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ABSTRACT 

 
A Hardware  Trojan  is a malicious,  undesired,  intentional modification of an 

electronic circuit or design, resulting in the incorrect behaviour  of an electronic 

device when in operation  – a back-door  that can  be inserted  into  hardware. 

A Hardware  Trojan  may  be able  to defeat any  and  all security mechanisms 

(software or hardware-based) and subvert or augment the normal operation of 

an  infected device.   This  may  result in modifications to the functionality or 

specification of the hardware, the leaking of sensitive information, or a Denial 

of Service (DoS) attack. 

 
Understanding Hardware  Trojans  is vital when developing next generation de- 

fensive mechanisms  for the development and  deployment of electronics in the 

presence of the Hardware  Trojan  threat. Research  over the past five years has 

primarily  focussed on detecting the presence of Hardware  Trojans  in infected 

devices. This report reviews the state-of-the-art in Hardware  Trojans,  from the 

threats they pose through to modern prevention, detection and countermeasure 

techniques. 
 

 
 
 
 

1    Introduction 
 

 

Electronic systems have  proliferated over  the past few decades  to the point that most 

aspects of daily life are aided or affected by the automation, control, monitoring, or com- 

putational power provided  by Integrated Circuits (ICs).  The ability to trust  these ICs to 

perform  their specified operation (and  only their specified operation) has always been a 

security  concern  and  has recently  become a more active  topic  of research  (Chakraborty, 

Paul & Bhunia  2008, Tehranipoor & Koushanfar 2010, Rajendran et al. 2010). ICs are the 

building  blocks for all modern  electronic systems; they form the information backbone  of 

many  critical sectors including  the financial,  military, industrial, and  transportation sec- 

tors.  Without trust in these ICs, the systems they support cannot necessarily be trusted 

to perform as specified and may even be susceptible to attack by a malicious adversary. 
 

A new disruptive threat has surfaced  over the past five years1,  a hardware-based se- 

curity threat known  as the Hardware Trojan.  A Hardware  Trojan  is a malicious,  unde- 

sired, intentional modification of an electronic circuit or design, resulting in the incorrect 

behaviour  of an  electronic device when  in operation.  Akin  to a software Trojan  Horse 

program  (Thompson 1984), a Hardware  Trojan  is a back-door  that can be inserted into 

hardware.  The  added  advantages  of a Hardware  Trojan  include  residing  at the lowest 

level of information processing, and being persistent – the threat is present as long as the 

infected hardware  is in use. A Hardware  Trojan  may be able to defeat any and all security 

mechanisms  (software or hardware-based) and  subvert or augment the normal  operation 

of an infected IC. The modification can affect any type of IC, including  processors, mem- 

ory, Digital  Signal Processors  (DSPs),  Application  Specific Integrated  Circuits  (ASICs), 

and even configuration bit-streams for reconfigurable  logic. The undesired  behaviour  can 



 

include  modifications  to the functionality  or specification  of the hardware, the leaking 

of sensitive information, or a Denial  of Service (DoS)  attack.  Effects may  range  from a 

subtle  degradation  of service through  to a complete  and  permanent  shut-down  of a sys- 

tem.   Hardware  Trojans  can  affect  a system  by themselves  alone,  or provide  a foothold 

for software based  attacks (King  et al.  2008),  where  colluding  software is aware  of the 

inserted Trojan.    Hardware  Trojans  most often remain  dormant and  are  only activated 

when  triggered by,  for example,  the passing  of time, some specific activity, or external 

events.  The spectrum of Hardware  Trojans  – their capabilities, size, trigger mechanisms, 

and  payloads  – is enormous,  and  the state-space of IC development both physically  and 

procedurally provides ample opportunity for concealment. 
 

The  ease  with which  Hardware  Trojans   can  make  their way  into modern  ICs  and 

electronic designs is concerning.  Modifications to hardware  can occur at any stage during 

the design and manufacturing process, including the specification, design, verification and 

manufacturing stages.  Hardware  Trojans  may  even be retro-fitted to existing ICs post- 

manufacture,  as proposed  by  Abramovici  & Bradley  (2009).   Maintaining  tight control 

over the IC design life-cycle is costly;  the current  trend is towards  separation  of design 

from manufacture, relying on a handful  of large CMOS fabrication facilities world-wide, 

mostly located within Asia.  This trend towards out-sourcing is not limited to manufacture; 

designers trust third-party Electronic Design Automation (EDA)  tools, utilise third-party 

Intellectual Property (IP)  cores – many  of which are provided  only as a binary  net-list – 
 

1 Existence of such threats has been mooted since the early  1990s (Schwartau 1994). 
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and outsource to contract-design houses.  With so many entities and individuals  involved, 

there is ample opportunity to insert a Trojan  into the final hardware. A Hardware  Trojan 

might be as simple as a paragraph change  in the specification,  an extra source-code line 

in the Hardware  Description Language  (HDL),  a modification of the silicon die at the 

fabrication plant, or just a modulation of the CMOS geometries used. 
 

Ensuring  an IC is authentic and does not contain any Trojans  is a very difficult prob- 

lem (Tehranipoor & Koushanfar 2010).  Hardware  Trojans  are poorly observable  during 

traditional IC design-verification and  testing phases;  their payload  and  trigger states are 

difficult to find, becoming exponential in the number  of circuit nodes (Chakraborty, Paul 

& Bhunia  2008).  Most ASIC designs are too large for either exhaustive testing or formal 

verification, so it is likely that many Trojans  will never be detected.  The life-cycle stage at 

which a Trojan  is inserted and its logical structure also affects the effectiveness of existing 

detection methods. 
 

For a country like Australia, keeping the entire design and manufacturing process in- 

house is infeasible for all but the smallest ASIC designs.  Our reliance on the globalisation 

of the electronics industry is critical for developing  both our  commercial  and  military 

capabilities.  The  Hardware  Trojan  threat must therefore be taken seriously and  our ap- 

proach  must ensure  that we are able to either trust the operation of ICs used or, better 

still, be able to safely utilise Commercial-Off-The-Shelf (COTS)  electronic devices and ICs 

regardless  of their trust. 
 

Current research is investigating all aspects of Hardware  Trojans.  The Embedded  Sys- 

tems Challenge (Polytechnic Institute of New York University 2010) actively promotes the 

development of Hardware  Trojans  and detection mechanisms  through an annual  adversar- 

ial challenge  against a specific embedded  system.  DARPA  has initiated its Trust-in-ICs 

program  (Microsystems Technology  Office, DARPA  2007), an R&D program  developing 

tools  and  techniques  to ensure  ICs are  authentic  and  free of Trojans  post-manufacture. 

The  Australian  Department  of Defence (Anderson,  North  & Yiu 2008) raised  an aware- 

ness of the threat and proposed  broad  classes of Hardware  Trojans  and countermeasures. 

Most other public  research  is conducted by university groups,  focusing on techniques to 

prevent the insertion of Hardware  Trojans  into a design or detect the presence of Trojans 

post-manufacture. 
 

This  report introduces the threats posed  by  Hardware   Trojans   and  the variety of 

manners  in which they might be activated. It also presents the state-of-the-art in preven- 

tion, detection, and countermeasure techniques currently being researched.  Unfortunately, 

current methods are  not suitable for providing  adequate protection – at best 

statistical guarantees can be provided  on preventing or detecting a Hardware  Trojan.   In 

the near future, if not now, it will become necessary  for hardware  systems to be able to 

operate securely  in the presence  of Hardware  Trojans.   Recently, researchers  have  looked 

at op- erating  securely despite  the potential  presence  of Hardware  Trojans.   Some of 

this  work is sponsored  by  DARPA,  AFRL  and  Rockwell Automation.   Future research  

will need to focus on combining  the best prevention, detection, and  countermeasure 

techniques to provide the requisite security through a defence-in-depth approach. We 

conclude that it is likely, however, that a small subset of hardware  will always need to be 

trusted to provide the root of trust for any Hardware  Trojan  resistant system developed. 
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2    Threats 
 

 

Due to the large number  of insertion vectors and  potential low-level actions a Hardware 

Trojan  could perform,  the danger  posed by this threat is grave.   Hardware  Trojans  are 

persistent; once a system has  been  infected the threat remains  whenever  the system is 

powered on.  Hardware  Trojans  have the potential ability to undermine  confidence in all 

modern electronic systems, by infecting and changing the behaviour  of any integrated cir- 

cuit.  The  effects  of a Hardware  Trojan  can range  from simple targeted  attacks through 

to sophisticated attacks that provide footholds for higher level software attacks. Example 

targeted attacks could include  performing  a bit-flip that changes  the integrity of stored 

data, weakening  the functionality of cryptographic cores,  or  leaking  confidential infor- 

mation.  Systems may  also be infected by multiple Hardware  Trojans  that can together 

subvert a supposedly  secure system. 
 

Although the threat is ultimately bounded  by the actions a Hardware  Trojan  can take, 

considering  the insertion vectors and  activation mechanisms  at the same  time gives a 

greater insight into the power and stealth of a Hardware  Trojan.  Hardware  Trojan  threats, 

insertion vectors, and activation mechanisms will continue to develop concurrently and will 

need to be countered by the best prevention, detection, and countermeasure techniques to 

maintain the security of deployed ICs. 
 

When  examining  the threat posed by a Hardware  Trojan,  one must first consider  its 

inherent attributes in order to determine its effect on an information system. There  have 

been several Hardware  Trojan  taxonomies proposed  to describe such attributes, with the 

aim to enable a systematic study of Hardware  Trojan  characteristics, to aid the develop- 

ment of detection and mitigation techniques for given classes, and to facilitate benchmark- 

ing for detection and mitigation strategies. 

 

 
 

Figure 1: Hardware Trojan Taxonomy: Chakraborty,  Narasimhan  & Bhunia  (2010) 

 
Chakraborty,  Narasimhan  &  Bhunia  (2010)  proposed  a  classification  (Fig.  1),  ex- 

tended from Wolff, Papachristou, Bhunia & Chakraborty (2008) that is based upon trigger 

and  payload  mechanisms.    Wang,  Tehranipoor & Plusquellic  (2008)  proposed  a taxon- 

omy (Fig. 2) based upon physical characteristics, triggering mechanism  and functionality. 

Rajendran et al. (2010) reorganise  and extend this taxonomy further (Fig. 3), by consid- 

eration of design phase, abstraction level and location. 
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Figure 2: Hardware Trojan Taxonomy: Wang,  Tehranipoor & Plusquellic (2008) 
 
 
 
 

 
 
   

 
 
 
 
 

 

 

 

 
 
 

 

Figure 3: Hardware Trojan Taxonomy: Rajendran  et al. (2010) 
 
 

The  majority of research  in the Hardware  Trojan  area  glosses over how a Hardware 

Trojan  can influence its environment, with two primary  exceptions.  The Embedded  Sys- 

tems Challenge,  run by the Polytechnic Institute of New York University (2010) gives the 

students  the “source  code” to an  IC implemented  in reconfigurable  logic to attempt to 

infect with a Hardware  Trojan  that has  to leak specific data.  Anderson,  North & Yiu 

(2008) speculate about some of the payloads  that are possible when the Trojan  is located 

in different ICs; for example,  in a CPU,  a hard  disk, attached to network hardware  or on 

a memory  bus.  In this section, the functionality or actions that a Hardware  Trojan  may 

enact – thus representing the true threat to an information system – is presented. 
 

 
 

2.1   Insertion  Phase and Location 
 

 

There  are numerous  stages  associated  with  the design and  manufacture  of an IC. These 

are  typically  regarded  as specification,  design,  fabrication,  testing  and  assembly  (Karri 

et al.  2010) and  directly  influence  how an  adversary  might  introduce  a Hardware  Tro- 

jan.    During  the specification  stage,  system  characteristics  such  as  usage  model  and 

expected  functionality  are  defined.   The  specification  is then realised  into  specific tar- 
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get  technologies  with  consideration  of functional  and  physical  constraints  during  the 

design  phase.    In  the fabrication phase,  mask  sets are  created and  silicon  wafers  pro- 

duced and probed  to verify both functional and physical characteristics. Wafers are then 

finally  cut into die,  packaged  and  tested in  readiness  for deployment and  monitoring. 

Chakraborty, Narasimhan & Bhunia  (2010) assert that the only stages not vulnerable  to 

the insertion of Hardware  Trojans  by an adversary  are during  specification, package test- 

ing, and deployment and monitoring (Fig. 4). All other stages, in practice, are vulnerable 

to security attacks due to the reliance on third party vendors for design tools, intellectual 

property design, manufacture and  test facilities.  For these same reasons,  however, it can 

be argued that all stages in reality could be influenced by an untrusted party, for example 

by  Trojan  retrofitting during  supply  chain  or testing.   Thus  the complete design  cycle 

needs to be examined  when considering  effective prevention and detection strategies. 
 

A Hardware  Trojan  may be added  to an information system in a variety of locations. 

The  location is not necessarily  limited to a  single  component but may  be  distributed 

across multiple components such as the processor, memory, IO, power supply or clock grid 

(Karri  et al. 2010). A particular location influences the complexity of design, difficulty of 

insertion, as well as the actions or system effect of a Trojan.  The emphasis for this section, 

is to examine such possible actions and effects and to present specific real world examples 

highlighting the threat of the Hardware  Trojan. 
 
 
 
 
 
 
 

 

 
 

Figure 4: Vulnerable  phases of IC development  cycle: Chakraborty,  Narasimhan  & Bhu- 

nia (2010) 
 
 

 

2.2   Hardware Tro jan Actions 
 

Hardware  Trojans  are a relatively new system security threat that extend the information 

system attack surface  traditionally focused on software vulnerabilities.   Given  software 

security layers  are written on the premise  of trust in the underlying  hardware, software 

security mechanisms  may be bypassed  by malicious hardware, thus presenting a complex 

challenge to ensure  security in systems.  Hardware  Trojans  can be implemented as hard- 

ware modifications to ASICs, COTS  components, microprocessors,  DSPs,  or as firmware 

modifications to Field  Programmable Gate Array  (FPGA) bit-streams (Wang,   Tehra- 

nipoor & Plusquellic  2008).  Given the low insertion level of a Hardware  Trojan,  a broad 

range of actions are possible.  These actions can be categorised into classes of modify func- 

tionality, modify specification, leak information and denial of service (Wang,  Tehranipoor 

& Plusquellic  (2008)).  A particular Hardware  Trojan  implementation could perform  any 

or all of these actions. 
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2.2.1     Modify Functionality 

 
A Hardware  Trojan  that modifies a device’s functionality, either through additional logic 

or by removing  or bypassing  existing logic, directly compromises  the integrity of an in- 

formation system.  Examples  include  modifying  stored data, or affecting a computation 

operation or communications channel.   Functionality modifications are limitless; the ac- 

tions resulting from this class of Trojan  are only constrained by the resources, imagination, 

and  skill of an adversary.  Agrawal  et al. (2007) present a scenario  whereby  a simple yet 

destructive Trojan  could insert a fault in the Chinese Remainder  Theorem  (CRT) inver- 

sion step  of an RSA signature  computation  leading  to the compromise  of the RSA key. 

Karri  et al. (2010) refer to a modification  to cause an error  detection  module  to accept 

inputs that should be rejected. 
 

It is certainly  conceivable  that errors  in ICs,  such as the Intel  FDIV  bug2 , could be 

reproduced  by a Hardware  Trojan  with selective triggering to avoid detection. Karri et al. 

(2010) indicate how a particular Trojan  could be designed to alter the order in which CPU 

instructions are executed, leak data through side-channel  effects, and change the contents 

of programmable read only memory, thus introducing integrity issues. Modifying function- 

ality could also be used to support more generic attacks. King et al. (2008) noted that “a 

single hard coded attack in hardware  greatly understates the power of malicious circuitry” 

and developed an example of a modified CPU to support a raft of software attacks. These 

included  a memory access and firmware modification that facilitated privilege escalation, 

login back-door  and password  stealing attacks. 
 

 
2.2.2     Modify Specification 

 
The  modify specification class describes  Hardware  Trojans  that attack by changing  the 

target IC’s parametric properties or an IC’s non-functional specification.  Parametric prop- 

erties  that could be affected  include  clock or timing  parameters  and  power usage.  This 

is achieved  by directly influencing  the intrinsic IC properties including  that of wire and 

transistor geometries.  In contrast to the modify functionality class, this category of Trojan 

as described by Wang, Tehranipoor & Plusquellic  (2008), modifies only existing wires and 

transistors thus their disruptive actions would  normally  be restricted to those trending 

toward system failure.  It could be hypothesised, however, that additive Trojan  hardware 

could  be coupled  in such  a manner  as to similarly  influence  intrinsic IC properties yet 

provide extended capabilities for triggering and action characteristics. 
 

This class of Hardware  Trojan  could perform a variety of actions, including limiting the 

processing capability of a system by modifying system clock, or by replacing computational 

or IO units that are  functionally equivalent but have  reduced  throughput performance. 

Other specification changes  that might affect performance  include  gate placement and 

routing, functionally equivalent circuits, or extraneous passive components. These perfor- 

mance impacts could be introduced in a load-based  degradation approach  whereby system 

performance  is degraded  as a result of the introduction of timing errors during  high load 

activity.   Chakraborty,  Narasimhan & Bhunia  (2010)  provide  circuit  examples  whereby 
 

2 The  FDIV  bug involved  certain floating point divisions  returning incorrect results beyond  four signif- 

icant digits 
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a bridging  fault is introduced by insertion of a resistor and  by increasing  net delay  by 

increasing  a capacitive load property. 
 

 

2.2.3     Leak Information 

 
This  class of Trojan  encompasses  hardware  modifications that aim to transmit sensitive 

information from an information system to an adversary  without the knowledge or coop- 

eration of the affected information system or system user.  Transmission mechanisms could 

use existing internal or external system paths, or alternatively, exfiltrate via side-channels. 

For example, Rajendran et al. (2010) note that information could be leaked by means such 

as radio frequency, optical, thermal, power and timing side-channels and also via interfaces 

such as RS232 and JTAG. Transmissions may also be hidden  within the noise margins  of 

either functional or physical  features of the IC.  For  example,  Jin & Makris  (2009) leak 

encryption keys via wireless transmission amplitude or frequency margins  that occur due 

to process variations, and Lin, Burleson  & Paar  (2009) leak data below the noise floor of 

the CMOS process using a spread  spectrum side-channel  technique. 
 

 

2.2.4     Denial of Service 

 
Low-level modifications to the hardware  provides a broad  range of possibilities for imple- 

menting DoS actions that range from partial service degradation to complete and perma- 

nent disabling  of a device by the introduction of a “kill switch” (Adee 2008).  Rajendran 

et al. (2010) refer to Trojans  that affect service by exhausting scarce  resources  such  as 

bandwidth,  computation,  and  battery power and  note  that physical  effects  that disable 

or alter the configuration of a device  could  be temporary or permanent.   A Hardware 

Trojan  could be designed  to consume  excess battery energy  by preventing circuits from 

going to sleep (Wolff et al. 2008) or by insertion of excess buffers in IC interconnections 

(Karri  et al. 2010), thus limiting  the service life of a device between  charges.   A Trojan 

could also be designed to exert control of a memory Write-Enable signal, over-writing an 

existing value with a random  value, and causing a service side effect on a system or simply 

disable partial or all power supply  to a device (Karri  et al. 2010).  Other forms of service 

degradation could be induced  by early  failure  of a device.  Chakraborty, Narasimhan & 

Bhunia (2010) provide an example circuit that generates excessive activity accelerating the 

aging process of an IC and thus shortening a device’s life span without otherwise affecting 

functionality.  Similarly,  Rajendran et al. (2010) infer that chemical compositions may be 

altered to increase the electron-migration in critical circuitry like power supply and clock 

trees which could accelerate failures. 
 

 

2.3   Hardware Tro jan Implementations 
 

Hardware  Trojans  have  only recently received  research  attention, thus to date very few 

actual published implementations exist.  Those referred to in current publications typically 

are simplistic, “single hard-coded” solutions that have been used solely for the purpose  of 

experimenting with detection and countermeasures verification.  Very little in-depth con- 

sideration has been given to the system-wide effects of a single or coordinated Hardware 
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Trojan  attack, or the practicalities associated with implementing (or detecting) command 

and control for such attacks. The more interesting published  Hardware  Trojan  implemen- 

tations are further examined  here. 
 
 

2.3.1     Illinois Malicious Processor 

 
King  et al.  (2008)  implement two general  purpose  mechanisms  for designing  malicious 

CPUs.   The  authors  show how Hardware  Trojan  circuits  can  be embedded  into  a CPU 

to realise attacks such as stealing passwords,  enabling  privilege escalation, and  allowing 

automatic logins into compromised  systems.  The  work represents a general  platform to 

support a wide variety of attacks with the possibility of dynamic upgrades.  Two malicious 

modifications on a CPU  are performed:  a memory  access mechanism  that allows an at- 

tacker to access protected memory regions, and a shadow mode that allows an attacker to 

execute hidden  “firmware”.  One of the attacks presented that exercises the properties of 

these malicious modifications, a login attack that allowed an attacker complete and high 

level access to the machine,  was implemented in only 1341 gates. 
 

This  work represents  the first  published  Hardware  Trojan  implementation  that can 

be used as a generic programmable platform for attacks.  The  authors introduced modi- 

fications  at the VHDL level and  provided  both simulation  and  synthesised  results  using 

a 40MHz Leon 3 SPARC  target platform.   Some analysis  of detection  by consideration 

of analogue  and  digital perturbations of introduced hardware   was  given:   the software 

component of the memory access mechanism  is visible to the Operating System; and tim- 

ing effects introduced due to the use of debugging  style trap mechanisms  are detectable. 

Additionally, a brief section on general defence against malicious processors was provided. 
 
 

2.3.2     Cyber Security  Awareness Week 

 
During  the 2008 Cyber  Security Awareness  Week (CSAW)  Embedded  System Challenge 

held at the Polytechnic Institute of NYU a hypothetical scenario was posed whereby teams 

were tasked to compromise an FPGA-based cryptographic device, “Alpha”,  by insertion of 

a set of Trojans  but still pass validation testing.  The teams were provided HDL source code 

and given a month to present designs.  The top teams, Baumgarten, Steffen, Clausman  & 

Zambreno  (2011) and  Jin, Kupp  & Makris  (2009),  provided  a mechanism  to leak secret 

keys from an IO channel  and a DoS attack respectively.  Upon examination of all entries, 

90% of Trojans  were inserted in the design phase,  50% were activated by user input and 

75% were located in IO units (Rajendran et al. 2010). 
 

 
2.3.3     Malicious Off-chip Leakage Enabled by  Side-channels 

 
Lin, Burleson  & Paar  (2009) explore the design space of Hardware  Trojans  and  propose 

a design  that is less than 50 gates in size to generate power  side-channels,  suitable for 

covertly  leaking secret  information.  The  technique,  Malicious Off-chip Leakage Enabled 

by  Side-channels  (MOLES),  is implemented  in  an  AES  cryptographic  circuit  targeting 

a 45nm  CMOS  technology.  Spread  spectrum techniques were employed  in the MOLES 

design  capable  of leaking  multi-bit  information  below the noise floor of the power  level 
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of the host  IC to avoid  detection.   The  authors  claim  the technique  would  be resistant 

to most detection strategies such  as  optical inspections,  functional tests and  physical 

fingerprinting analysis.  Although the leakage circuit has a low gate count, computational 

effort for recovering the leaked data given the low signal to noise ratio and process variation 

aspects is noted to be a critical issue. 
 

The authors provide a generalised design methodology for implementing the described 

MOLES circuits, backed by a mathematical description of detection theory for differential 

power analysis  required  for multi-bit key extraction.  Results are based upon simulations 

of short key length (8-bit) extractions only, falling well short of realistic key lengths. The 

authors, however, note practical issues for the approach  relating to large key sizes (256-bit) 

due  to the number  of power traces required  to generate an  acceptable level of SNR for 

reliable recovery. 
 
 

2.3.4     Cryptographic  Hardware Tro jans 

 
Agrawal et al. (2007) experimented with two simplistic Hardware  Trojans  embedded  in an 

RSA encryption circuit to analyse  side-channel  effects.  The  circuits were comprised  of a 

simple counter that disabled  the IC after a set threshold and a comparator that monitors 

a data bus or register against a fixed value and  alters computation upon  a match.  The 

authors theorise how such circuits could be difficult to detect, and be used to take actions 

such as disabling the circuit, leaking secrets or creating glitches to compromise the integrity 

and security of the larger system to which the IC belongs. 
 

Jin & Makris  (2009) provide  an example  of an information leakage Hardware  Trojan 

that targets a DES encryption core. The design extracts the 56-bit encryption key one bit 

at a time, and  leaks it by hiding  one bit in each 64-bit block of transmitted data.  After 

the transmission  of only 56 ciphertext  blocks,  the entire  key will have  been  broadcast, 

thus compromising  the encryption. The extracted key is physically hidden  in the wireless 

transmission amplitude or frequency  margins  allowed because of process variations, thus 

ensuring  adherence  to designed functional specifications. 
 
 

2.3.5     Exploiting Semiconductor  Properties 

 
Shiyanovskii et al. (2009) describe a new type of Hardware  Trojan,  a “reliability based Tro- 

jan”, that can be induced by intentional modification of fabrication processes to accelerate 

wearing in CMOS devices.  These  process modifications can keep the initial performance 

parameters  of the circuit  within  the accepted  process variation,  thus typical  production 

tests would  not detect the modified properties.  Such  Trojans  can  exploit the following 

wear processes:  Hot Carrier  Injection(HCI), Oxide Breakdown  (OB),  Negative Bias Tem- 

perature Instability (NBTI)  and Electron-Migration(EM) and could be used to construct 

a DoS class Hardware  Trojan,  including  a gradual  degradation of performance,  or early 

wear-out of certain parts of the IC. 
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3    Trigger Mechanisms 
 

 

There are many ways Hardware  Trojans  can be inserted into a design, and many different 

direct and leveraged threats that they pose, as covered in Section 2. Once inserted into a 

system most Hardware  Trojans  will lie dormant until activated (or triggered) to perform 

malicious activity. Activation can be any mechanism,  overt or covert, random,  directed, or 

predetermined that elicits a change in state or behaviour of a Trojan.  This activation phase 

is important as it provides a vector for detecting and countering Hardware  Trojans.  During 

different verification phases  of IC design,  an  attempt can  be made  to trigger Hardware 

Trojans.  Typically  this is through functional validation testing, or state-space exploration 

involving the inputs, outputs, and internal logic of the design.  Triggering  a Trojan  during 

testing  may  help  to identify  the presence  of the Trojan  in  the design.   Much  research 

has  been  done  in  detecting Hardware   Trojans   based  on  their trigger function;  this is 

covered  in more detail  in Section  5.  If a Hardware  Trojan  lies undetected  in a system, 

then countermeasures can be deployed  to protect against activation; typically this might 

include  utilising data guards  or hardening  the architecture cognisant of specific triggers. 

Section 6 covers  methods for countering Hardware  Trojans  by  understanding potential 

trigger mechanisms. 
 

Understanding the manner  in which Hardware  Trojans  can be triggered is important 

if we want to fully understand the threat that they pose, and a brief taxonomy of trigger 

mechanisms,  based on that proposed  by Rajendran et al. (2010) and Wang,  Tehranipoor 

& Plusquellic  (2008) is presented here. 
 

 
 

3.1   Internally  Triggered 
 

Internally triggered Hardware  Trojans  rely on some specific internal state of the target 

device being reached.  The most common methods are combinational and sequential acti- 

vation. 
 

 
3.1.1     Combinational  Activation 

 
A Hardware  Trojan  is activated when certain values are detected simultaneously at specific 

internal circuit nodes within a device – a trigger state. This type of trigger mechanism can 

be implemented solely by combinational logic. Waksman  & Sethumadhavan (2011), who 

call this a “single-shot cheat code”, give the example  of a specific address  on a bus, e.g., 

0xdecafbad, triggering a Hardware  Trojan.   In reality the combinational activation may 

require  a much  larger  set  of nodes to be simultaneously  activated  to a particular  state, 

e.g., a particular state of a set of internal registers, combined  with a specific word on the 

data bus, combined  with a specific word on the address  bus.  Tehranipoor & Koushanfar 

(2010) also describe  particular  input patterns being used to activate  Hardware  Trojans, 

e.g., combining  data, control, address,  and self-test inputs. 
 

Jin, Kupp  & Makris  (2009) used a number  of combinational  triggers  in their design 

for the 2008 Embedded  Systems Challenge,  including  detecting the overflow of an input 

buffer and also triggering whenever an encryption key was changed. 
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3.1.2     Sequential  Activation 

 
Sequentially triggered Hardware  Trojans  rely on a sequence of events occurring  for acti- 

vation.  Compared  with combinational activation, a sequentially triggered Trojan  has  a 

massively increased  state-space to use – this comes from the fact that the trigger mecha- 

nisms can now be implemented using state machines.  Chakraborty, Narasimhan & Bhunia 

(2010) point out that this sequence is usually  of rare  logic values at internal nodes and, 

because  of the logic depth provided  by the state machines,  these  sequences  prove  a lot 

more difficult to detect during  testing and verification of an IC. 
 

The  simplest  sequential  trigger  is a synchronous  hardware  counter  within  the design 

that activates after a certain number  of clock cycles; Waksman  & Sethumadhavan (2011) 

refer to these as ticking time-bombs.  Chakraborty, Narasimhan & Bhunia  (2010) build on 

this,  discussing  asynchronous sequence counters  that are incremented  by specific events, 

e.g.,  a  rising  transition at the output of an  AND  gate.   Chakraborty,  Narasimhan & 

Bhunia  go on to suggest combining  the synchronous  and  asynchronous triggers to form 

hybrid  activation mechanisms. 
 

Waksman  & Sethumadhavan (2011) refer to these as “sequence cheat codes” and give 

the example of the bytes 0xd, 0xe, 0xc, 0xa, 0xf, 0xb, 0xa, 0xd, arriving over eight different 

clock cycles triggering a Hardware  Trojan.    The  bytes need  not arrive  over consecutive 

cycles and a patient Trojan  could monitor inputs and internal state for much more complex 

sequences of events. 
 

The complexity of a sequential based trigger is in the hands  of a Trojan  designer.  The 

side-effects of the complexity include the power drawn  by the Trojan  and  the number  of 

logic gates required  to implement it. Internal sequential triggers have also been proposed 

that take advantage of physical or analogue effects within an IC. For example, Rajendran 

et al. (2010) indicate  that monitoring  a chip’s  temperature  or power consumption  could 

be included within trigger hardware. Further, Chakraborty, Narasimhan & Bhunia  (2010) 

give the specific example of extra inserted capacitance that is charged  through a resistor. 

The  capacitor  is charged  depending  on activity  of the surrounding logic, which in turn 

could be induced  through arranging  specific IC activities.  The  Trojan  is triggered based 

on the charged  capacitor reaching a certain threshold. The notion of triggers being either 

analogue  or digital has  been  discussed  further by  Chakraborty, Narasimhan & Bhunia 

(2010). 
 

Jin, Kupp & Makris (2009) used a number  of individual  sequential triggers to activate 

different Trojans,  including detecting the keyboard  input string “New  Haven”, detecting a 

key-code for the F12 key, detecting the pattern “moscow” within input data, detecting the 

key-code for the CAPS lock key, and counting a specific number  of characters transmitted 

out an RS232 port. 
 

Chen et al. (2008) investigated a “content and timing” based Hardware  Trojan  trigger, 

where the Trojan  can only be activated  if the correct  content  is observed  at the correct 

time.  Interestingly for a small design, they show that the testing time required  to reliably 

activate their trigger is in the order 3 × 1035  years – they use the combination of detecting 

certain key-codes for keyboard  presses  over specific time intervals.  Chen  et al.   further 

develop a thermal trigger, where an input pattern that generates a lot of activity is used 

to drive an inverter-based ring oscillator to generate heat. A similar ring oscillator is then 
 

 
UNCLASSIFIED                                                                        11



 

DSTO–TN–1012                                                    UNCLASSIFIED 
 

 
used to detect delays caused  by this heat and  subsequently activate a Hardware  Trojan. 

Similarly Electro-Magnetic Interference (EMI),  logic activity, and logic circuit power draw 

could be used as internal triggers. 
 

 

3.2   Externally  Triggered 
 

External triggers rely on some interaction with the outside world, distinct from the system 

that the target device is integrated within.  The  power of external triggers, according  to 

Wang,  Tehranipoor & Plusquellic  (2008) is that the activation can come at any time from 

a source that is external  to, and  independent  of, the target device.  Wang,  Tehranipoor 

& Plusquellic  go on to give specific examples  of embedding  a receiver or antenna within 

a target device.   Tehranipoor & Koushanfar (2010)  specifically identify  on-chip  sensors 

that could  monitor the external environment, including  sensing  temperature, voltages, 

EMI,  humidity, and  altitude.  These  triggers are known as side-channel  triggers, akin to 

techniques for obtaining information from a target electronics device, without interfering 

with the device (e.g., Fan et al. (2010)).  Side-channels also provide a method for detecting 

the presence of Hardware  Trojans;  these methods are further developed in Section 5. 
 

Other external triggers include physical interaction with the target device.  Rajendran 

et al. (2010) include external input provided by a user, e.g., buttons or switches that could 

be attached to a target device.  A trigger  may  also come from another  component  that 

is externally connected, e.g.,  a connected memory  device.   Another specific example  is 

detailed by Jin, Kupp  & Makris (2009), who connect to an extra (unused)  external port 

within the target device to communicate with an embedded  Hardware  Trojan. 
 

 

3.3   Always On 
 

Some Hardware  Trojans  are always active and are not turned on or off by a specific trigger. 

Other Hardware  Trojans  may only make a subtle change to the specification, functionality, 

or timing of a system and hence not require a trigger.  For example, leaking data through 

a circuit-activity-based side-channel  could always be occurring  inside a particular IC. 
 

Other Always-On  Hardware Trojans may have a more subtle trigger mechanism.  Wang, 

Tehranipoor & Plusquellic  (2008)  discuss  modifying  an  IC’s geometry so that certain 

nodes or paths have  a higher  susceptibility to failure  – here the trigger mechanism  is a 

gradual  occurrence as circuit performance  degrades.  Shiyanovskii et al. (2009) delve much 

deeper into these mechanisms,  where devices on a wafer are modified to wear out after a 

certain  time  period,  typically  within  a few months  to years of operation  – these  are the 

so-called “reliability based”  Hardware  Trojans.   Shiyanovskii  et al.  give specific examples 

of intentional modifications of the fabrication process that can affect a number  of wear-out 

parameters, as detailed in Section 2.  They  show the fabrication factors that affect these 

mechanisms  and also note that post-fabrication testing does not test for these time-based 

early wear-out effects.  The triggering of these Always-On  Trojans  is probabilistic. 
 

These time-based early wear-out trigger mechanisms are very difficult to detect not only 

because of the time-based nature of their activity, but because they can be implemented in 

the noise margin of the CMOS semiconductor manufacturing process.  Wang, Tehranipoor 
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& Plusquellic  (2008) note that there are no activation side-effects for Always-On  Trojans, 

e.g., no power or temperature effects, as the Trojan  is always on. 
 

 

3.4   Trigger Design Issues 
 

A Hardware  Trojan  designer can easily create a trigger mechanism  that will prove difficult 

to detect. This is due to the massive state-space that exists for an adversary  to design a 

trigger within.  This state-space includes all the internal nodes of a logic design, the input 

and  output of the device, process variations, modified CMOS  geometries, and  analogue 

electronic effects.  Hybrid  triggers that combine  some or all of these trigger mechanisms 

make the job of finding Hardware  Trojans  even more difficult. 
 

A  common  assumption  among  researchers   is  that Hardware   Trojan   payloads  will 

most likely be hidden  behind  complex triggers designed to prevent accidental activation, 

or activation during  acceptance testing (Tehranipoor & Koushanfar 2010, Chakraborty, 

Narasimhan & Bhunia  2010). This is so that the Trojan  payload is not able to be detected 

prior  to deployment.  Interestingly, however,  having  such a complex trigger may in itself 

prove to assist in the detection process as discussed in Section 5. 
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4    Prevention 
 

 

Given  the considerable  threats posed by the presence  of Hardware  Trojans,  one way to 

ensure they cannot affect a design is by preventing them from being inserted at any stage 

of the IC development cycle. 
 

The  best way to prevent the insertion of a Hardware  Trojan  into an IC is to tightly 

control the process from end to end.  A small, trusted design team, using self built tools, 

will be able to specify an IC design that is free of Trojans.  Taking  this design to a trusted 

foundry (run by a small team of trusted individuals) will produce faithful, trusted instances 

of the specified design.  Having only trusted people assemble the final product, and having 

the product used only by trusted users will allow for a reasonable  level of faith that the 

original design is being used with no malicious modifications. 
 

This chain of trust is impractical for most products, even high-grade military products. 

The  cost,  in terms  of both money  and  time,  of only using ICs fully developed  in-house 

is prohibitive.  The commercial  sector’s use of packaged  IP blocks (analogous  to software 

libraries)  has seen the rapid  development of newer, more capable electronic products (e.g. 

smartphones).  If the Defence sector were to develop  all IP  in-house  it would  see their 

capabilities  fall far behind  those  offered by the commercial  sector.   There  may  be some 

ICs, such as high-grade  crypto chips, where the fully trusted life-cycle scenario is feasible, 

especially if the IC in question has a low number  of logic gates.  In this instance, however, 

it is still possible for the ICs to be stolen, reverse-engineered, and re-birthed as modified 

ICs if the supply chain is untrusted. 
 

Prevention is the first chance to counter the threat of Hardware  Trojans.   It is a vital 

link in a defence-in-depth strategy. There  are all the usual policies, procedures,  and best 

practices that can be used to maintain control over the IC development process:  utilising 

trusted individuals,  design  tools, and  trusted fabrication facilities as already  described. 

Some specific research  describing  novel methods for preventing Hardware  Trojans  at dif- 

ferent stages of the IC development life-cycle has been done.  This research  has looked at 

prevention during  the design, fabrication, and post-fabrication stages of an IC. 
 

 

4.1   Prevention  at Design 
 

During the design stage, Hardware  Trojans  may be added by an adversarial member of the 

design team, by untrusted EDA  tools or by including  untrusted third-party Intellectual 

Property (IP)  modules in the design. 
 

The  ability  to create  trusted circuits  using  untrusted EDA  tools  is  addressed   by 

Potkonjak (2010).   The  proposed  solution fully accounts for the use of all hardware  re- 

sources at all times, i.e., on all clock cycles. Not only must all resources be used, but they 

must also be required to be used for correct functionality of the IC. This  allows no room 

within the hardware  for additional Trojan  hardware. 
 

This technique capitalises on the observation that while it may be difficult to completely 

specify a  design  so that all resources  are  fully utilised, it is relatively simple  to check 

whether  or not a given design  satisfies  this  requirement.   As such,  the author proposes 

using untrusted, commercial CAD tools to create the design, and a small, self-built (hence 
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trusted) tool to check  that a  given  design  does  indeed  satisfy the requirements.   The 

primary  problem  with this approach  is that it is entirely possible (see (Baumgarten et al. 

2011) for an example)  to build a Hardware  Trojan  almost entirely from logic that already 

exists  in a design.   While  it may  be relatively  simple  to develop  a tool  to check that a 

given design does use all available hardware  resources, ensuring that their are no malicious 

effects of that design would seem to be a more difficult proposition. 
 

A similar technique is detailed by Chakraborty & Bhunia  (2009) but includes the use 

of obfuscation techniques. The correct functionality (“normal  mode”)  is hidden  behind  a 

secret initialisation sequence.  Any deviation from this sequence transitions the IC into an 

unrecoverable  “obfuscation mode”  in the state graph.   One difference between this tech- 

nique and the one described by Potkonjak is that this obfuscated technique uses dead-end 

states rather than attempting to soak up all available  logic gates into correct operation. 

This  makes it easier to produce,  but would also make it easier to modify without conse- 

quence.  It does not protect against someone modifying the source, nor does it prevent a 

dedicated reverse-engineer  from analysing  the design at a post-fabrication stage. 
 

 
 

4.2   Prevention  at Fabrication 
 

The  issue  of untrusted fabrication is addressed  by  Love,  Jin & Makris  (2011).    They 

propose a system that has an IP Consumer  providing  both a hardware  specification and 

a list of “security-related properties”.  Both the IP  Consumer  and  the IP  Producer have 

to agree on a translation of these properties into a formal mathematical codification in a 

theorem-proving language.  As the IP Producer writes the Hardware  Description Language 

(HDL),  they also produce  the formal proof that the specified hardware  fulfils all required 

properties.  This can then be checked by a theorem prover when the IP is delivered to the IP 

Consumer.  This idea is similar to the software process Proof Carrying  Code (Necula 1997). 
 

Tying  a formal  model  of a design  to the specification  of the design  may  result  in a 

more correct implementation.  However, as noted by Love, Jin & Makris,  it is left to the 

IP  Vendor  to create the formal  model.   This  assumes  that the IP  Vendor  is reasonably 

trustworthy and will not add Trojans  to either the design or the proof.  An untrustworthy 

IP  Vendor  may  add  a  Trojan  to both the design  and  proof  that is difficult  to detect. 

This is similar to the code produced  for The Underhanded C Contest (XcottCraver 2009). 

Not only is it difficult to specify all the security-related properties that you want to be 

addressed  by the hardware, but there are also new attack techniques being developed all 

the time, techniques that could bypass  all identified security properties. 
 

 
 

4.3   Prevention  at Post-Fabrication 
 

An approach  whereby  some of the IC’s design is implemented by reconfigurable  logic (to 

be  specified post  fabrication)  is described  by  Baumgarten,  Tyagi  & Zambreno  (2010). 

Reconfigurable  logic is placed  between  the outputs of some ICs and  the inputs  of other 

ICs,  disguising  some of the design  from  an  attacker who has  access to the RTL.  This 

approach  may  be seen as either  a preventative  measure  or a technique  for operating  in 

the presence  of Hardware  Trojans;  as such it is also detailed in Section  6.3.  In terms  of 
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its  preventive  attributes, it leaves an attacker uncertain  of the exact  workings of the IC 

until after the reconfigurable  logic has been programmed.  This  cuts down the attacker’s 

window of opportunity. 
 

Even given best efforts it is very difficult to completely prevent the addition of Hard- 

ware Trojan  logic to ICs.  The  best that can be achieved  is a first step in a combination 

of steps to counter the presence of Hardware  Trojans. 
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5    Detection 
 

 

As detailed in Section 4, it is not possible to completely prevent the insertion of a Hardware 

Trojan  into  an  IC during  a typical  design  flow.  Where  preventative  measures  are  used 

to protect against Hardware  Trojans  being  inserted into a  design  or  device,  detection 

mechanisms  are used to discover the presence of a Hardware  Trojan. 
 

Once detected, a Hardware  Trojan  may be removed  from a design (if detected in the 

RTL), the IC could be set aside so that it is not used, or the IC may still be used, operating 

in the presence of the Hardware  Trojan  (see Section 6 for more details on this). Depending 

on the detection mechanism  used, a Hardware  Trojan  may be either definitively identified, 

or a statistical measure  may be provided  indicating the probability that the design or IC 

has been tampered with. 
 

Traditional IC  test and  verification is targeted at performing  acceptance tests and 

ensuring an IC performs as specified. Generally,  however, it does not test for the addition 

of extra functionality.   Given  the state-space  that extra functionality  can  hide  within, 

this  would  be a tough  task  for all but the smallest  logic designs.   There  is still  a very 

real possibility that a Hardware  Trojan  will not be picked up during  testing, but will be 

activated once the chip is in use. Abramovici  & Bradley (2009) provide a strong argument 

that “we cannot guarantee that ICs deployed in the field are Trojan-free”. 
 

There  is no “magic bullet” for detecting all Hardware  Trojans.  Most current research 

focuses on detecting Trojans  post-fabrication; the fabrication process is currently seen as 

the weakest  link in the IC development  cycle.  Little  research  has  been  done  in detect- 

ing Trojans  within  RTL,  prior  to synthesis3 , or during  fabrication.   At this  stage  of the 

development cycle the designers  are thought to be trusted; detecting Hardware  Trojans 

therefore requires a trusted audit process, including an RTL design review and simulation. 
 

There  are  many  and  varied  techniques to detect Hardware  Trojans,   however,  these 

techniques are really only capable of identifying a specific class of Trojan.  Any individuals 

designing  Hardware  Trojans  would be trying to evade existing and  new detection mech- 

anisms  as they are researched  and  developed,  in an arms  race similar  to that now being 

experienced in the anti-virus industry.  Presented in the remainder  of this section are some 

of the state-of-the-art detection methods, with reference to Chakraborty, Narasimhan & 

Bhunia’s (2010) taxonomy (Fig. 5). 
 

 
 

5.1   Destructive 
 

Destructive methods of Hardware  Trojan  detection completely destroy the IC that they 

examine,  lessening the usefulness of such techniques. 
 

In order to have a very high degree of assurance  that there is no Hardware  Trojan  in a 

given IC, it can be completely reverse-engineered, however reverse-engineering  a complex 

modern  IC is a time consuming  and  expensive  process.  Reverse-engineering  is generally 

performed by Chemical Metal Polishing followed by Scanning Electron Microscope (SEM) 
 

3 Converting a design  described at the RTL  level (HDL  source,  or schematic) into a binary technology 

level net-list. 
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Figure 5: Hardware Trojan Detection  Techniques:  Chakraborty,  Narasimhan  & Bhunia 

(2010) 
 

 
image reconstruction  and  analysis.   Generally,  the determination  of the “correctness”  of 

a chip  is performed  through visual  comparison  with a known  good example  or “golden 

reference”.  However, if a Trojan  has been added  prior  to fabrication (and  is therefore to 

be found in all manufactured ICs),  visual comparison  will not work.  In this case the IC 

would have to be completely reverse engineered through the reading of the logic gate layout 

and  reconstruction of an RTL  description.  This  makes  the reverse  engineering  problem 

much more difficult. 
 

Hardware  Trojan  modifications might only be placed  in a handful  of distinct IC in- 

stances.   Under  these  circumstances,  reverse-engineering  can be used to determine  if an 

IC is free of Trojans  only up to a certain level of assurance.   For example,  Agrawal  et al. 

(2007) use destructive reverse engineering  to find known good ICs.  Before being reverse- 

engineered,  a random  sample  of ICs from a batch are “fingerprinted” using side-channel 

information such as power, temperature and  electromagnetic profiles.  Once a consistent 

set of parameters is obtained,  all  of the sampled  chips  are  then reverse-engineered   to 

ensure that they are not infected by Trojans.   The fingerprint can then be used in a non- 

destructive test on the rest of the chips in the batch. This  approach  suffers from several 

problems.   A Hardware  Trojan  may be realised  by the addition, deletion or modification 

of as few as two logic gates (Sturton et al. 2011), while modern ICs may consist of billions 

of such gates.  Finding  this “needle  in a haystack” requires  complete reverse-engineering 

at the gate level of the IC. In addition to this, there is no guarantee that ICs that have a 

Hardware  Trojan  will generate a different fingerprint to those without. 
 
 
 

5.2   Non-destructive 
 

 

Non-destructive methods of Hardware  Trojan  detection do not destroy the IC being exam- 

ined, and are classified as being either invasive,  or non-invasive.  Non-invasive  techniques 

leave the design  unaltered, while the invasive  techniques modify the design  in order  to 

embed features to assist with Trojan  detection. 
 

 
18                                                                            UNCLASSIFIED



 

UNCLASSIFIED                                                DSTO–TN–1012 
 

 

5.2.1     Invasive 

 
Invasive techniques can be split into two branches,  preventive and assistive.  Measures that 

are used to prevent the insertion of Hardware  Trojans  prior  to manufacture are detailed 

in Section 4. 
 

Assistive techniques are  used  to make  Hardware   Trojans   easier  to detect in  post- 

fabrication testing.  Chakraborty, Paul  & Bhunia  (2008) have proposed a design that aims 

to expose the presence of a Hardware  Trojan  in a multi-module design4 . This is achieved 

through additional inputs and outputs that are added  to each module.  The extra inputs 

provide a “key” which transitions the module into “transparent mode”.  In this mode, the 

module  executes self-testing circuitry, designed  specifically to test rare  events and  low- 

probability  values.   It then outputs a signature,  which is a combination  of the provided 

input key and  the results of its self-test.   This  signature is then provided  to the next 

module  in line as its  input key.  In this  manner  a single “special”  input key provided  at 

the multi-module design’s primary  input tests the entire module,  and  the result can be 

determined by a single value at the design’s primary  output. The authors claim that this 

method is useful against an  attacker who has  “information about the functionality and 

logic structure” of the IC. 
 

Using such specialised logic, designed to test the extended state-space where a Hard- 

ware Trojan  may lie, will, in practice, provide very little protection from a targeted Hard- 

ware  Trojan.    As discussed  elsewhere in this section, the likelihood  of detecting a well- 

crafted  Hardware  Trojan  is very small.   In addition  to the low probability  of detection, 

this technique also relies on the Trojan  having  been  inserted into the design  at a very 

specific stage.  The attacker would have to insert the Trojan  after the functional design of 

a given module, but before the module designer then designed the fingerprinting logic for 

that module. 
 

Salmani,  Tehranipoor & Plusquellic  (2009) propose a procedure  to insert dummy  flip- 

flops into  logic to increase  Hardware  Trojan  activity,  making  for easier  detection  using 

side-channel  techniques.  Other researchers  also suggest logic additions that will make it 

easier to detect a Hardware  Trojan  utilising side-channel  analysis,  e.g., Li & Lach (2008) 

add extra logic for characterising delay times within an IC. 
 

Das  et al.  (2010)  focus on preventing malicious  writes to external memory  using  a 

combined  hardware  and software model.  They  add extra Gate-keeper logic and modified 

software, that can check all writes to memory,  thus allowing illegal writes to be detected 

and  acted upon.   This  is a run-time detection mechanism  detailed further as a counter- 

measure  in Section 6.1. 
 

 
5.2.2     Non-invasive 

 
Non-invasive  Hardware  Trojan  detection is done by comparing  the performance  charac- 

teristics of an IC with a known good copy.  Detecting Hardware  Trojans  in a non-invasive 

manner  can be done either at runtime or at test-time.  The run-time detection mechanisms 

cross-over into the countermeasures, as once a Trojan  is detected at run-time there is the 
 

4 e.g., a design  consisting of an ALU, memory,  control logic, and  address  decoder. 
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opportunity to try and  continue operating, working  around  the Trojan.    The  test-time 

detection methods attempt to enhance traditional IC testing, or use side-channel  analysis. 
 

 
5.2.2.1   Runtime    Bloom, Narahari & Simha (2009) detail a Hardware  Trojan  detec- 

tion approach   that uses  both hardware   and  software.   This  strategy only  attempts to 

detect two attacks. The first is a DoS attack, which they detect by using a small custom 

hardware  guard  which sits on the memory  bus.  The  guard  is programmed to respond  to 

periodic  “liveness”  pings.   Failure  to respond  in a timely  manner  is treated as success- 

ful detection of a DoS attempt.  The  second attack that they can detect is a combined 

hardware  and software attack whereby  the Hardware  Trojan  disables memory  protection 

so that a colluding software  process can escalate its privileges.  This  is detected by test- 

ing whether  or not unprivileged  software  can access memory  that it should  not be able 

to access.  This  approach  requires  the Operating System to be altered to work with the 

guarding  hardware. 
 

Abramovici & Bradley (2009) added reconfigurable DEsign-For-ENabling-SEcurity 

(DEFENSE) logic to the functional design to implement real-time security monitors.  After 

the ICs have been fabricated, the reconfigurable logic is programmed, detailing how the de- 

vice should behave.  Variations from this norm are then able to be detected.  Subsection 6.2 

further explores this mechanism  and associated proposed  countermeasures. 
 

McIntyre et al. (2009) detect the presence of Hardware  Trojans  by executing function- 

ally equivalent processes on multiple hardware  processing elements.  The output from each 

of these elements can then be compared  to others, allowing processes that may be affected 

by Hardware  Trojans  to be re-computed on other processing elements. The mechanics are 

detailed further as a countermeasure in Section 6.4.  The  concept of being able to detect 

a Hardware  Trojan  through a subtask calculating an  incorrect output is limited.   The 

infected hardware  may provide correct outputs but also egress information in some other 

manner,  or it may degrade the performance  of the IC gradually  without drawing attention 

to itself. 
 

 
5.2.2.2    Logic Testing    Given the huge logical space in a modern  IC, constructing  a 

test vector that covers the entire IC logic space is computationally infeasible.  Chakraborty, 

Narasimhan & Bhunia  (2010) offer the statistic that, even restricted to a Hardware  Trojan 

with a maximum  of four trigger nodes and a single payload node, an ISCAS-85 benchmark 

circuit c880 (an  8-bit ALU)  with 451 gates can  have  ∼109   triggers and  ∼1011   possible 

Trojan  instances.  With numbers  like that, the most promising  logic-testing schemes take 

a statistical approach. 
 

Jha & Jha (2008)  present a  randomisation-based technique which  probabilistically 

compares  the functionality of the design of the circuit with the implemented circuit. The 

results given in this paper  relate to their “random” modification of ISCAS Benchmark 

circuits  (to “infect”  the circuit)  and  the authors  claim that their technique  was able to 

detect 10 out of 12 modifications. 
 

The motivation behind Chakraborty et al.’s (2009) study is to test rare occurrences on 

an IC rather than testing for correctness.  The tester determines rare states that can occur 

within a circuit module.  Testing then focuses on repeating test vectors that excite these 
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states.  The  authors  claim that this  technique  reduces  test length by ∼85% over a range 

of benchmark circuits and  achieves better coverage than a purely  random  test set.  This 

technique is based on the assumption that Hardware  Trojans  will more likely be activated 

by combinations of rare states within a design. 
 

 
5.2.2.3   Side-Channel Analysis   Rather than attempting to trigger a Hardware  Tro- 

jan  directly in order  to detect its presence,  side-channel  analysis  uses the fact that the 

Trojan  trigger mechanism  itself changes some characteristics of the IC, whether or not it 

activates the Trojan  payload.  The amount of power that a section of the IC uses (power 

draw),  the amount of heat produced  in certain locations or the length of time that certain 

parts of the IC take to perform their processing (path delay) are examples of the secondary 

IC characteristics used to perform side-channel  analysis.  This type of analysis appears  to 

have the best detection likelihood, as the Trojan  does not need to be activated (deliver its 

payload)  in order to be detected. 
 

Agrawal et al. (2007) present a broadly representative example of this type of detection 

mechanism.  Some known good copies of the IC are obtained and “fingerprinted” using one 

or more side-channel parameters.  Other chips can then be tested against these fingerprints. 

Various statistical techniques can then be used to pick out statistically significant (but well 

hidden)  differences. The authors specifically use power draw as the primary  side-channel. 

The  obvious difficulty is in ensuring  that the ICs used to generate the initial fingerprint 

are Trojan-free. Power supply transient signal analysis is used as the side channel by Rad, 

Plusquellic  & Tehranipoor (2008).  They  aim to determine the smallest Hardware  Trojan 

that they can find using this technique, which turns out to be three additional gates. The 

tests were performed  on a simulator of a particular benchmark circuit. 
 

Banga  & Hsiao (2009) propose  a technique that is able to magnify  the side-channel 

differences (based  on power draw)  between circuits infected with Hardware  Trojans  and 

those that are not. A “sustained vector technique” is used, which repeats (sustains) certain 

inputs in order to allow genuine circuits time to reach a stable state – a process that the 

authors call Toggle Minimisation. Next, infected regions within the design are isolated by 

looking at the differential power draw  when a new test vector is applied.   Large changes 

in the differential power draw  could be indicative of extraneous hardware, i.e., they are 

trying to identify circuits that are active when they are not supposed  to be. 
 

Path delay was the measurement used as the fingerprint – the side-channel  analysed  – 

by Jin & Makris (2008).  The authors categorise Hardware  Trojans  as having either implicit 

or explicit payloads.   Explicit payloads  directly affect the circuits that they are attached 

to (e.g., altering the value of a control or data signal).  Implicit Hardware  Trojan  payloads 

do not make changes to the circuitry that they are attached to; they may instead leak data 

via a side-channel,  or perform a DoS attack once triggered.  Jin & Makris claim to be able 

to detect 100% of explicit Hardware  Trojans  and 36% of implicit Hardware  Trojans.  Their 

experiments were conducted on a simulator, and their Trojans  were simple modifications 

designed specifically to affect power draw and path delay.  Similarly,  both path delay and 

leakage current are used as the side-channel  for analysis by Potkonjak et al. (2009).  Wang 

et al. (2008) use current charge integration from multiple current measurement points on 

an IC, and then localised current analysis to detect Trojan  circuitry.  The current analysis 

is once again compared  with a golden reference and the authors claim to be able to detect 
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added  Trojans  “as small as a few gates”; about 0.1% of the circuit area. 

 

The primary  problem  with the side-channel  analysis methodology for detecting Hard- 

ware Trojans  is that it depends  entirely on having  an authentic golden reference IC that 

can be used for comparison  and benchmarking. Where an IC has had a Trojan  added to it 

at any stage up to manufacture, and hence is to be found in each instance of an IC, these 

approaches  will not work.  Additionally, the search space for these detection methods may 

be very large.  Although good work has been done to manipulate inputs and use advanced 

statistical methods to amplify differences, the likelihood of detecting such a difference is 

very small, especially against a well written, targeted Hardware  Trojan. 
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6    Countermeasures 
 
 

The combination of state-of-the-art Hardware  Trojan  prevention and pre-deployment de- 

tection mechanisms  still cannot provide  complete certainty that manufactured ICs or re- 

configurable logic designs are free of Trojans.  Given the large number  and types of threats 

and the massive state space for Hardware  Trojan  triggers, some researchers  have focussed 

on  the problem  of maintaining secure  operation in  the presence  of Hardware  Trojans. 

Specifically, these researchers  have been looking at implementations that can prevent ac- 

tivation of certain Trojans,  or still allow useful trustworthy operations to be completed in 

the presence of an unknown  Hardware  Trojan. 
 

Successful countermeasures should allow hardware  to be oblivious to inserted Trojans 

and  even allow COTS  components to be used  to construct Hardware  Trojan  resistant, 

trustworthy computing systems.  To date no single, generic countermeasure has yet been 

developed or proposed  that would allow an IC to operate in a trustworthy manner  in the 

presence of an arbitrary Hardware  Trojan.  This section further examines the state-of-the- 

art in Hardware  Trojan  countermeasures, including  protection profiles,  implementation 

details, operational details and analysing  the general applicability of the countermeasure. 
 

There are software based mechanisms that can protect the confidentiality and integrity 

of data as it is stored,  processed  or transmitted by some ICs within  a system,  e.g., us- 

ing an encrypted file-system can protect data from Hardware  Trojans  that might reside 

within an ATA controller or hard  disk IC. There  are currently no commercial ICs that in- 

tegrate any Hardware  Trojan  countermeasures. Those countermeasures that are currently 

being researched  often only protect against a single class or sub-class  of threats and/or 

triggers.   Broader  protection  is usually  achieved  via a defence-in-depth  strategy,  target- 

ing specific Trojan  actions and trigger mechanisms with independent countermeasures and 

then combining these measures into a protection strategy. The proposed and experimental 

mechanisms that exist can be broadly categorised as either data guards,  new RTL-level ar- 

chitectures, reconfigurable architectures, or part of a replication, fragmentation and voting 

strategy. 
 
 
 

6.1   Data Guards 
 

 

By guarding  data (including  CPU  instructions), a designer  is attempting to prevent a 

Hardware  Trojan  from being activated and/or prevent a Hardware  Trojan  from directly 

accessing and utilising any (unencrypted) sensitive data. A guard  can control what form 

data takes as it is stored or transmitted within or between ICs or logic modules, affecting 

the manner  in which any Trojans  can interact with the data. 
 

 
 

6.1.1     Generic Guards 
 

 

Waksman  & Sethumadhavan (2011) introduce a number  of guarding  techniques to prevent 

Hardware  Trojan  activation.  Some of the proposed  techniques have been implemented in 

the Zesto x86 simulator. 
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Bus scrambling  is used to prevent Hardware  Trojans  receiving activation codes.  It is 

used  for non-computational units that handle  data, e.g.,  a memory  controller or DMA 

controller.  Waksman  & Sethumadhavan propose  using simple encryption schemes (e.g., 

XOR with a pseudo-random number)  to obfuscate data, only looking to secure it for a short 

period of time – reasoning that a lack of hardware  resources would prevent decryption by 

a Hardware  Trojan.   A manually  verifiable (trustworthy) circuit needs to implement the 

scrambling. 
 

Waksman  & Sethumadhavan only emulated the performance  effects of scrambling  by 

adding parameterisable delays in the caches and memory controller.  Whilst bus scrambling 

will prevent simple Trojans  from being activated, it can still lead to probabilistic activation, 

e.g., if a simple 32-bit data trigger is used, activation will likely occur within 232 bus cycles. 

A more controlled approach  might be to re-map  all inputs into a completely functionally 

validated state-space.  A strong encryption scheme should also be used to prevent sensitive 

data from being leaked. 
 

For computational units within an IC, obfuscating the data will affect the unit’s abil- 

ity to produce  a correct result as the results of the computation will be affected by the 

scrambled  inputs.  Waksman  & Sethumadhavan propose  to use homomorphic  cryptogra- 

phy (Gentry 2010) to allow computational units to operate on encrypted data inputs. An 

encryption function is defined that is homomorphic  over the computational function, allow- 

ing the computational unit to calculate the correct result while only processing encrypted 

data. The result can then be decrypted to obtain the desired computational result. 
 

Implementing  and  computing  these  homomorphic   functions  is  inefficient  and  non- 

trivial;  it is  difficult  to construct  a  general  purpose  homomorphic   encryption  

scheme (Gentry  2010).   Similar  to bus  scrambling,  the encryption  and  decryption  

units  would need to be implemented in trustworthy (verifiable)  hardware. Waksman  & 

Sethumadha- van  did not simulate the homomorphic  encryption scheme proposed,  but 

instead gave a simplified case study based  on an RSA cryptography unit.  The  use of 

Garbled  Circuits (Järvinen et al. 2010) might be considered  as an alternative approach  

for the obfuscation of data for computational units. 
 

Waksman  & Sethumadhavan also propose  a time-guard to prevent Hardware  Trojan 

activation within a validated functional state space.  An IC is fully functionally validated 

for a given number of cycles, and is then periodically powered on and off within this testing 

epoch,  ensuring  that no timer based  Trojans  can  be activated.   A light-weight context 

saving mechanism  is used to ensure  processing  continuity.  Waksman  & Sethumadhavan 

reason that any Hardware  Trojans  that are dormant for the complete testing state-space 

(a state-space of time and inputs) will forever be dormant during  this same period under 

operational conditions. 
 

This works for input-based and time-based triggers. However for non-volatile memory 

triggers, accumulation triggers (e.g., Chakraborty, Narasimhan & Bhunia’s (2010) capaci- 

tor charging trigger), side-channel  triggers, degradation effects and external triggers (e.g., 

RF) this type of countermeasure will not be adequate. The authors get around  the first of 

these  issues by burning-out  any  non-volatile  memories  post-tapeout  or by visual inspec- 

tion.  Another  solution  might  be preventing  the use of an ASIC process technology  that 

can be used to implement non-volatile storage. Any hardware  used to perform the context 

saving or IC resetting will need to be trusted. A simple emulation of flushing the processor 
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state was performed  by the authors. 

 

Further guards  are proposed  that would randomly  reorder  events and  insert dummy 

events into input sequences to different modules, e.g., to a memory controller so that the 

sequence  of stores/loads is disrupted.   These  guards  protect against sequential triggers 

being activated. Patient Hardware  Trojans  should still be able to get sequences through; 

however using complete validation and  power resets could prevent this from happening. 

Sequences that naturally have breaks in them may also escape this countermeasure. 
 

Finally, Waksman  & Sethumadhavan propose utilising multiple versions of an untrusted 

module  or IC from multiple  different  designers.   The  output from the modules  can then 

be checked and  compared  cycle-by-cycle – effectively voting on the output. This  has the 

drawback  of high cost in terms of silicon area  and  power consumption.  Replication and 

voting are further covered in Section 6.4. Whilst Waksman  & Sethumadhavan attempt a 

complete coverage against Trojan  activation they completely ignore side-channel,  timing, 

and external trigger mechanisms. 
 

 
6.1.2     Specific Bus  Guards 

 
Kim, Villasenor & Koç (2009) developed a custom System on Chip (SoC) bus architecture 

that proposes  changing  master/slave  bus architectures  to detect  Hardware  Trojans  that 

try to lock the bus utilising standard activities, e.g., master not releasing the bus, blocking 

interrupts, slaves continuously waiting. Basic updateable counters are used to implement 

simple heuristics to detect these types of activities and then blacklist suspect master/slave 

devices on the bus and  provide  reporting options.  The  architecture was tested using the 

Advanced  Micro-controller Bus Architecture (AMBA)  from ARM. 
 

This countermeasure is targeted at a specific architectural feature and a subset of Hard- 

ware Trojan  activities, i.e. preventing Trojans  from interfering with the correct operation 

of the SoC bus and hence affecting the performance  of the SoC. 
 

A number  of researchers  have looked at placing guards on the memory bus in a proces- 

sor architecture. The reasons for guarding  the memory bus include both Hardware  Trojan 

activation and data leakage. 
 

Das et al. (2010) insert shadow writes, i.e., companion  writes for all store instructions 

into binaries.  The addresses of these shadow writes are an encrypted version of the original 

addresses.   A Gate-Keeper core (hardware) residing  on the memory  bus  checks that all 

memory  writes are followed by their corresponding  write to an encrypted address.  Thus, 

the Gate-Keeper can ensure that the only writes that occur are legitimate in the original 

binary,  preventing a Hardware  Trojan  utilising the bus to leak sensitive information.  A full 

prototype was developed that could execute x86 static binaries and have the Gate-Keeper 

detect all shadow  writes.  The  Gate-Keeper would necessarily  need to be trusted.  This 

approach  recognises that data egress in any  large amount  will generally  require  writing 

that data to memory  (to send across a network for example).  However, data egress may 

also occur utilising other methods, e.g., through altering power draw or changing  timing 

characteristics.  This mechanism  crosses over between detection and countermeasure, i.e., 

the IC  is operating  in  the presence  of Hardware  Trojans   and  the detection  occurs  at 

run-time. 
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Bloom et al. (2009) introduce a double guard between the CPU and data bus produced 

using  independently keyed  adversarial hardware.  The  two guards  check each  other for 

correctness.  Executables are encrypted once with each key for the separate guards,  with 

data being decrypted on its way to the CPU  and  encrypted on its way back to memory. 

The  system relies on there being no collusion between the two guards.  An instrumented 

compiler is also a crucial part of the system to generate the binaries,  BIOS, and Operating 

System images prior to run-time.  The double guard relieves some of the need to trust either 

guard;  of more importance is ensuring  that there is no collusion between the two guards. 

The countermeasure was evaluated using SimpleScalar  (Austin, Larson & Ernst 2002), an 

open-source  computer architecture simulator. 
 

As  early  as  2003,  Suh,  Clarke,  Gassend,   van  Dijk  & Devadas  had  proposed  their 

AEGIS processor architecture that could utilise untrusted peripheral  components and run 

an untrusted Operating System. The processor needs to be trusted to perform encryption 

primitives, acting as a guard between itself and all untrusted peripherals. The difficulty lies 

with getting the AEGIS IC free from Hardware  Trojans.   The idea of utilising a minimal 

TCB,  or trusted hardware  circuitry to control Hardware  Trojan  countermeasures is vital 

to every countermeasure presented in this section. 
 

These memory guard mechanisms  target quite specific Trojan  trigger mechanisms  and 

threats, however some of the principles  can be carried  over to other buses and  modules 

within an IC. 
 

Beaumont  et al. (2011)  propose  a guard  that sits  on the ATA  bus  between  a CPU 

and  a hard  disk.   The  guard  can  encrypt or scramble  data to prevent simple  codes or 

sequences  of data from  activating a Trojan.    The  guard  can  also encrypt data so that 

untrusted ICs within  the hard  disk cannot  store  or leak any  sensitive  information.   For 

more  complete coverage,  the guard  would  also need  to mitigate against timing-channel 

triggers.  Anderson,  North & Yiu (2008) expand  on this idea, introducing the concept of 

the Silicon Security Harness.  The Silicon Security Harness involves one or more gates and 

monitors that can be retrofitted to hardware  or system components, or that are installed 

as part of the architecture.  The  Silicon Security Harness  uses these protective measures 

to increase the resistance against Hardware  Trojans. 
 

 

6.2   Novel RTL-Level Architectures 
 

Some researchers  have identified specific modifications that can be made to modern  pro- 

cessor  and  IC  architectures to protect against Hardware  Trojans.    The  premise  is the 

addition or modification of logic gates to specifically identify the presence  of, or prevent 

the activation of Hardware  Trojans. 
 

Hicks et al. (2010) developed a hybrid hardware/software, compile-time/run-time Hard- 

ware Trojan  countermeasure called BlueChip.   BlueChip  is a defensive strategy that in- 

cludes both a design-time and a run-time component to deal with RTL  designs that may 

have  arbitrary Trojans  inserted  at unknown  locations.  An Untrusted Circuit  Identifica- 

tion (UCI) algorithm and tool-set automatically identifies and removes potential malicious 

circuits, in this case from an RTL  design destined for a processor IC. Suspicious circuits 

are  identified and  removed  during  design  verification testing.  Any  circuits that are  in- 

cluded in the design but that do not affect any outputs during  testing are identified and 
 

 
26                                                                            UNCLASSIFIED



 

UNCLASSIFIED                                                DSTO–TN–1012 
 

 
removed.  The removed hardware  is replaced  by logic that will trigger an exception if the 

removed hardware  is ever activated.  This may occur due to potential Trojan  activation or 

a false-positive from correctly operating circuitry that may have been removed.  Low-level 

software  will then try and  recover  and  move forward  by  emulating  what  the hardware 

was trying to achieve – akin  to a software trap for performing  floating point emulation. 

Unrecoverable  exceptions (nesting) are addressed  by the proposal  to use a very small set 

of ‘trusted’ instructions to perform the emulation. 
 

The BlueChip concept has been prototyped using the Leon3 processor (Aeroflex Gaisler 

AB 2010) design on a Xilinx Virtex5 FPGA. BlueChip moves some of the onus from trusted 

hardware  to trusted software components, leaving a truly small subset of hardware  that 

needs to be fully verified to be used to emulate  the removed  hardware.  The  strategy  is 

most applicable  to processor designs where the exception handling  and software executing 

mechanisms exist to handle the emulation requirements.  Extending the strategy to generic 

IC design may require  a trusted co-processor  that could handle  the exceptions  and  lead 

the way in emulating around  any removed hardware. Since the development of BlueChip, 

Sturton et al. (2011),  have  developed  malicious  circuits  that can be inserted  into  an IC 

that will evade UCI detection and also pass design-time testing. 
 

Abramovici  & Bradley  (2009) identified that no existing pre-deployment mechanisms 

can  guarantee detection of all Hardware  Trojans.    They  propose  detecting post-manu- 

facturing  tampering  attacks at run-time  through  the addition  of extra logic to an  IC – 

an  integrated self-checking IC;  based  on detection mechanisms.    Additional DEFENSE 

(DEsign-For-ENabling-SEcurity) logic is added  to a  SoC  to perform  real-time,  config- 

urable  security checks of the behaviour  of different parts of the system, multiplexing the 

different  parts through  checking  hardware.  Examples  include,  checking  illegal accesses 

and  illegal states, DoS checks, and  consistency checks (e.g., processor enters an inconsis- 

tent mode for the current state). When  an attack is detected, real-time countermeasures 

are deployed,  such as disabling  suspect logic blocks.  Abramovici  & Bradley  also propose 

using fail-safe states, spare  logic, and  check-pointing to counter any  detected attacks in 

real-time. The DEFENSE platform has not been prototyped and providing  complete cov- 

erage of Hardware  Trojans  during run-time security checks would be difficult.  Introducing 

countermeasures in real-time to provide  continuity of operation of the IC would also be 

difficult. 
 

Deng, Chan & Suh (2009) propose a time-bounded, unique hardware  checksum that is 

based on checking the authenticity of trusted hardware. The hardware  checksum is based 

on low-level micro-architectural  implementation  details  of the processor.   The  hardware 

is challenged  and  a  checksum  needs  to be  returned within a  specific time limit.   The 

authors suppose that an authentic checksum will not be able to be emulated or simulated 

within the time limit and  only the authentic hardware  will be able to respond  correctly. 

The mechanism  ensures that no Trojans  have been added  to the circuit post-fabrication. 

New instructions have  been  added  to the processor  architecture to support the Micro- 

Architecture Signature Function (MSF),  which  utilises on-chip  architectural features to 

generate a unique response to a challenge.  While the mechanism  can be used to guarantee 

that the hardware  is authentic,  it cannot  guarantee  that no Trojans  have  been inserted 

into the design during  the specification, design, verification, or manufacturing stages. 
 

Specifically targeting  DoS Hardware  Trojan  threats, Bloom  et al.  (2009)  developed 
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a heartbeat function to check for continued operation of an  IC. Non-cacheable  memory 

accesses are inserted into the software, these then present themselves on the memory bus 

at regular,  but random  intervals and  are used to detect whether or not the IC has been 

subject to a DoS attack. 
 

 
 

6.3   Reconfigurable Architectures 
 

Using  reconfigurable  logic to counter  Hardware  Trojans   can  bring  significant  benefits, 

but also presents a new set of design  problems  and  challenges.   There  is a spectrum of 

reconfigurable  logic devices, including high logic density FPGAs  where most of the device 

is reprogrammable; platform targeted FPGAs  that contain fixed semiconductor elements, 

e.g.,  PCIe  endpoints,  memory  controllers,  even  complete processor  cores;  and  custom 

ASICs that may contain small reconfigurable  portions to perform  specific functions, e.g., 

implementing glue logic, or implementing a custom co-processing element. 
 

The main benefit of reconfigurable  logic is the separation provided  between the hard- 

ware implementation and  the design implementation.  In a typical IC, the design is im- 

plemented  directly  in the semiconductor  process,  whereas  utilising  reconfigurable  logic, 

a standard programmable logic element  or macro  is implemented  in the semiconductor 

process and the design is later implemented by programming these logic elements using a 

configuration bit-stream.  This  separation means  a design can be developed  almost com- 

pletely  independently  of the hardware, and  in a trusted environment,  although  there  is 

still some reliance on specific peripheral  features attached to the generic logic elements. 
 

Whilst the RTL  design can now be controlled, the design and  implementation of the 

reconfigurable  logic is subject  to many  of the same  Hardware  Trojan  insertion  threats 

as a standard ASIC.  The  main  difference is that an  attacker can  only perform  generic 

attacks against the reconfigurable logic architecture, making it more difficult to seamlessly 

interfere with, or modify the logical operation of the configured design.  Hardware  Trojans 

can still perform the full range of attacks, modify functionality, modify specification, leak 

sensitive information, and  DoS. For  example,  logic elements can be modified to perform 

augmented operations, potentially introducing subtle errors  into designs, or data can be 

leaked through peripheral  devices. 
 

The newly defined problem becomes how to best implement trustworthy designs know- 

ing that the underlying  reconfigurable  logic may be infected with arbitrary Trojans,  and 

how  to protect the integrity of the design  (configuration bit-stream) once  it has  been 

created, i.e.  prevent the bit-stream from becoming  corrupted or infected by Trojans.   A 

generic three-step measure  for securing the integrity of an FPGA  bit-stream is proposed 

by Webb  (2006).  First, the integrity of the configuration is checked by reading  it back, 

secondly,  the FPGA  is partially  reconfigured  (from an authenticated partial bit-stream) 

if an  incorrect configuration is found,  and  thirdly, the FPGA  uses a challenge-response 

protocol to notify a third party if the system has been compromised. 
 

Dutt & Li (2009) identify recent work on protecting FPGA  bit-streams and  config- 

uration memories  from  “upset” events.   They  also identify recent work  indicating that 

while FPGA  Fabrication is separated from  FPGA  design,  reliance  on third-party inte- 

gration  and  IP  modules  can  introduce  external  influences,  and  that while configuration 
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bit-streams provide inherent protection and are difficult to reverse engineer, they are not 

impossible to reverse engineer.  Further they identify that while bit-stream encryption pro- 

vides good protection, it removes the ability to do partial reconfiguration and also cannot 

protect against tampered IP that makes its way into the design. 
 

Dutt & Li propose  using  ECC-based  parity groups  to guarantee  the authenticity of 

the design.  Additional logic is added  to output parity from groups of Configurable  Logic 

Blocks (CLBs) within an FPGA. This parity is checked using a trusted checking phase to 

uncover  any design tampering.  Two-stage randomisation of the parity generation is used 

to ensure non-predictability in the result of any given parity group. 
 

Baumgarten,  Tyagi  & Zambreno  (2010) protect  against  Hardware  Trojans  that may 

be inserted during  the fabrication stage.  By placing  reconfigurable  logic blocks between 

crucial elements within the design, a foundry only sees reconfigurable  architecture in some 

parts of the design.  These  barriers  are then programmed, or unlocked,  using a securely 

distributed key post-manufacture to complete the design.  If the location and functionality 

of these barriers  is carefully chosen then any inserted Trojans  will have difficulty activating 

and affecting the operation of the IC. Careful consideration would need to be given to the 

type of reconfigurable  logic, key management, and  different barrier  placement heuristics. 

Combining  fixed and  reconfigurable  logic can provide  unique  solutions to Hardware  Tro- 

jan infections; the reconfigurable  logic could even be used to implement local protection 

mechanisms. 
 

Utilising reconfigurable  logic for Hardware  Trojan  protection introduces a new set of 

design and verification challenges, moving the focus from the semiconductor process to the 

RTL  design.  Significant collusion would be required  between the fabrication process and 

CAD tool vendors  to implement an effective IC-level Hardware  Trojan.   Implementing a 

complex reconfigurable logic design undoubtedly relies on integration of many IP modules. 

Huffmire et al. (2007) proposed the idea of Moats  and Drawbridges as isolation primitives 

to ensure  that when  connected together,  the interfaces of the IP  cores  have  not been 

tapped or illegally routed within an FPGA. 
 

Further features  of reconfigurable  logic that may  be used  to counter  Hardware  Tro- 

jans  include  partial and  dynamic  reconfiguration of logic (Silva  & Ferreira   2010),  en- 

cryption of configuration bit-streams (Trimberger 2007), replication and  lock-stepping of 

logic (Newgard  & Hoffman 2010), design of architecturally variant but functionally iden- 

tical logic modules (McIntyre et al. 2009), and generating unique hardware  based random 

numbers  (Kumar  et al. 2008). 
 

 
6.4   Replication,  Fragmentation,  and Voting 

 
Effective Hardware  Trojans  rely on understanding the operation of an electronic circuit de- 

sign at some level, from process and gate-level, through RTL-level, IC-level and electronic 

design.  A generic Hardware  Trojan  countermeasure that can be deployed at many of these 

levels involves:  replication, or duplication of logic and/or data; slicing, or fragmentation 

of logic and/or data; scattering, or distribution of logic and/or data; and  gathering and 

combining  of logic and/or data results, e.g., using a voting mechanism. 
 

The  effectiveness of these general  countermeasures comes on three fronts:  protecting 
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against Hardware  Trojans  leaking sensitive information by splitting the data up and pro- 

cessing it with independent logic elements; protecting against functional or specification 

modifications to elements by using multiple replicated, or duplicated logic; and protecting 

against DoS attacks by providing  redundancy in operation of logic elements within the 

design. 
 

The  countermeasures can be deployed  at various  levels from gate, RTL,  logic design, 

functional modules, and IP cores, through to the IC and macro-level devices.  The protec- 

tion mechanisms rely on a non-collusion assumption5  between the replicated, or duplicated 

elements within the design. 
 

Waksman  & Sethumadhavan (2011) propose  using  logic duplication, where  multiple 

versions  of an  untrusted module  or IC are  used  from multiple different designers.   The 

outputs from the modules are then checked on a cycle-by-cycle basis, effectively voting on 

the correct output. Waksman  & Sethumadhavan indicate the high cost in terms of silicon 

area and power consumption. 
 

McIntyre et al. (2009) utilise a method for dynamically  evaluating the trust in hardware 

at run-time.  The premise is to detect the presence of Hardware  Trojans  at run-time and 

then continue processing  by removing  or relying  less on the suspicious  elements.  They 

propose  using  a multi-core  processing  system  to take  advantage  of in-built  redundancy, 

and  the ability to discard  cores  if they are  found  to be  untrustworthy.   Functionally- 

equivalent, but variant, processes are  spawned  on multiple processing  elements and  the 

results compared.  The variation in processes may be obtained from different compilation, 

implementation, or algorithms used.   If the compared  results differ,  a third processing 

element is introduced and the three results are compared.  This process is continued until 

agreement is reached  between at least two processing elements. Processing  elements that 

give inconsistent (wrong)  results are dynamically  penalised,  i.e., they become less trusted 

and are less likely to be used. 
 

No thought was  given  to the trust of the software or  hardware   that performs  the 

comparison.    This  method could  be  further extended to using  functionally  equivalent 

hardware   implemented as  randomised   variants.   The  method could  also  be  applied  at 

different abstraction levels, e.g., instruction level, gate-level, program-level,  or IC-level.  If 

performed  at the instruction-level this activity could become transparent to higher levels, 

with the hardware, including a small TCB,  taking care of the instruction-level scheduling, 

replication, variant processing, and voting. 
 

Newgard  & Hoffman (2010) introduce a tightly-coupled dual-processor  lock-step con- 

figuration implemented inside an FPGA  – an implementation of replication and voting at 

the macro  level.  Both processors  receive and  process the same instructions at the same 

time.  Hardware  check logic examines  and  compares  all bus control signals on every bus 

transaction.  If an error  is detected, the system is forced into an error  recovery sequence. 

Further development and verification of a TCB to implement the trusted checking and er- 

ror recovery mechanisms  would be needed to adequately counter an FPGA  infected with 

Hardware  Trojans.  The method could be expanded  for a larger number  of processors that 

are either discrete ICs or embedded  within a reconfigurable  fabric. 
 

5 A reasonable assumption given the variant processes and channels  available for the design, manufacture 

and  procurement of electronic design  components. 
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In 1991, Trouessin  et al.  investigated the provision of high-reliability and availability, 

and  the preservation  of data-confidentiality  in  large-scale  distributed  systems.   Whilst 

this work did not address  the Hardware  Trojan  threat, the techniques for fault tolerance 

are  very  relevant.   The  authors  introduce  a  general  approach   that fragments  the data 

into small  pieces,  such  that on its own each  fragment contains little information.   The 

approach  can  be used  for both data storage  and  data processing,  Trouessin  et al.   cite 

Fray,  Deswarte & Powell (1986) and Fray & Fabre (1989) as references for data storage and 

data processing  fragmentation respectively.  The  fragments are then scattered for either 

storage or processing.  Replication (redundancy) of the fragments is used to gain reliability 

in the system.  Threshold  schemes,  akin  to secret sharing  (e.g.,  Shamir  (1979))  are also 

proposed  to recombine  the stored or processed data. The determination of fragmentation 

functions for general purpose processing could be difficult and expensive to compute. The 

same mechanism  could be implemented as discrete hardware  processing elements. A TCB 

would be needed to handle the input and output of the processing and storage operations. 
 

To date, research  into  Hardware  Trojan  countermeasures  has focussed on preventing 

the activation of Trojans  and detecting Trojan  activity at run-time. Any countermeasure 

developed  should  protect  the confidentiality  of data and  maintain  integrity  of operation 

of the device being protected.  Existing software techniques that focus on reliability and 

confidentiality may  be  applicable,  or  may  be  applied  in  concert with newly  developed 

countermeasures.  There is currently no single solution that can provide complete coverage 

against the range  of threats and  triggers presented earlier.    It is unlikely  that such  a 

solution will be developed,  instead a combination of countermeasures will be needed  to 

combat specific classes of Hardware  Trojans  within specific application domains.   These 

countermeasures  will need  to be developed  cognisant  of both the systems  within  which 

they will be deployed  and  the level of protection they aim to provide.   As demonstrated 

by Sturton et al. (2011), when new countermeasures are developed,  researchers  will also 

find ways to bypass  them.  This  Hardware  Trojan  arms-race  further  highlights  the need 

for a defence-in-depth approach. 
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7    Summary 
 

 

Hardware  Trojans  are a present and  ongoing threat to the security of electronic systems 

world-wide.   The  Australian Military has  particular concern  due  to the outsourcing of 

design and  manufacture of integrated electronic components and  our reliance  on COTS 

components to maintain capability.   Hardware  Trojans  threaten to compromise  the in- 

tegrity of data and  operations performed  by any system containing integrated electronic 

components.   The  threats include  functional and  specification modifications, leaking  of 

sensitive information and Denial of Service attacks. 
 

Hardware  Trojan  payloads  and their activation mechanisms  can take advantage of the 

massive state-space formed by the combination of parallel logic, internal routing, and input 

and output, that exists within a modern  IC. The resulting Hardware  Trojans  can remain 

hidden  deep within the design of an IC, having very poor observability. 
 

Efforts  to prevent  Hardware  Trojans   being  designed  or  manufactured  into  ICs  are 

still in their infancy.   Much  current research  is focused on post-fabrication detection of 

Hardware  Trojans,   with current efforts looking  at destructive techniques,  side-channel 

analysis,  and  assistive logic testing techniques.  Detection mechanisms  are often focussed 

on a specific class of Hardware  Trojans,  with no single or combination of techniques able 

to provide complete coverage.  A sprinkling  of novel countermeasures have been developed 

that will allow trusted operation to continue in the presence of Hardware  Trojans.  These 

countermeasures focus on: guarding  data, inputs and outputs; new RTL-level architecture 

features; reconfigurable  logic; and replication, fragmentation and voting schemes. 
 

Future research  will have  to focus on combining  the best prevention and  detection 

techniques to provide the greatest guarantee of Hardware  Trojan  free devices.  New coun- 

termeasure techniques will have to be developed  to allow these still untrusted devices to 

perform trusted operations. It is likely that a combination of countermeasures will be re- 

quired to provide the best coverage depending  on the device or system being protected. A 

defence-in-depth approach  should allow COTS  ICs to be combined with some customised 

logic to operate in a trusted manner.  Ultimately some small trusted hardware  will need to 

be developed to provide the root-of-trust upon which the integrity of any countermeasures 

are built. 
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