design methodology for implementing the described

MOLES circuits, backed by a mathematical description of detection theory for differential

power analysis required for multi-bit key extraction. Results are based upon simulations

of short key length (8-bit) extractions only, falling well short of realistic key lengths. The

authors, however, note practical issues for the approach relating to large key sizes (256-bit)

due to the number of power traces required to generate an acceptable level of SNR for

reliable recovery.

2.3.4 Cryptographic Hardware Tro jans

Agrawal et al. (2007) experimented with two simplistic Hardware Trojans embedded in an

RSA encryption circuit to analyse side-channel effects. The circuits were comprised of a

simple counter that disabled the IC after a set threshold and a comparator that monitors

a data bus or register against a fixed value and alters computation upon a match. The

authors theorise how such circuits could be difficult to detect, and be used to take actions

such as disabling the circuit, leaking secrets or creating glitches to compromise the integrity

and security of the larger system to which the IC belongs.

Jin & Makris (2009) provide an example of an information leakage Hardware Trojan

that targets a DES encryption core. The design extracts the 56-bit encryption key one bit

at a time, and leaks it by hiding one bit in each 64-bit block of transmitted data. After

the transmission of only 56 ciphertext blocks, the entire key will have been broadcast,

thus compromising the encryption. The extracted key is physically hidden in the wireless

transmission amplitude or frequency margins allowed because of process variations, thus

ensuring adherence to designed functional specifications.

2.3.5 Exploiting Semiconductor Properties

Shiyanovskii et al. (2009) describe a new type of Hardware Trojan, a “reliability based Tro-

jan”, that can be induced by intentional modification of fabrication processes to accelerate

wearing in CMOS devices. These process modifications can keep the initial performance

parameters of the circuit within the accepted process variation, thus typical production

tests would not detect the modified properties. Such Trojans can exploit the following

wear processes: Hot Carrier Injection(HCI), Oxide Breakdown (OB), Negative Bias Tem-

perature Instability (NBTI) and Electron-Migration(EM) and could be used to construct

a DoS class Hardware Trojan, including a gradual degradation of performance, or early

wear-out of certain parts of the IC.

UNCLASSIFIED 9

DSTO–TN–1012 UNCLASSIFIED

3 Trigger Mechanisms

There are many ways Hardware Trojans can be inserted into a design, and many different

direct and leveraged threats that they pose, as covered in Section 2. Once inserted into a

system most Hardware Trojans will lie dormant until activated (or triggered) to perform

malicious activity. Activation can be any mechanism, overt or covert, random, directed, or

predetermined that elicits a change in state or behaviour of a Trojan. This activation phase

is important as it provides a vector for detecting and countering Hardware Trojans. During

different verification phases of IC design, an attempt can be made to trigger Hardware

Trojans. Typically this is through functional validation testing, or state-space exploration

involving the inputs, outputs, and internal logic of the design. Triggering a Trojan during

testing may help to identify the presence of the Trojan in the design. Much research

has been done in detecting Hardware Trojans based on their trigger function; this is

covered in more detail in Section 5. If a Hardware Trojan lies undetected in a system,

then countermeasures can be deployed to protect against activation; typically this might

include utilising data guards or hardening the architecture cognisant of specific triggers.

Section 6 covers methods for countering Hardware Trojans by understanding potential

trigger mechanisms.

Understanding the manner in which Hardware Trojans can be triggered is important

if we want to fully understand the threat that they pose, and a brief taxonomy of trigger

mechanisms, based on that proposed by Rajendran et al. (2010) and Wang, Tehranipoor

& Plusquellic (2008) is presented here.

3.1 Internally Triggered

Internally triggered Hardware Trojans rely on some specific internal state of the target

device being reached. The most common methods are combinational and sequential acti-

vation.

3.1.1 Combinational Activation

A Hardware Trojan is activated when certain values are detected simultaneously at specific

internal circuit nodes within a device – a trigger state. This type of trigger mechanism can

be implemented solely by combinational logic. Waksman & Sethumadhavan (2011), who

call this a “single-shot cheat code”, give the example of a specific address on a bus, e.g.,

0xdecafbad, triggering a Hardware Trojan. In reality the combinational activation may

require a much larger set of nodes to be simultaneously activated to a particular state,

e.g., a particular state of a set of internal registers, combined with a specific word on the

data bus, combined with a specific word on the address bus. Tehranipoor & Koushanfar

(2010) also describe particular input patterns being used to activate Hardware Trojans,

e.g., combining data, control, address, and self-test inputs.

Jin, Kupp & Makris (2009) used a number of combinational triggers in their design

for the 2008 Embedded Systems Challenge, including detecting the overflow of an input

buffer and also triggering whenever an encryption key was changed.

10 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

3.1.2 Sequential Activation

Sequentially triggered Hardware Trojans rely on a sequence of events occurring for acti-

vation. Compared with combinational activation, a sequentially triggered Trojan has a

massively increased state-space to use – this comes from the fact that the trigger mecha-

nisms can now be implemented using state machines. Chakraborty, Narasimhan & Bhunia

(2010) point out that this sequence is usually of rare logic values at internal nodes and,

because of the logic depth provided by the state machines, these sequences prove a lot

more difficult to detect during testing and verification of an IC.

The simplest sequential trigger is a synchronous hardware counter within the design

that activates after a certain number of clock cycles; Waksman & Sethumadhavan (2011)

refer to these as ticking time-bombs. Chakraborty, Narasimhan & Bhunia (2010) build on

this, discussing asynchronous sequence counters that are incremented by specific events,

e.g., a rising transition at the output of an AND gate. Chakraborty, Narasimhan &

Bhunia go on to suggest combining the synchronous and asynchronous triggers to form

hybrid activation mechanisms.

Waksman & Sethumadhavan (2011) refer to these as “sequence cheat codes” and give

the example of the bytes 0xd, 0xe, 0xc, 0xa, 0xf, 0xb, 0xa, 0xd, arriving over eight different

clock cycles triggering a Hardware Trojan. The bytes need not arrive over consecutive

cycles and a patient Trojan could monitor inputs and internal state for much more complex

sequences of events.

The complexity of a sequential based trigger is in the hands of a Trojan designer. The

side-effects of the complexity include the power drawn by the Trojan and the number of

logic gates required to implement it. Internal sequential triggers have also been proposed

that take advantage of physical or analogue effects within an IC. For example, Rajendran

et al. (2010) indicate that monitoring a chip’s temperature or power consumption could

be included within trigger hardware. Further, Chakraborty, Narasimhan & Bhunia (2010)

give the specific example of extra inserted capacitance that is charged through a resistor.

The capacitor is charged depending on activity of the surrounding logic, which in turn

could be induced through arranging specific IC activities. The Trojan is triggered based

on the charged capacitor reaching a certain threshold. The notion of triggers being either

analogue or digital has been discussed further by Chakraborty, Narasimhan & Bhunia

(2010).

Jin, Kupp & Makris (2009) used a number of individual sequential triggers to activate

different Trojans, including detecting the keyboard input string “New Haven”, detecting a

key-code for the F12 key, detecting the pattern “moscow” within input data, detecting the

key-code for the CAPS lock key, and counting a specific number of characters transmitted

out an RS232 port.

Chen et al. (2008) investigated a “content and timing” based Hardware Trojan trigger,

where the Trojan can only be activated if the correct content is observed at the correct

time. Interestingly for a small design, they show that the testing time required to reliably

activate their trigger is in the order 3 × 1035 years – they use the combination of detecting

certain key-codes for keyboard presses over specific time intervals. Chen et al. further

develop a thermal trigger, where an input pattern that generates a lot of activity is used

to drive an inverter-based ring oscillator to generate heat. A similar ring oscillator is then

UNCLASSIFIED 11

DSTO–TN–1012 UNCLASSIFIED

used to detect delays caused by this heat and subsequently activate a Hardware Trojan.

Similarly Electro-Magnetic Interference (EMI), logic activity, and logic circuit power draw

could be used as internal triggers.

3.2 Externally Triggered

External triggers rely on some interaction with the outside world, distinct from the system

that the target device is integrated within. The power of external triggers, according to

Wang, Tehranipoor & Plusquellic (2008) is that the activation can come at any time from

a source that is external to, and independent of, the target device. Wang, Tehranipoor

& Plusquellic go on to give specific examples of embedding a receiver or antenna within

a target device. Tehranipoor & Koushanfar (2010) specifically identify on-chip sensors

that could monitor the external environment, including sensing temperature, voltages,

EMI, humidity, and altitude. These triggers are known as side-channel triggers, akin to

techniques for obtaining information from a target electronics device, without interfering

with the device (e.g., Fan et al. (2010)). Side-channels also provide a method for detecting

the presence of Hardware Trojans; these methods are further developed in Section 5.

Other external triggers include physical interaction with the target device. Rajendran

et al. (2010) include external input provided by a user, e.g., buttons or switches that could

be attached to a target device. A trigger may also come from another component that

is externally connected, e.g., a connected memory device. Another specific example is

detailed by Jin, Kupp & Makris (2009), who connect to an extra (unused) external port

within the target device to communicate with an embedded Hardware Trojan.

3.3 Always On

Some Hardware Trojans are always active and are not turned on or off by a specific trigger.

Other Hardware Trojans may only make a subtle change to the specification, functionality,

or timing of a system and hence not require a trigger. For example, leaking data through

a circuit-activity-based side-channel could always be occurring inside a particular IC.

Other Always-On Hardware Trojans may have a more subtle trigger mechanism. Wang,

Tehranipoor & Plusquellic (2008) discuss modifying an IC’s geometry so that certain

nodes or paths have a higher susceptibility to failure – here the trigger mechanism is a

gradual occurrence as circuit performance degrades. Shiyanovskii et al. (2009) delve much

deeper into these mechanisms, where devices on a wafer are modified to wear out after a

certain time period, typically within a few months to years of operation – these are the

so-called “reliability based” Hardware Trojans. Shiyanovskii et al. give specific examples

of intentional modifications of the fabrication process that can affect a number of wear-out

parameters, as detailed in Section 2. They show the fabrication factors that affect these

mechanisms and also note that post-fabrication testing does not test for these time-based

early wear-out effects. The triggering of these Always-On Trojans is probabilistic.

These time-based early wear-out trigger mechanisms are very difficult to detect not only

because of the time-based nature of their activity, but because they can be implemented in

the noise margin of the CMOS semiconductor manufacturing process. Wang, Tehranipoor

12 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

& Plusquellic (2008) note that there are no activation side-effects for Always-On Trojans,

e.g., no power or temperature effects, as the Trojan is always on.

3.4 Trigger Design Issues

A Hardware Trojan designer can easily create a trigger mechanism that will prove difficult

to detect. This is due to the massive state-space that exists for an adversary to design a

trigger within. This state-space includes all the internal nodes of a logic design, the input

and output of the device, process variations, modified CMOS geometries, and analogue

electronic effects. Hybrid triggers that combine some or all of these trigger mechanisms

make the job of finding Hardware Trojans even more difficult.

A common assumption among researchers is that Hardware Trojan payloads will

most likely be hidden behind complex triggers designed to prevent accidental activation,

or activation during acceptance testing (Tehranipoor & Koushanfar 2010, Chakraborty,

Narasimhan & Bhunia 2010). This is so that the Trojan payload is not able to be detected

prior to deployment. Interestingly, however, having such a complex trigger may in itself

prove to assist in the detection process as discussed in Section 5.

UNCLASSIFIED 13

DSTO–TN–1012 UNCLASSIFIED

4 Prevention

Given the considerable threats posed by the presence of Hardware Trojans, one way to

ensure they cannot affect a design is by preventing them from being inserted at any stage

of the IC development cycle.

The best way to prevent the insertion of a Hardware Trojan into an IC is to tightly

control the process from end to end. A small, trusted design team, using self built tools,

will be able to specify an IC design that is free of Trojans. Taking this design to a trusted

foundry (run by a small team of trusted individuals) will produce faithful, trusted instances

of the specified design. Having only trusted people assemble the final product, and having

the product used only by trusted users will allow for a reasonable level of faith that the

original design is being used with no malicious modifications.

This chain of trust is impractical for most products, even high-grade military products.

The cost, in terms of both money and time, of only using ICs fully developed in-house

is prohibitive. The commercial sector’s use of packaged IP blocks (analogous to software

libraries) has seen the rapid development of newer, more capable electronic products (e.g.

smartphones). If the Defence sector were to develop all IP in-house it would see their

capabilities fall far behind those offered by the commercial sector. There may be some

ICs, such as high-grade crypto chips, where the fully trusted life-cycle scenario is feasible,

especially if the IC in question has a low number of logic gates. In this instance, however,

it is still possible for the ICs to be stolen, reverse-engineered, and re-birthed as modified

ICs if the supply chain is untrusted.

Prevention is the first chance to counter the threat of Hardware Trojans. It is a vital

link in a defence-in-depth strategy. There are all the usual policies, procedures, and best

practices that can be used to maintain control over the IC development process: utilising

trusted individuals, design tools, and trusted fabrication facilities as already described.

Some specific research describing novel methods for preventing Hardware Trojans at dif-

ferent stages of the IC development life-cycle has been done. This research has looked at

prevention during the design, fabrication, and post-fabrication stages of an IC.

4.1 Prevention at Design

During the design stage, Hardware Trojans may be added by an adversarial member of the

design team, by untrusted EDA tools or by including untrusted third-party Intellectual

Property (IP) modules in the design.

The ability to create trusted circuits using untrusted EDA tools is addressed by

Potkonjak (2010). The proposed solution fully accounts for the use of all hardware re-

sources at all times, i.e., on all clock cycles. Not only must all resources be used, but they

must also be required to be used for correct functionality of the IC. This allows no room

within the hardware for additional Trojan hardware.

This technique capitalises on the observation that while it may be difficult to completely

specify a design so that all resources are fully utilised, it is relatively simple to check

whether or not a given design satisfies this requirement. As such, the author proposes

using untrusted, commercial CAD tools to create the design, and a small, self-built (hence

14 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

trusted) tool to check that a given design does indeed satisfy the requirements. The

primary problem with this approach is that it is entirely possible (see (Baumgarten et al.

2011) for an example) to build a Hardware Trojan almost entirely from logic that already

exists in a design. While it may be relatively simple to develop a tool to check that a

given design does use all available hardware resources, ensuring that their are no malicious

effects of that design would seem to be a more difficult proposition.

A similar technique is detailed by Chakraborty & Bhunia (2009) but includes the use

of obfuscation techniques. The correct functionality (“normal mode”) is hidden behind a

secret initialisation sequence. Any deviation from this sequence transitions the IC into an

unrecoverable “obfuscation mode” in the state graph. One difference between this tech-

nique and the one described by Potkonjak is that this obfuscated technique uses dead-end

states rather than attempting to soak up all available logic gates into correct operation.

This makes it easier to produce, but would also make it easier to modify without conse-

quence. It does not protect against someone modifying the source, nor does it prevent a

dedicated reverse-engineer from analysing the design at a post-fabrication stage.

4.2 Prevention at Fabrication

The issue of untrusted fabrication is addressed by Love, Jin & Makris (2011). They

propose a system that has an IP Consumer providing both a hardware specification and

a list of “security-related properties”. Both the IP Consumer and the IP Producer have

to agree on a translation of these properties into a formal mathematical codification in a

theorem-proving language. As the IP Producer writes the Hardware Description Language

(HDL), they also produce the formal proof that the specified hardware fulfils all required

properties. This can then be checked by a theorem prover when the IP is delivered to the IP

Consumer. This idea is similar to the software process Proof Carrying Code (Necula 1997).

Tying a formal model of a design to the specification of the design may result in a

more correct implementation. However, as noted by Love, Jin & Makris, it is left to the

IP Vendor to create the formal model. This assumes that the IP Vendor is reasonably

trustworthy and will not add Trojans to either the design or the proof. An untrustworthy

IP Vendor may add a Trojan to both the design and proof that is difficult to detect.

This is similar to the code produced for The Underhanded C Contest (XcottCraver 2009).

Not only is it difficult to specify all the security-related properties that you want to be

addressed by the hardware, but there are also new attack techniques being developed all

the time, techniques that could bypass all identified security properties.

4.3 Prevention at Post-Fabrication

An approach whereby some of the IC’s design is implemented by reconfigurable logic (to

be specified post fabrication) is described by Baumgarten, Tyagi & Zambreno (2010).

Reconfigurable logic is placed between the outputs of some ICs and the inputs of other

ICs, disguising some of the design from an attacker who has access to the RTL. This

approach may be seen as either a preventative measure or a technique for operating in

the presence of Hardware Trojans; as such it is also detailed in Section 6.3. In terms of

UNCLASSIFIED 15

DSTO–TN–1012 UNCLASSIFIED

its preventive attributes, it leaves an attacker uncertain of the exact workings of the IC

until after the reconfigurable logic has been programmed. This cuts down the attacker’s

window of opportunity.

Even given best efforts it is very difficult to completely prevent the addition of Hard-

ware Trojan logic to ICs. The best that can be achieved is a first step in a combination

of steps to counter the presence of Hardware Trojans.

16 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

5 Detection

As detailed in Section 4, it is not possible to completely prevent the insertion of a Hardware

Trojan into an IC during a typical design flow. Where preventative measures are used

to protect against Hardware Trojans being inserted into a design or device, detection

mechanisms are used to discover the presence of a Hardware Trojan.

Once detected, a Hardware Trojan may be removed from a design (if detected in the

RTL), the IC could be set aside so that it is not used, or the IC may still be used, operating

in the presence of the Hardware Trojan (see Section 6 for more details on this). Depending

on the detection mechanism used, a Hardware Trojan may be either definitively identified,

or a statistical measure may be provided indicating the probability that the design or IC

has been tampered with.

Traditional IC test and verification is targeted at performing acceptance tests and

ensuring an IC performs as specified. Generally, however, it does not test for the addition

of extra functionality. Given the state-space that extra functionality can hide within,

this would be a tough task for all but the smallest logic designs. There is still a very

real possibility that a Hardware Trojan will not be picked up during testing, but will be

activated once the chip is in use. Abramovici & Bradley (2009) provide a strong argument

that “we cannot guarantee that ICs deployed in the field are Trojan-free”.

There is no “magic bullet” for detecting all Hardware Trojans. Most current research

focuses on detecting Trojans post-fabrication; the fabrication process is currently seen as

the weakest link in the IC development cycle. Little research has been done in detect-

ing Trojans within RTL, prior to synthesis3 , or during fabrication. At this stage of the

development cycle the designers are thought to be trusted; detecting Hardware Trojans

therefore requires a trusted audit process, including an RTL design review and simulation.

There are many and varied techniques to detect Hardware Trojans, however, these

techniques are really only capable of identifying a specific class of Trojan. Any individuals

designing Hardware Trojans would be trying to evade existing and new detection mech-

anisms as they are researched and developed, in an arms race similar to that now being

experienced in the anti-virus industry. Presented in the remainder of this section are some

of the state-of-the-art detection methods, with reference to Chakraborty, Narasimhan &

Bhunia’s (2010) taxonomy (Fig. 5).

5.1 Destructive

Destructive methods of Hardware Trojan detection completely destroy the IC that they

examine, lessening the usefulness of such techniques.

In order to have a very high degree of assurance that there is no Hardware Trojan in a

given IC, it can be completely reverse-engineered, however reverse-engineering a complex

modern IC is a time consuming and expensive process. Reverse-engineering is generally

performed by Chemical Metal Polishing followed by Scanning Electron Microscope (SEM)

3 Converting a design described at the RTL level (HDL source, or schematic) into a binary technology

level net-list.

UNCLASSIFIED 17

DSTO–TN–1012 UNCLASSIFIED

Figure 5: Hardware Trojan Detection Techniques: Chakraborty, Narasimhan & Bhunia

(2010)

image reconstruction and analysis. Generally, the determination of the “correctness” of

a chip is performed through visual comparison with a known good example or “golden

reference”. However, if a Trojan has been added prior to fabrication (and is therefore to

be found in all manufactured ICs), visual comparison will not work. In this case the IC

would have to be completely reverse engineered through the reading of the logic gate layout

and reconstruction of an RTL description. This makes the reverse engineering problem

much more difficult.

Hardware Trojan modifications might only be placed in a handful of distinct IC in-

stances. Under these circumstances, reverse-engineering can be used to determine if an

IC is free of Trojans only up to a certain level of assurance. For example, Agrawal et al.

(2007) use destructive reverse engineering to find known good ICs. Before being reverse-

engineered, a random sample of ICs from a batch are “fingerprinted” using side-channel

information such as power, temperature and electromagnetic profiles. Once a consistent

set of parameters is obtained, all of the sampled chips are then reverse-engineered to

ensure that they are not infected by Trojans. The fingerprint can then be used in a non-

destructive test on the rest of the chips in the batch. This approach suffers from several

problems. A Hardware Trojan may be realised by the addition, deletion or modification

of as few as two logic gates (Sturton et al. 2011), while modern ICs may consist of billions

of such gates. Finding this “needle in a haystack” requires complete reverse-engineering

at the gate level of the IC. In addition to this, there is no guarantee that ICs that have a

Hardware Trojan will generate a different fingerprint to those without.

5.2 Non-destructive

Non-destructive methods of Hardware Trojan detection do not destroy the IC being exam-

ined, and are classified as being either invasive, or non-invasive. Non-invasive techniques

leave the design unaltered, while the invasive techniques modify the design in order to

embed features to assist with Trojan detection.

18 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

5.2.1 Invasive

Invasive techniques can be split into two branches, preventive and assistive. Measures that

are used to prevent the insertion of Hardware Trojans prior to manufacture are detailed

in Section 4.

Assistive techniques are used to make Hardware Trojans easier to detect in post-

fabrication testing. Chakraborty, Paul & Bhunia (2008) have proposed a design that aims

to expose the presence of a Hardware Trojan in a multi-module design4 . This is achieved

through additional inputs and outputs that are added to each module. The extra inputs

provide a “key” which transitions the module into “transparent mode”. In this mode, the

module executes self-testing circuitry, designed specifically to test rare events and low-

probability values. It then outputs a signature, which is a combination of the provided

input key and the results of its self-test. This signature is then provided to the next

module in line as its input key. In this manner a single “special” input key provided at

the multi-module design’s primary input tests the entire module, and the result can be

determined by a single value at the design’s primary output. The authors claim that this

method is useful against an attacker who has “information about the functionality and

logic structure” of the IC.

Using such specialised logic, designed to test the extended state-space where a Hard-

ware Trojan may lie, will, in practice, provide very little protection from a targeted Hard-

ware Trojan. As discussed elsewhere in this section, the likelihood of detecting a well-

crafted Hardware Trojan is very small. In addition to the low probability of detection,

this technique also relies on the Trojan having been inserted into the design at a very

specific stage. The attacker would have to insert the Trojan after the functional design of

a given module, but before the module designer then designed the fingerprinting logic for

that module.

Salmani, Tehranipoor & Plusquellic (2009) propose a procedure to insert dummy flip-

flops into logic to increase Hardware Trojan activity, making for easier detection using

side-channel techniques. Other researchers also suggest logic additions that will make it

easier to detect a Hardware Trojan utilising side-channel analysis, e.g., Li & Lach (2008)

add extra logic for characterising delay times within an IC.

Das et al. (2010) focus on preventing malicious writes to external memory using a

combined hardware and software model. They add extra Gate-keeper logic and modified

software, that can check all writes to memory, thus allowing illegal writes to be detected

and acted upon. This is a run-time detection mechanism detailed further as a counter-

measure in Section 6.1.

5.2.2 Non-invasive

Non-invasive Hardware Trojan detection is done by comparing the performance charac-

teristics of an IC with a known good copy. Detecting Hardware Trojans in a non-invasive

manner can be done either at runtime or at test-time. The run-time detection mechanisms

cross-over into the countermeasures, as once a Trojan is detected at run-time there is the

4 e.g., a design consisting of an ALU, memory, control logic, and address decoder.

UNCLASSIFIED 19

DSTO–TN–1012 UNCLASSIFIED

opportunity to try and continue operating, working around the Trojan. The test-time

detection methods attempt to enhance traditional IC testing, or use side-channel analysis.

5.2.2.1 Runtime Bloom, Narahari & Simha (2009) detail a Hardware Trojan detec-

tion approach that uses both hardware and software. This strategy only attempts to

detect two attacks. The first is a DoS attack, which they detect by using a small custom

hardware guard which sits on the memory bus. The guard is programmed to respond to

periodic “liveness” pings. Failure to respond in a timely manner is treated as success-

ful detection of a DoS attempt. The second attack that they can detect is a combined

hardware and software attack whereby the Hardware Trojan disables memory protection

so that a colluding software process can escalate its privileges. This is detected by test-

ing whether or not unprivileged software can access memory that it should not be able

to access. This approach requires the Operating System to be altered to work with the

guarding hardware.

Abramovici & Bradley (2009) added reconfigurable DEsign-For-ENabling-SEcurity

(DEFENSE) logic to the functional design to implement real-time security monitors. After

the ICs have been fabricated, the reconfigurable logic is programmed, detailing how the de-

vice should behave. Variations from this norm are then able to be detected. Subsection 6.2

further explores this mechanism and associated proposed countermeasures.

McIntyre et al. (2009) detect the presence of Hardware Trojans by executing function-

ally equivalent processes on multiple hardware processing elements. The output from each

of these elements can then be compared to others, allowing processes that may be affected

by Hardware Trojans to be re-computed on other processing elements. The mechanics are

detailed further as a countermeasure in Section 6.4. The concept of being able to detect

a Hardware Trojan through a subtask calculating an incorrect output is limited. The

infected hardware may provide correct outputs but also egress information in some other

manner, or it may degrade the performance of the IC gradually without drawing attention

to itself.

5.2.2.2 Logic Testing Given the huge logical space in a modern IC, constructing a

test vector that covers the entire IC logic space is computationally infeasible. Chakraborty,

Narasimhan & Bhunia (2010) offer the statistic that, even restricted to a Hardware Trojan

with a maximum of four trigger nodes and a single payload node, an ISCAS-85 benchmark

circuit c880 (an 8-bit ALU) with 451 gates can have ∼109 triggers and ∼1011 possible

Trojan instances. With numbers like that, the most promising logic-testing schemes take

a statistical approach.

Jha & Jha (2008) present a randomisation-based technique which probabilistically

compares the functionality of the design of the circuit with the implemented circuit. The

results given in this paper relate to their “random” modification of ISCAS Benchmark

circuits (to “infect” the circuit) and the authors claim that their technique was able to

detect 10 out of 12 modifications.

The motivation behind Chakraborty et al.’s (2009) study is to test rare occurrences on

an IC rather than testing for correctness. The tester determines rare states that can occur

within a circuit module. Testing then focuses on repeating test vectors that excite these

20 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

states. The authors claim that this technique reduces test length by ∼85% over a range

of benchmark circuits and achieves better coverage than a purely random test set. This

technique is based on the assumption that Hardware Trojans will more likely be activated

by combinations of rare states within a design.

5.2.2.3 Side-Channel Analysis Rather than attempting to trigger a Hardware Tro-

jan directly in order to detect its presence, side-channel analysis uses the fact that the

Trojan trigger mechanism itself changes some characteristics of the IC, whether or not it

activates the Trojan payload. The amount of power that a section of the IC uses (power

draw), the amount of heat produced in certain locations or the length of time that certain

parts of the IC take to perform their processing (path delay) are examples of the secondary

IC characteristics used to perform side-channel analysis. This type of analysis appears to

have the best detection likelihood, as the Trojan does not need to be activated (deliver its

payload) in order to be detected.

Agrawal et al. (2007) present a broadly representative example of this type of detection

mechanism. Some known good copies of the IC are obtained and “fingerprinted” using one

or more side-channel parameters. Other chips can then be tested against these fingerprints.

Various statistical techniques can then be used to pick out statistically significant (but well

hidden) differences. The authors specifically use power draw as the primary side-channel.

The obvious difficulty is in ensuring that the ICs used to generate the initial fingerprint

are Trojan-free. Power supply transient signal analysis is used as the side channel by Rad,

Plusquellic & Tehranipoor (2008). They aim to determine the smallest Hardware Trojan

that they can find using this technique, which turns out to be three additional gates. The

tests were performed on a simulator of a particular benchmark circuit.

Banga & Hsiao (2009) propose a technique that is able to magnify the side-channel

differences (based on power draw) between circuits infected with Hardware Trojans and

those that are not. A “sustained vector technique” is used, which repeats (sustains) certain

inputs in order to allow genuine circuits time to reach a stable state – a process that the

authors call Toggle Minimisation. Next, infected regions within the design are isolated by

looking at the differential power draw when a new test vector is applied. Large changes

in the differential power draw could be indicative of extraneous hardware, i.e., they are

trying to identify circuits that are active when they are not supposed to be.

Path delay was the measurement used as the fingerprint – the side-channel analysed –

by Jin & Makris (2008). The authors categorise Hardware Trojans as having either implicit

or explicit payloads. Explicit payloads directly affect the circuits that they are attached

to (e.g., altering the value of a control or data signal). Implicit Hardware Trojan payloads

do not make changes to the circuitry that they are attached to; they may instead leak data

via a side-channel, or perform a DoS attack once triggered. Jin & Makris claim to be able

to detect 100% of explicit Hardware Trojans and 36% of implicit Hardware Trojans. Their

experiments were conducted on a simulator, and their Trojans were simple modifications

designed specifically to affect power draw and path delay. Similarly, both path delay and

leakage current are used as the side-channel for analysis by Potkonjak et al. (2009). Wang

et al. (2008) use current charge integration from multiple current measurement points on

an IC, and then localised current analysis to detect Trojan circuitry. The current analysis

is once again compared with a golden reference and the authors claim to be able to detect

UNCLASSIFIED 21

DSTO–TN–1012 UNCLASSIFIED

added Trojans “as small as a few gates”; about 0.1% of the circuit area.

The primary problem with the side-channel analysis methodology for detecting Hard-

ware Trojans is that it depends entirely on having an authentic golden reference IC that

can be used for comparison and benchmarking. Where an IC has had a Trojan added to it

at any stage up to manufacture, and hence is to be found in each instance of an IC, these

approaches will not work. Additionally, the search space for these detection methods may

be very large. Although good work has been done to manipulate inputs and use advanced

statistical methods to amplify differences, the likelihood of detecting such a difference is

very small, especially against a well written, targeted Hardware Trojan.

22 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

6 Countermeasures

The combination of state-of-the-art Hardware Trojan prevention and pre-deployment de-

tection mechanisms still cannot provide complete certainty that manufactured ICs or re-

configurable logic designs are free of Trojans. Given the large number and types of threats

and the massive state space for Hardware Trojan triggers, some researchers have focussed

on the problem of maintaining secure operation in the presence of Hardware Trojans.

Specifically, these researchers have been looking at implementations that can prevent ac-

tivation of certain Trojans, or still allow useful trustworthy operations to be completed in

the presence of an unknown Hardware Trojan.

Successful countermeasures should allow hardware to be oblivious to inserted Trojans

and even allow COTS components to be used to construct Hardware Trojan resistant,

trustworthy computing systems. To date no single, generic countermeasure has yet been

developed or proposed that would allow an IC to operate in a trustworthy manner in the

presence of an arbitrary Hardware Trojan. This section further examines the state-of-the-

art in Hardware Trojan countermeasures, including protection profiles, implementation

details, operational details and analysing the general applicability of the countermeasure.

There are software based mechanisms that can protect the confidentiality and integrity

of data as it is stored, processed or transmitted by some ICs within a system, e.g., us-

ing an encrypted file-system can protect data from Hardware Trojans that might reside

within an ATA controller or hard disk IC. There are currently no commercial ICs that in-

tegrate any Hardware Trojan countermeasures. Those countermeasures that are currently

being researched often only protect against a single class or sub-class of threats and/or

triggers. Broader protection is usually achieved via a defence-in-depth strategy, target-

ing specific Trojan actions and trigger mechanisms with independent countermeasures and

then combining these measures into a protection strategy. The proposed and experimental

mechanisms that exist can be broadly categorised as either data guards, new RTL-level ar-

chitectures, reconfigurable architectures, or part of a replication, fragmentation and voting

strategy.

6.1 Data Guards

By guarding data (including CPU instructions), a designer is attempting to prevent a

Hardware Trojan from being activated and/or prevent a Hardware Trojan from directly

accessing and utilising any (unencrypted) sensitive data. A guard can control what form

data takes as it is stored or transmitted within or between ICs or logic modules, affecting

the manner in which any Trojans can interact with the data.

6.1.1 Generic Guards

Waksman & Sethumadhavan (2011) introduce a number of guarding techniques to prevent

Hardware Trojan activation. Some of the proposed techniques have been implemented in

the Zesto x86 simulator.

UNCLASSIFIED 23

DSTO–TN–1012 UNCLASSIFIED

Bus scrambling is used to prevent Hardware Trojans receiving activation codes. It is

used for non-computational units that handle data, e.g., a memory controller or DMA

controller. Waksman & Sethumadhavan propose using simple encryption schemes (e.g.,

XOR with a pseudo-random number) to obfuscate data, only looking to secure it for a short

period of time – reasoning that a lack of hardware resources would prevent decryption by

a Hardware Trojan. A manually verifiable (trustworthy) circuit needs to implement the

scrambling.

Waksman & Sethumadhavan only emulated the performance effects of scrambling by

adding parameterisable delays in the caches and memory controller. Whilst bus scrambling

will prevent simple Trojans from being activated, it can still lead to probabilistic activation,

e.g., if a simple 32-bit data trigger is used, activation will likely occur within 232 bus cycles.

A more controlled approach might be to re-map all inputs into a completely functionally

validated state-space. A strong encryption scheme should also be used to prevent sensitive

data from being leaked.

For computational units within an IC, obfuscating the data will affect the unit’s abil-

ity to produce a correct result as the results of the computation will be affected by the

scrambled inputs. Waksman & Sethumadhavan propose to use homomorphic cryptogra-

phy (Gentry 2010) to allow computational units to operate on encrypted data inputs. An

encryption function is defined that is homomorphic over the computational function, allow-

ing the computational unit to calculate the correct result while only processing encrypted

data. The result can then be decrypted to obtain the desired computational result.

Implementing and computing these homomorphic functions is inefficient and non-

trivial; it is difficult to construct a general purpose homomorphic encryption

scheme (Gentry 2010). Similar to bus scrambling, the encryption and decryption

units would need to be implemented in trustworthy (verifiable) hardware. Waksman &

Sethumadha- van did not simulate the homomorphic encryption scheme proposed, but

instead gave a simplified case study based on an RSA cryptography unit. The use of

Garbled Circuits (Järvinen et al. 2010) might be considered as an alternative approach

for the obfuscation of data for computational units.

Waksman & Sethumadhavan also propose a time-guard to prevent Hardware Trojan

activation within a validated functional state space. An IC is fully functionally validated

for a given number of cycles, and is then periodically powered on and off within this testing

epoch, ensuring that no timer based Trojans can be activated. A light-weight context

saving mechanism is used to ensure processing continuity. Waksman & Sethumadhavan

reason that any Hardware Trojans that are dormant for the complete testing state-space

(a state-space of time and inputs) will forever be dormant during this same period under

operational conditions.

This works for input-based and time-based triggers. However for non-volatile memory

triggers, accumulation triggers (e.g., Chakraborty, Narasimhan & Bhunia’s (2010) capaci-

tor charging trigger), side-channel triggers, degradation effects and external triggers (e.g.,

RF) this type of countermeasure will not be adequate. The authors get around the first of

these issues by burning-out any non-volatile memories post-tapeout or by visual inspec-

tion. Another solution might be preventing the use of an ASIC process technology that

can be used to implement non-volatile storage. Any hardware used to perform the context

saving or IC resetting will need to be trusted. A simple emulation of flushing the processor

24 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

state was performed by the authors.

Further guards are proposed that would randomly reorder events and insert dummy

events into input sequences to different modules, e.g., to a memory controller so that the

sequence of stores/loads is disrupted. These guards protect against sequential triggers

being activated. Patient Hardware Trojans should still be able to get sequences through;

however using complete validation and power resets could prevent this from happening.

Sequences that naturally have breaks in them may also escape this countermeasure.

Finally, Waksman & Sethumadhavan propose utilising multiple versions of an untrusted

module or IC from multiple different designers. The output from the modules can then

be checked and compared cycle-by-cycle – effectively voting on the output. This has the

drawback of high cost in terms of silicon area and power consumption. Replication and

voting are further covered in Section 6.4. Whilst Waksman & Sethumadhavan attempt a

complete coverage against Trojan activation they completely ignore side-channel, timing,

and external trigger mechanisms.

6.1.2 Specific Bus Guards

Kim, Villasenor & Koç (2009) developed a custom System on Chip (SoC) bus architecture

that proposes changing master/slave bus architectures to detect Hardware Trojans that

try to lock the bus utilising standard activities, e.g., master not releasing the bus, blocking

interrupts, slaves continuously waiting. Basic updateable counters are used to implement

simple heuristics to detect these types of activities and then blacklist suspect master/slave

devices on the bus and provide reporting options. The architecture was tested using the

Advanced Micro-controller Bus Architecture (AMBA) from ARM.

This countermeasure is targeted at a specific architectural feature and a subset of Hard-

ware Trojan activities, i.e. preventing Trojans from interfering with the correct operation

of the SoC bus and hence affecting the performance of the SoC.

A number of researchers have looked at placing guards on the memory bus in a proces-

sor architecture. The reasons for guarding the memory bus include both Hardware Trojan

activation and data leakage.

Das et al. (2010) insert shadow writes, i.e., companion writes for all store instructions

into binaries. The addresses of these shadow writes are an encrypted version of the original

addresses. A Gate-Keeper core (hardware) residing on the memory bus checks that all

memory writes are followed by their corresponding write to an encrypted address. Thus,

the Gate-Keeper can ensure that the only writes that occur are legitimate in the original

binary, preventing a Hardware Trojan utilising the bus to leak sensitive information. A full

prototype was developed that could execute x86 static binaries and have the Gate-Keeper

detect all shadow writes. The Gate-Keeper would necessarily need to be trusted. This

approach recognises that data egress in any large amount will generally require writing

that data to memory (to send across a network for example). However, data egress may

also occur utilising other methods, e.g., through altering power draw or changing timing

characteristics. This mechanism crosses over between detection and countermeasure, i.e.,

the IC is operating in the presence of Hardware Trojans and the detection occurs at

run-time.

UNCLASSIFIED 25

DSTO–TN–1012 UNCLASSIFIED

Bloom et al. (2009) introduce a double guard between the CPU and data bus produced

using independently keyed adversarial hardware. The two guards check each other for

correctness. Executables are encrypted once with each key for the separate guards, with

data being decrypted on its way to the CPU and encrypted on its way back to memory.

The system relies on there being no collusion between the two guards. An instrumented

compiler is also a crucial part of the system to generate the binaries, BIOS, and Operating

System images prior to run-time. The double guard relieves some of the need to trust either

guard; of more importance is ensuring that there is no collusion between the two guards.

The countermeasure was evaluated using SimpleScalar (Austin, Larson & Ernst 2002), an

open-source computer architecture simulator.

As early as 2003, Suh, Clarke, Gassend, van Dijk & Devadas had proposed their

AEGIS processor architecture that could utilise untrusted peripheral components and run

an untrusted Operating System. The processor needs to be trusted to perform encryption

primitives, acting as a guard between itself and all untrusted peripherals. The difficulty lies

with getting the AEGIS IC free from Hardware Trojans. The idea of utilising a minimal

TCB, or trusted hardware circuitry to control Hardware Trojan countermeasures is vital

to every countermeasure presented in this section.

These memory guard mechanisms target quite specific Trojan trigger mechanisms and

threats, however some of the principles can be carried over to other buses and modules

within an IC.

Beaumont et al. (2011) propose a guard that sits on the ATA bus between a CPU

and a hard disk. The guard can encrypt or scramble data to prevent simple codes or

sequences of data from activating a Trojan. The guard can also encrypt data so that

untrusted ICs within the hard disk cannot store or leak any sensitive information. For

more complete coverage, the guard would also need to mitigate against timing-channel

triggers. Anderson, North & Yiu (2008) expand on this idea, introducing the concept of

the Silicon Security Harness. The Silicon Security Harness involves one or more gates and

monitors that can be retrofitted to hardware or system components, or that are installed

as part of the architecture. The Silicon Security Harness uses these protective measures

to increase the resistance against Hardware Trojans.

6.2 Novel RTL-Level Architectures

Some researchers have identified specific modifications that can be made to modern pro-

cessor and IC architectures to protect against Hardware Trojans. The premise is the

addition or modification of logic gates to specifically identify the presence of, or prevent

the activation of Hardware Trojans.

Hicks et al. (2010) developed a hybrid hardware/software, compile-time/run-time Hard-

ware Trojan countermeasure called BlueChip. BlueChip is a defensive strategy that in-

cludes both a design-time and a run-time component to deal with RTL designs that may

have arbitrary Trojans inserted at unknown locations. An Untrusted Circuit Identifica-

tion (UCI) algorithm and tool-set automatically identifies and removes potential malicious

circuits, in this case from an RTL design destined for a processor IC. Suspicious circuits

are identified and removed during design verification testing. Any circuits that are in-

cluded in the design but that do not affect any outputs during testing are identified and

26 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

removed. The removed hardware is replaced by logic that will trigger an exception if the

removed hardware is ever activated. This may occur due to potential Trojan activation or

a false-positive from correctly operating circuitry that may have been removed. Low-level

software will then try and recover and move forward by emulating what the hardware

was trying to achieve – akin to a software trap for performing floating point emulation.

Unrecoverable exceptions (nesting) are addressed by the proposal to use a very small set

of ‘trusted’ instructions to perform the emulation.

The BlueChip concept has been prototyped using the Leon3 processor (Aeroflex Gaisler

AB 2010) design on a Xilinx Virtex5 FPGA. BlueChip moves some of the onus from trusted

hardware to trusted software components, leaving a truly small subset of hardware that

needs to be fully verified to be used to emulate the removed hardware. The strategy is

most applicable to processor designs where the exception handling and software executing

mechanisms exist to handle the emulation requirements. Extending the strategy to generic

IC design may require a trusted co-processor that could handle the exceptions and lead

the way in emulating around any removed hardware. Since the development of BlueChip,

Sturton et al. (2011), have developed malicious circuits that can be inserted into an IC

that will evade UCI detection and also pass design-time testing.

Abramovici & Bradley (2009) identified that no existing pre-deployment mechanisms

can guarantee detection of all Hardware Trojans. They propose detecting post-manu-

facturing tampering attacks at run-time through the addition of extra logic to an IC –

an integrated self-checking IC; based on detection mechanisms. Additional DEFENSE

(DEsign-For-ENabling-SEcurity) logic is added to a SoC to perform real-time, config-

urable security checks of the behaviour of different parts of the system, multiplexing the

different parts through checking hardware. Examples include, checking illegal accesses

and illegal states, DoS checks, and consistency checks (e.g., processor enters an inconsis-

tent mode for the current state). When an attack is detected, real-time countermeasures

are deployed, such as disabling suspect logic blocks. Abramovici & Bradley also propose

using fail-safe states, spare logic, and check-pointing to counter any detected attacks in

real-time. The DEFENSE platform has not been prototyped and providing complete cov-

erage of Hardware Trojans during run-time security checks would be difficult. Introducing

countermeasures in real-time to provide continuity of operation of the IC would also be

difficult.

Deng, Chan & Suh (2009) propose a time-bounded, unique hardware checksum that is

based on checking the authenticity of trusted hardware. The hardware checksum is based

on low-level micro-architectural implementation details of the processor. The hardware

is challenged and a checksum needs to be returned within a specific time limit. The

authors suppose that an authentic checksum will not be able to be emulated or simulated

within the time limit and only the authentic hardware will be able to respond correctly.

The mechanism ensures that no Trojans have been added to the circuit post-fabrication.

New instructions have been added to the processor architecture to support the Micro-

Architecture Signature Function (MSF), which utilises on-chip architectural features to

generate a unique response to a challenge. While the mechanism can be used to guarantee

that the hardware is authentic, it cannot guarantee that no Trojans have been inserted

into the design during the specification, design, verification, or manufacturing stages.

Specifically targeting DoS Hardware Trojan threats, Bloom et al. (2009) developed

UNCLASSIFIED 27

DSTO–TN–1012 UNCLASSIFIED

a heartbeat function to check for continued operation of an IC. Non-cacheable memory

accesses are inserted into the software, these then present themselves on the memory bus

at regular, but random intervals and are used to detect whether or not the IC has been

subject to a DoS attack.

6.3 Reconfigurable Architectures

Using reconfigurable logic to counter Hardware Trojans can bring significant benefits,

but also presents a new set of design problems and challenges. There is a spectrum of

reconfigurable logic devices, including high logic density FPGAs where most of the device

is reprogrammable; platform targeted FPGAs that contain fixed semiconductor elements,

e.g., PCIe endpoints, memory controllers, even complete processor cores; and custom

ASICs that may contain small reconfigurable portions to perform specific functions, e.g.,

implementing glue logic, or implementing a custom co-processing element.

The main benefit of reconfigurable logic is the separation provided between the hard-

ware implementation and the design implementation. In a typical IC, the design is im-

plemented directly in the semiconductor process, whereas utilising reconfigurable logic,

a standard programmable logic element or macro is implemented in the semiconductor

process and the design is later implemented by programming these logic elements using a

configuration bit-stream. This separation means a design can be developed almost com-

pletely independently of the hardware, and in a trusted environment, although there is

still some reliance on specific peripheral features attached to the generic logic elements.

Whilst the RTL design can now be controlled, the design and implementation of the

reconfigurable logic is subject to many of the same Hardware Trojan insertion threats

as a standard ASIC. The main difference is that an attacker can only perform generic

attacks against the reconfigurable logic architecture, making it more difficult to seamlessly

interfere with, or modify the logical operation of the configured design. Hardware Trojans

can still perform the full range of attacks, modify functionality, modify specification, leak

sensitive information, and DoS. For example, logic elements can be modified to perform

augmented operations, potentially introducing subtle errors into designs, or data can be

leaked through peripheral devices.

The newly defined problem becomes how to best implement trustworthy designs know-

ing that the underlying reconfigurable logic may be infected with arbitrary Trojans, and

how to protect the integrity of the design (configuration bit-stream) once it has been

created, i.e. prevent the bit-stream from becoming corrupted or infected by Trojans. A

generic three-step measure for securing the integrity of an FPGA bit-stream is proposed

by Webb (2006). First, the integrity of the configuration is checked by reading it back,

secondly, the FPGA is partially reconfigured (from an authenticated partial bit-stream)

if an incorrect configuration is found, and thirdly, the FPGA uses a challenge-response

protocol to notify a third party if the system has been compromised.

Dutt & Li (2009) identify recent work on protecting FPGA bit-streams and config-

uration memories from “upset” events. They also identify recent work indicating that

while FPGA Fabrication is separated from FPGA design, reliance on third-party inte-

gration and IP modules can introduce external influences, and that while configuration

28 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

bit-streams provide inherent protection and are difficult to reverse engineer, they are not

impossible to reverse engineer. Further they identify that while bit-stream encryption pro-

vides good protection, it removes the ability to do partial reconfiguration and also cannot

protect against tampered IP that makes its way into the design.

Dutt & Li propose using ECC-based parity groups to guarantee the authenticity of

the design. Additional logic is added to output parity from groups of Configurable Logic

Blocks (CLBs) within an FPGA. This parity is checked using a trusted checking phase to

uncover any design tampering. Two-stage randomisation of the parity generation is used

to ensure non-predictability in the result of any given parity group.

Baumgarten, Tyagi & Zambreno (2010) protect against Hardware Trojans that may

be inserted during the fabrication stage. By placing reconfigurable logic blocks between

crucial elements within the design, a foundry only sees reconfigurable architecture in some

parts of the design. These barriers are then programmed, or unlocked, using a securely

distributed key post-manufacture to complete the design. If the location and functionality

of these barriers is carefully chosen then any inserted Trojans will have difficulty activating

and affecting the operation of the IC. Careful consideration would need to be given to the

type of reconfigurable logic, key management, and different barrier placement heuristics.

Combining fixed and reconfigurable logic can provide unique solutions to Hardware Tro-

jan infections; the reconfigurable logic could even be used to implement local protection

mechanisms.

Utilising reconfigurable logic for Hardware Trojan protection introduces a new set of

design and verification challenges, moving the focus from the semiconductor process to the

RTL design. Significant collusion would be required between the fabrication process and

CAD tool vendors to implement an effective IC-level Hardware Trojan. Implementing a

complex reconfigurable logic design undoubtedly relies on integration of many IP modules.

Huffmire et al. (2007) proposed the idea of Moats and Drawbridges as isolation primitives

to ensure that when connected together, the interfaces of the IP cores have not been

tapped or illegally routed within an FPGA.

Further features of reconfigurable logic that may be used to counter Hardware Tro-

jans include partial and dynamic reconfiguration of logic (Silva & Ferreira 2010), en-

cryption of configuration bit-streams (Trimberger 2007), replication and lock-stepping of

logic (Newgard & Hoffman 2010), design of architecturally variant but functionally iden-

tical logic modules (McIntyre et al. 2009), and generating unique hardware based random

numbers (Kumar et al. 2008).

6.4 Replication, Fragmentation, and Voting

Effective Hardware Trojans rely on understanding the operation of an electronic circuit de-

sign at some level, from process and gate-level, through RTL-level, IC-level and electronic

design. A generic Hardware Trojan countermeasure that can be deployed at many of these

levels involves: replication, or duplication of logic and/or data; slicing, or fragmentation

of logic and/or data; scattering, or distribution of logic and/or data; and gathering and

combining of logic and/or data results, e.g., using a voting mechanism.

The effectiveness of these general countermeasures comes on three fronts: protecting

UNCLASSIFIED 29

DSTO–TN–1012 UNCLASSIFIED

against Hardware Trojans leaking sensitive information by splitting the data up and pro-

cessing it with independent logic elements; protecting against functional or specification

modifications to elements by using multiple replicated, or duplicated logic; and protecting

against DoS attacks by providing redundancy in operation of logic elements within the

design.

The countermeasures can be deployed at various levels from gate, RTL, logic design,

functional modules, and IP cores, through to the IC and macro-level devices. The protec-

tion mechanisms rely on a non-collusion assumption5 between the replicated, or duplicated

elements within the design.

Waksman & Sethumadhavan (2011) propose using logic duplication, where multiple

versions of an untrusted module or IC are used from multiple different designers. The

outputs from the modules are then checked on a cycle-by-cycle basis, effectively voting on

the correct output. Waksman & Sethumadhavan indicate the high cost in terms of silicon

area and power consumption.

McIntyre et al. (2009) utilise a method for dynamically evaluating the trust in hardware

at run-time. The premise is to detect the presence of Hardware Trojans at run-time and

then continue processing by removing or relying less on the suspicious elements. They

propose using a multi-core processing system to take advantage of in-built redundancy,

and the ability to discard cores if they are found to be untrustworthy. Functionally-

equivalent, but variant, processes are spawned on multiple processing elements and the

results compared. The variation in processes may be obtained from different compilation,

implementation, or algorithms used. If the compared results differ, a third processing

element is introduced and the three results are compared. This process is continued until

agreement is reached between at least two processing elements. Processing elements that

give inconsistent (wrong) results are dynamically penalised, i.e., they become less trusted

and are less likely to be used.

No thought was given to the trust of the software or hardware that performs the

comparison. This method could be further extended to using functionally equivalent

hardware implemented as randomised variants. The method could also be applied at

different abstraction levels, e.g., instruction level, gate-level, program-level, or IC-level. If

performed at the instruction-level this activity could become transparent to higher levels,

with the hardware, including a small TCB, taking care of the instruction-level scheduling,

replication, variant processing, and voting.

Newgard & Hoffman (2010) introduce a tightly-coupled dual-processor lock-step con-

figuration implemented inside an FPGA – an implementation of replication and voting at

the macro level. Both processors receive and process the same instructions at the same

time. Hardware check logic examines and compares all bus control signals on every bus

transaction. If an error is detected, the system is forced into an error recovery sequence.

Further development and verification of a TCB to implement the trusted checking and er-

ror recovery mechanisms would be needed to adequately counter an FPGA infected with

Hardware Trojans. The method could be expanded for a larger number of processors that

are either discrete ICs or embedded within a reconfigurable fabric.

5 A reasonable assumption given the variant processes and channels available for the design, manufacture

and procurement of electronic design components.

30 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

In 1991, Trouessin et al. investigated the provision of high-reliability and availability,

and the preservation of data-confidentiality in large-scale distributed systems. Whilst

this work did not address the Hardware Trojan threat, the techniques for fault tolerance

are very relevant. The authors introduce a general approach that fragments the data

into small pieces, such that on its own each fragment contains little information. The

approach can be used for both data storage and data processing, Trouessin et al. cite

Fray, Deswarte & Powell (1986) and Fray & Fabre (1989) as references for data storage and

data processing fragmentation respectively. The fragments are then scattered for either

storage or processing. Replication (redundancy) of the fragments is used to gain reliability

in the system. Threshold schemes, akin to secret sharing (e.g., Shamir (1979)) are also

proposed to recombine the stored or processed data. The determination of fragmentation

functions for general purpose processing could be difficult and expensive to compute. The

same mechanism could be implemented as discrete hardware processing elements. A TCB

would be needed to handle the input and output of the processing and storage operations.

To date, research into Hardware Trojan countermeasures has focussed on preventing

the activation of Trojans and detecting Trojan activity at run-time. Any countermeasure

developed should protect the confidentiality of data and maintain integrity of operation

of the device being protected. Existing software techniques that focus on reliability and

confidentiality may be applicable, or may be applied in concert with newly developed

countermeasures. There is currently no single solution that can provide complete coverage

against the range of threats and triggers presented earlier. It is unlikely that such a

solution will be developed, instead a combination of countermeasures will be needed to

combat specific classes of Hardware Trojans within specific application domains. These

countermeasures will need to be developed cognisant of both the systems within which

they will be deployed and the level of protection they aim to provide. As demonstrated

by Sturton et al. (2011), when new countermeasures are developed, researchers will also

find ways to bypass them. This Hardware Trojan arms-race further highlights the need

for a defence-in-depth approach.

UNCLASSIFIED 31

DSTO–TN–1012 UNCLASSIFIED

7 Summary

Hardware Trojans are a present and ongoing threat to the security of electronic systems

world-wide. The Australian Military has particular concern due to the outsourcing of

design and manufacture of integrated electronic components and our reliance on COTS

components to maintain capability. Hardware Trojans threaten to compromise the in-

tegrity of data and operations performed by any system containing integrated electronic

components. The threats include functional and specification modifications, leaking of

sensitive information and Denial of Service attacks.

Hardware Trojan payloads and their activation mechanisms can take advantage of the

massive state-space formed by the combination of parallel logic, internal routing, and input

and output, that exists within a modern IC. The resulting Hardware Trojans can remain

hidden deep within the design of an IC, having very poor observability.

Efforts to prevent Hardware Trojans being designed or manufactured into ICs are

still in their infancy. Much current research is focused on post-fabrication detection of

Hardware Trojans, with current efforts looking at destructive techniques, side-channel

analysis, and assistive logic testing techniques. Detection mechanisms are often focussed

on a specific class of Hardware Trojans, with no single or combination of techniques able

to provide complete coverage. A sprinkling of novel countermeasures have been developed

that will allow trusted operation to continue in the presence of Hardware Trojans. These

countermeasures focus on: guarding data, inputs and outputs; new RTL-level architecture

features; reconfigurable logic; and replication, fragmentation and voting schemes.

Future research will have to focus on combining the best prevention and detection

techniques to provide the greatest guarantee of Hardware Trojan free devices. New coun-

termeasure techniques will have to be developed to allow these still untrusted devices to

perform trusted operations. It is likely that a combination of countermeasures will be re-

quired to provide the best coverage depending on the device or system being protected. A

defence-in-depth approach should allow COTS ICs to be combined with some customised

logic to operate in a trusted manner. Ultimately some small trusted hardware will need to

be developed to provide the root-of-trust upon which the integrity of any countermeasures

are built.

32 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1012

