
Accepted Manuscript

A payload-based mutual authentication scheme for Internet of Things

Mian Ahmad Jan, Fazlullah Khan, Muhammad Alam, Muhammad Usman

PII: S0167-739X(17)30389-8
DOI: http://dx.doi.org/10.1016/j.future.2017.08.035
Reference: FUTURE 3630

To appear in: Future Generation Computer Systems

Received date : 13 March 2017
Revised date : 9 June 2017
Accepted date : 17 August 2017

Please cite this article as: M.A. Jan, F. Khan, M. Alam, M. Usman, A payload-based mutual
authentication scheme for Internet of Things, Future Generation Computer Systems (2017),
http://dx.doi.org/10.1016/j.future.2017.08.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2017.08.035

A Payload-based Mutual Authentication Scheme for
Internet of Things

Mian Ahmad Jana, Fazlullah Khana, Muhammad Alamb,∗, Muhammad Usmanc

aDepartment of Computer Science, Abdul Wali Khan University Mardan, Pakistan
bInstituto de Telecomunicações, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

cSchool of Computing and Communications, University of Technology Sydney, Australia

Abstract

The Internet of Things (IoT) is a vision that broadens the scope of the Internet by incor-

porating physical objects to identify themselves to the participating entities. This inno-

vative concept enables a physical object to represent itself in the digital world. There

have been a lot of speculations and future forecasts about these physical objects con-

nected with the Internet, however, most of them lack secure features and are vulnerable

to a wide range of attacks. Miniature sensor nodes, embedded in these physical ob-

jects, limit the support for computationally complex and resource-consuming secured

algorithms. In this paper, we propose a lightweight mutual authentication scheme for

the real-world physical objects of an IoT environment. It is a payload-based encryption

scheme which uses a simple four-way handshake mechanism to verify the identities of

the participating objects. The real-world objects communicate with each other using

the client-server interaction model. Our proposed scheme uses the lightweight features

of Constrained Application Protocol (CoAP) to enable the clients to observe resources

residing on the server, in an energy-efficient manner. We use Advanced Encryption

Standard (AES), with a key length of 128 bits, to establish a secured session for re-

source observation. We evaluate our scheme for a real-world scenario using NetDuino

Plus 2 boards. Our scheme is computationally efficient, incurs less connection over-

head and at the same time, provides a robust defence against various attacks such as,

resource exhaustion, Denial-of-Service, replay and physical tampering.

∗Corresponding author
Email address: alam@av.it.pt (Muhammad Alam)

Preprint submitted to Elsevier June 9, 2017

Keywords: Internet of Things, CoAP, Payload Encryption, Lightweight

Authentication, Intrusion Detection, Resource Observation

1. Introduction

Technological advances in the field of wireless, cellular and sensor networks have

laid a solid foundation for the IoT. It is a novel paradigm which encompasses the ev-

eryday physical world objects by enabling them to interact with each other using the

unique addressing schemes [1]. It is estimated that around 50 billion such objects will

be connected to the Internet by 20201. These objects will be empowered to sense,

process and control the physical world events and numerous phenomena of interest.

This integration and interoperable communication will generate an enormous amount

of data which needs to be stored, processed, analysed and transmitted in a very system-

atic manner [2]. Eventually, the IoT will lead us to the Internet of Everything (IoE),

where the objects, data and processes will be integral parts of our daily lives. We are

moving to an era where the Internet of embedded objects will become ubiquitous by

integrating the virtual world of information with the physical world of objects.

The integration of physical objects with the Internet requires various communi-

cation models. This requirement will likely add some very ingenious and innovative

malicious models to the future Internet [3]. Security provisioning in an IoT framework

is a challenging task because each physical object has its own distinguishing features.

The identity of each person, object and system connected with the Internet needs to be

verified. In the absence of the identity verification, the intruders will gain access to the

network and perform various malicious activities. The consequences of these activities

are diverse in nature with applications ranging from disabling a home security system,

conveying false health readings to practitioners to activating false fire alarms.

Despite all these threats, most of the available IoT products lack secured features.

Thus, we are about to use products which are vulnerable to a wide range of security

breaches. Rather than improving our lives, these products will lead us to a new era of

1http://www.cisco.com/web/solutions/trends/iot/indepth.html

2

cybercrimes. As a result, the IoT will more likely become the Internet of Vulnerabili-

ties (IoV). Recently, Proofpoint Inc.2, a leading security firm uncovered a cyber-attack

involving physical objects. This is considered as the first major security breach in

the world of IoT. Over a period of less than two weeks, 750, 000 malicious emails

were transmitted from more than 100, 000 devices. Interestingly, more than 25 percent

of those devices were real-world objects including televisions, refrigerators and other

household appliances. It was so far the simplest attack regarded as misconfiguration

and using default passwords were sufficient to conduct such attack. Hence, the IoT is

exposed to various security threats which include the botnets along with the thingnets.

In view of the above discussion, we propose a lightweight mutual authentication

scheme through payload encryption in this paper. The Constrained Application Pro-

tocol (CoAP) [4] is used as the underlying protocol to meet the requirements of the

resource-starving objects. The major contributions of our research are as follows.

1. Our proposed scheme verifies the identities of clients and the server communicat-

ing with each other. It is a payload-based mutual authentication scheme which

incurs a small connection overhead and is computationally simple and robust.

A lightweight handshake mechanism consisting of only two round-trip message

exchanges is used for the client and server authentication. Both the client and

server challenge each other for authentication by generating encrypted payloads.

The payload of each message is kept to a maximum of 256 bits.

2. Our proposed scheme uses the lightweight features of CoAP only for the ex-

change of resources among the clients and server. CoAP alone does not pro-

vide security features but relies on Datagram Transport Layer Security (DTLS)

[5] at the transport layer for security provisioning. However, DTLS is compu-

tationally complex and requires ample of network resources which is not the

case with most of the resource-starving physical objects of an IoT. Our proposed

scheme replaces DTLS and incorporates all the features necessary for securing

the physical objects. Unlike DTLS, our scheme does not introduce a separate

protocol layer which further reduces the computation and communication cost.

2http://www.proofpoint.com/about-us/press-releases/01162014.php

3

Our scheme can be a lightweight yet robust and secure alternative to the DTLS

for the IoT objects, a claim validated by our experimental results.

3. Malicious nodes are restricted from establishing multiple connections with the

server at a given time which eliminates the possibility of resource exhaustion and

DoS attacks. Each client is allowed to establish only a single connection with

the server in order to fairly utilize its limited resources. Our scheme ensures that

the resources are provided only to the legitimate clients by a legitimate server.

4. Our proposed scheme is resilient not only to resource exhaustion and DoS attacks

but also to the replay attack. Freshness of the notification updates from the server

is used as a measure to detect a replay attack.

The rest of this paper is organized as follows. In Section II, related work from

the literature is provided. In Section III, we first present an overview of the problem

statement followed by our proposed lightweight payload-based mutual authentication

scheme. The design decisions and objectives of our proposed scheme are also ex-

plained in this section. In Section IV, the resilience of the proposed scheme is analyzed

against various attacks during mutual authentication and data exchange. In Section V,

we provide the experimental results for our proposed scheme. Finally, the paper is

concluded and the future research directions are provided in Section VI.

2. Related Work

In this section, we provide related research securing IoT objects and various au-

thentication schemes to better manage communications between these objects. First,

an overview of the CoAP protocol is presented followed by a brief description of var-

ious authentication and cryptographic schemes to meet the ever-existing security and

privacy challenges in the IoT.

The HTTP-based web technology uses the Representational State Transfer (REST)

architecture [6]. This protocol requires extensive memory and computational capabili-

ties for resource provisioning. The objects in an IoT environment are mostly resource-

constrained so their capabilities are restricted to support the HTTP-based web services.

4

Hence, the Internet Engineering Task Force (IETF)3 has formed a special working

group known as Constrained RESTful Environments (CoRE). This working group is

responsible for developing lightweight protocols to provide web resources for IoT [7].

The CoAP protocol is one such product of this working group which inherits a subset

of the HTTP features to meet the requirements of a resource-constrained IoT [4].

CoAP uses a simple request/response interaction model for exchanging the re-

sources among clients and servers. Each client has the option to register itself with

a particular server for the resource observation [8]. The registration request is a con-

firmable (CON) message having an observe option which is a 24-bit sequence number.

A CON request needs to be acknowledged (ACK) by the server with a matching re-

sponse. CoAP supports four types of messages: Confirmable (CON), Non-Confirmable

(NON), Acknowledgement (ACK) and Reset (RST). The protocol supports various

methods such as GET, POST, DELETE and PUT for resource manipulation. The CON

and NON messages may carry a request or response with one or more methods applied

to it. CoAP has a fixed length binary header of only 4 bytes, hence, fewer resources are

consumed. The cost-effective provisioning of RESTful services in Low-power Lossy

Networks (LLNs) coupled with low complexity in terms of protocol header, message

parsing, asynchronous transaction model and build-in resource discovery makes it an

ideal choice for the IoT deployment. As a result of these distinguishing features, CoAP

is an ideal replacement for the existing IoT protocols such as MQTT [9] and XMPP

[10]. Hence, CoAP is deployed in various applications such as transport logistics [11],

home automation system [12], smart cities [13] and freight supervision [14].

Like any other communication network, the information in an IoT environment is

susceptible to various types of attacks at different layers. In [15], the authors high-

lighted various security challenges faced by these networks. The error-prone commu-

nication links coupled with the resource-constrained nature of objects restrict the use of

Transport Layer Security (TLS) [16]. In addition, the packets may arrive out of order,

and may be missing and/or corrupted. Hence, the DTLS is an obvious choice for se-

curing the communication in a CoAP-based IoT. The handshake and the record layers

3https://www.ietf.org/

5

of DTLS incur 25 bytes of overhead in each datagram header. IEEE.802.15.4 speci-

fies a physical layer Maximum Transmission Unit (MTU) of only 127 bytes. Hence,

only 60-75 bytes are left for the payload after the addition of DTLS, Medium Access

Control (MAC) and upper layers headers [17].

DTLS needs to be profiled to make it more friendly toward the resource-constrained

networks [18]. Bhattacharyya et al. [19] proposed a lightweight authentication scheme

to establish a unicast communication channel. Their scheme is based on symmetric

encryption algorithm to reduce the energy and computation costs of sensor-embedded

physical objects. The authors claimed that DTLS can be configured to develop an

energy-efficient authentication scheme. However, they have not validated their claim.

Granjal et al. [20] studied the use of DTLS as the underlying protocol for securing the

communication in a CoAP-based IoT environment. The authors argued that the scarcity

of payload space may not suit applications having larger payloads. They suggested to

employ security at other layers such as compressed form of IPSec. Kothmayr et al.

[21] proposed a robust security scheme using the RSA algorithm. They have presented

their DTLS implementation in the context of system architecture to achieve high inter-

operability and low overhead. However, the computational overhead incurred by their

handshake mechanism consumes higher energy, primarily due to the use of RSA-based

complex cipher suites. In [22], the authors evaluated the performance of DTLS hand-

shaking for the resource-starving objects using the Elliptic Curve Cryptography (ECC).

The use of complex and resource-consuming cipher suites of an ECC algorithm result

in higher energy consumption. In [23], the authors have proposed the DTLS imple-

mentation for smart phones (INDIGO) using CoAP. INDIGO uses extensive resource-

consuming cryptographic cipher suites and its use is restricted only to smart phones.

In [24], the authors have proposed a lightweight authentication scheme for resource

observation in a CoAP-based IoT environment. The identities of the interacting clients

and server are validated before establishing an authentication session. The proposed

scheme lacks experimental results for determining the efficiency and accuracy of the

authentication algorithm.

Although, DTLS-based schemes support a wide range of cipher suites for security

provisioning, however, DTLS was originally designed for networks having abundant of

6

resources. The resource-consuming complex cipher suites of DTLS do not consider the

message length as a critical design criterion for securing a network. Therefore, using

DTLS for an IoT implementation is an expensive choice and may not be an optimal

solution for securing the network.

3. A Lightweight Payload-based Mutual Authentication Scheme

As discussed in Section 2, almost all of the CoAP-based implementations for IoT

rely on DTLS for the secure exchange of resources among the physical objects. How-

ever, the DTLS-enabled CoAP stack introduces an extra protocol layer for security

provisioning which increases the computational and communication cost. In our pro-

posed scheme, no extra protocol layer is added. The absence of an additional protocol

layer does not compromise the security of messages exchanged among the clients and

server. Authentication is provided at the time of request-response interaction among

the clients and server while the session key is exchanged within the payload of trans-

mitted messages. In Figure 1, a comparison of our proposed scheme is provided with

the existing DTLS-enabled CoAP stack.

 Transport

 UDP

 DTLS

 IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

 Application Support

 Request-Response

 Message

 CoAP

(a) DTLS-enabled CoAP Stack

IEEE 802.15.4 PHY

 IEEE 802.15.4 MAC

 UDP

 Message

 Request-Response

 Application Support

Authentication

Key Exchange

(b) Payload-based Mutual Authentication

Figure 1: DTLS-enabled CoAP Stack vs. Our Proposed Scheme

7

In this section, we present our lightweight payload-based mutual authentication

scheme for validating the identities of real-world physical objects. First, the problem at

hand is identified which builds the foundation of our proposed authentication scheme.

3.1. Problem Statement

IoT incorporates physical objects which differ from each other in terms of various

resources and operational behaviours. The sensor nodes embedded in them provide

seamless and interoperable communication. These miniature sensors give a unique ID

to each participating object in the IoT paradigm. Any physical object is smart as long

as it can identify itself to the participating objects in the network. To make an object

smart enough, it requires an IP address and an embedded sensor node [25].

A small scale IoT communication model consisting of various physical objects is

shown in Figure 2. Here, the electric heater, the refrigerator and the rest of the objects

are the clients which communicate with a NetDuino4 server for the observation of

a temperature resource. The server monitors the temperature and provides it to the

clients. Each client may specify certain conditions for the notification of temperature

readings. The clients and server will not be able to communicate in the absence of an IP

address. The presence of an IP address enables an object to perform various RESTful

operations in a resource-constrained network.

The resource-constrained network of Figure 2 may be susceptible to a wide range

of malicious activities. The intruder may intercept the refrigerator data, manipulate it

and replay in other parts of the network. It is also possible that the attacker may inject

fabricated data of its own. Therefore, a huge amount of data is at risk which may result

in the malfunctioning of the whole network. Similar to a legitimate device, a malicious

object also requires an ID to participate in network communication. Each participating

object needs to be authenticated to establish its true identity in the network. In the

absence of ID validation and authentication, an attacker will always be able to conduct

a wide range of malicious activities. An intruder may establish multiple connections

with a server at a given time so that multiple network resources will be seized by the

4http://netduino.com/

8

Figure 2: A Vulnerable Internet of Things Connected Environment

malicious object. This results in the denial of services to the legitimate objects and

ultimately causes scarcity of resources in the network [26]. As wireless medium is

shared among various objects, the intruder may block access to the network resources

by continuously emitting jamming signals to interfere with legitimate transmissions

[27]. The presence of wireless medium can easily expose objects to eavesdropping as

well.

In order to detect and mitigate various types of attacks in a network, extremely

lightweight but secure protocols need to be designed in view of the limited resources

of embedded sensor nodes. In today’s Internet, considerable efforts have been spent

on securing the existing standard authentication and authorization protocols such as

TLS [16] and Kerberos [28] among others. It indeed saves a lot of efforts if these

protocols are customized to be feasible for resource-constrained networks. However,

these protocols were not designed with the constrained networks in mind. Therefore,

profiling of an existing authentication protocol may not result in an optimal solution.

Another major concern is that the existing authentication protocols may not necessarily

comply with their original design objectives if they are used outside their intended

domains of applications [29].

9

Almost all of the authentication and encryption schemes in the resource-constrained

IoT are based on DTLS protocol. The presence of computationally complex and

resource-consuming cipher suites in DTLS provides an expensive secured solution to

the objects of an IoT. As discussed in Section 2, most of the DTLS-based encryption

schemes emphasize on the use of DTLS without stateless cookies. With the absence of

stateless cookies, however, a server will be exposed to replay attacks [30].

In view of the above discussion, our goal is to develop a lightweight CoAP-based

authentication scheme for the objects in an IoT paradigm. An important question

which arises is “How lightweight does a protocol need to be?”A protocol is sufficiently

lightweight if there are ample resources available to other tasks after its deployment.

Therefore, the aim of our proposed scheme is to develop an authentication scheme

which meets the above requirements. Our proposed authentication scheme uses the

basic principles of the CoAP protocol for RESTful interactions. It is a lightweight mu-

tual authentication scheme for any client wishing to interact with a server to establish a

secure communication channel. Upon mutual authentication, the clients communicate

with the server for the resource observation. Only the authenticated clients are allowed

to observe the resources.

3.2. Payload-based Mutual Authentication

CoAP and our authentication scheme are not two separate protocols. For the au-

thentication, we have added security features into CoAP to make it more robust, ef-

ficient and secure against various malicious activities. Unlike the DTLS-enabled en-

cryption techniques, our proposed scheme provides authentication using the payload

of messages exchanged among the clients and the server. Both the client and the server

challenges each other during the authentication process. The complete process is per-

formed using four handshake messages where, the payload of each message is kept

a maximum of 256 bits as shown in Figure 3. The Advanced Encryption Standard

128-bit (AES-128) in Cipher Block Chaining (CBC) mode [31] is used for the pay-

load encryption. The key size of 128-bit is sufficient for most of the objects in the IoT

paradigm due to the limited resources of the embedded sensor nodes. Our proposed

scheme is completed using the following four steps:

10

1. Session/Connection initiation

2. Server challenge

3. Client response and challenge

4. Server response

Figure 3: Four-way Authentication Handshake

The session initiation is preceded by the provisioning phase. It is a prerequisite

offline phase during which the clients share a 128-bit pre-shared secret, λi, with the

server. The pre-shared secret is known only to the server and the client to whom it be-

longs. The server maintains a table of such secrets, each one belonging to a particular

client. Each object has a unique identifier (ID) associated with it which enables the

server to perform a table look-up for the identity verification. Upon successful veri-

fication, both parties communicate with each other for exchanging the session key. It

is assumed that the end-devices are temper-safe to avoid compromising the security

11

primitives in accordance with the Internet Threat Model [32]. This model assumes that

pre-shared secrets are hardcoded with the embedded sensor nodes in each physical ob-

ject at the time of manufacturing and deployment. In case, if an attacker attempts to

temper with the hardware of a physical object, an alarm is generated to notify about the

security breach.

In the session initiation phase, each client sends a request message to the server sim-

ilar to a Hello Client message. It is a confirmable request for the creation of a session as

a resource at the server. The request is sent to the server URI, /.well-known/authorize.

Each message has a specific token for correlating the request with a matching response.

The object ID is transmitted in the message payload. Two options, Auth and Auth-Msg-

Type, are included in the request whose values indicate the type of operation performed

on a resource at the server. Upon successful verification of the client ID, the resource

authorize will be created at the server. The combination of Auth=true and Auth-Msg-

Type=0 indicates a session initiation request to the server.

During the server challenge phase, the server retrieves the object ID from the mes-

sage payload. Using this ID, the server performs a table look-up for a matching λi. If

a match is found, the server responds back with an encrypted payload using the AES

algorithm. As a new session is created for the client, a response code of 2.01 (Cre-

ated) is included in the message. If the server is unable to find a matching λi, it will

send a 4.01 (Unauthorized) response code. Moreover, the server needs to include the

same message ID and the token which are present in the session initiation request. It

can do so by simply copying them into the server challenge. This enables the client to

correlate a confirmable request with the corresponding response message.

To create the challenge, the server generates a pseudo-random nonce, ηserver, and

a potential session key, µkey , of 128 bits each. The nonce is a temporary number

which is used only once by an object in the entire cryptographic communication. At

this stage, an encrypted payload is generated by the server. First, an Exclusive OR

(XOR) operation is performed on λi and µkey using Equation 1. XOR operation is

computationally inexpensive and is extremely common as a component in complex

ciphers. Moreover, this operation does not leak information about the original plaintext

and applying it twice enables the retrieval of original plaintext. In our case, plaintext is

12

the session key.

ψresultant = λi ⊕ µkey. (1)

The 128-bit resultant, ψresultant, is appended to ηserver and encrypted with λi to

generate a payload of 256-bit using Equation 2. This payload, γserver-payload, is trans-

mitted to the client as a challenge.

γserver-payload = AES{λi, (ψresultant|ηserver)}. (2)

In the client response and challenge phase, the client needs to decipher the en-

crypted payload, γserver-payload, to retrieve the potential session key, µkey . If the client is

successful to do so, it will have the correct ηserver and µkey . The ηserver and the µkey

are known only to the server and the λi belongs to a specific client. Only a legitimate

client can decipher this challenge. An intruder can only eavesdrop on the ηserver and

the µkey , but not the λi in accordance with the Internet Threat model. The client uses

its λi to decipher the payload. Upon successful deciphering, the client has authenti-

cated itself. As mutual authentication requires both parties to be verified, the server

also needs to authenticate itself. The client generates a new encrypted payload similar

to the server. First, an XOR is performed on ηserver and λi using Equation 3.

ψresultant = ηserver ⊕ λi. (3)

The 128-bit resultant, ψresultant, is appended with ηclient and encrypted with µkey

to generate an encrypted payload as shown in Equation 4. The 256-bit encrypted pay-

load, γclient-payload, is transmitted to the server as a challenge.

γclient-payload = AES{µkey, (ψresultant|ηclient)}. (4)

Finally, in the server response phase, the server deciphers the encrypted payload,

γclient-payload, of the client challenge to observe the ηserver in it. If present, the server

realizes that the client has successfully authenticated itself. The server retrieves the

ηclient and creates an encrypted payload of its own by appending the ηclient to µkey

13

and encrypting with λi as shown in Equation 5. Next, the 256-bit encrypted payload,

γserver-payload, is transmitted in response to the client challenge.

γserver-payload = AES{λi, (ηclient|µkey)}. (5)

At this point of time, the status of the resource changes to Authenticated at the

server because the client is successfully authenticated and is eligible to observe the

resources. However, the client has yet to verify the authenticity of the server, so it

decrypts the payload, γserver-payload, and observe ηclient in it. As the client is the one

which generated the ηclient, the client comprehends that the response is from a legiti-

mate server. At this stage, both the client and the server are mutually authenticated and

they have agreed upon a common session key, µkey , for exchanging the data packets.

In our authentication scheme, the Auth and the Auth-Msg-Type options play an im-

portant role. Both of these options are critical and unsafe-to-forward. A critical or

elective option is related to the endpoint while the safe or unsafe-to-forward is used in

the proxy context. If an endpoint is unable to understand a request message having a

critical option, it must return a 4.02 Bad Option response to the sender. These options

do not have any default values unlike the core options such as Max-Age, Block, Uri-

Path and Uri-Authority [4]. Each of these options is to be assigned a number by the

Internet Assigned Numbers Authority (IANA)5. The Auth has a length of 0 byte be-

cause if the message header indicates that this option is present, it is true and thus there

is no need to occupy a byte. For the lightweight authentication schemes, it is important

to have a simple message format with extremely lightweight options and related fields.

The formats of these two options are shown in Table 1.

No. C U N Name Format Length Default
TBD Yes Yes No Auth empty 0 (none)
TBD Yes Yes No Auth-Msg-Type uint 1 (none)
*C=Critical, *U= Unsafe-to-Forward, *N=NoCacheKey, *Length in Bytes

Table 1: Format of the Authentication Options

5https://www.iana.org/

14

The presence of the Auth option indicates that the POST method carries an au-

thentication payload in the request message. The Auth-Msg-Type is always used in

combination with the Auth and its value indicates the type of authentication request by

the client. If its value is 0, it indicates a session initiation request and if its value is 1, it

indicates a client response and challenge respectively. The four steps of our payload-

based mutual authentication along with the data exchange is shown in Algorithm 1.

Algorithm 1 Lightweight Payload-based Mutual Authentication
1: Initialization:

(a) Each Client Ci is provided with a unique Object_IDi and λi

(b) A server S is provided with all Object_IDi and λi stored in an arrayA[][]

2: Step 1: [Input: (Object_IDi, λi)] . Object_IDi, λi=2128, where i=1,2,3,...,N

3: for i = 1 : N do . Nested For loop generates a two-column server table

4: for j = 1 : 2 do
5: input (A[i][j]) . Object ID and λ of Ci are stored in the array

6: end for
7: end for
8: Step 2 [Session Initiation]: Ci sends a CON message containing Object_IDi in the payload to S

9: Step 3 [Server Challenge]: S retrieves Object_IDi to find a matching λi

10: if Object_IDi == A[i][j] then . Object ID of the client matches the Object ID in the server table

11: Session Created 2.01

12: Step 4: S responds with an encrypted payload, AES {λi, (λi ⊕ µkey|ηserver)}
13: . where µkey, ηserver = 2128 and message size=2256

14: else
15: Ci Unauthorized 4.01

16: end if
17: Step 5 [Client Response & Challenge]: Ci deciphers challenge and responds with an encrypted payload, AES

{µkey, (ηserver ⊕ λi|ηclient)},
18: Step 6 [Server Response]: S checks ηserver in the client challenge by comparing against the ηserver generated

in the server challenge

19: if Both matches then
20: [Access Granted]- Ci Authenticated

21: Step 7: S responds as AES {λi, (ηclient|µkey)} . message size=2256

22: else
23: [Access Denied]-Ci Unauthenticated

24: end if
25: Step 8: Ci compares ηclient of Step 5 and Step 6.

26: if Both matches then
27: S is authenticated

28: Step 9 [Data Exchange]: Mutual data exchange between S and Ci take place.

29: else
30: S is unauthenticated

31: end if

15

4. Resilience of the Proposed Scheme Against Various Attacks

Our payload-based mutual authentication scheme is resilient to resource exhaus-

tion, DoS and replay attacks. Each client is restricted to establish a single connection

with a given server at a particular time which eliminates the possibility of resource

exhaustion. Resource exhaustion occurs when the resources necessary to perform an

action are entirely consumed, therefore preventing that action from taking place. A

client establishes more than one connection with a server to acquire multiple resources

which causes scarcity of such resources to other clients. Resource exhaustion results

in an unfair distribution of resources, ultimately leading to a DoS attack.

The client of a resource may be an intruder or a legitimate object. Each client

sends a session initiation request to the server in order to authenticate itself. The server

checks its table for a corresponding object ID to verify if the client has an ongoing

established session for data exchange after a successful authentication. If the given

client has an ongoing session with the server, the request for a new session is discarded.

Recall that the session initiation request is transmitted in a CON message for which an

ACK or an RST response is mandatory. After the transmission of a CON message,

the client triggers its timer and waits for a response within a × r seconds, where a

is the acknowledgement timeout and r is the acknowledgement random factor. The

acknowledgement timeout is the amount of time a client must wait for an ACK or an

RST response before a re-transmission attempt. Its default value is 2 seconds. The

acknowledgement random factor ensures that there is no clashing in the timeout values

used for subsequent transmissions. Its default value is 1.5 and it must always be greater

than 1, i.e., 1 < r ≤ 1.5. A client can re-transmit a CON request up to 4 times after

the initial failed attempt provided it uses the same token and message ID.

If the client is an intruder, there will be a mismatch of IDs with the server, i.e.,

the object ID does not match with any of the object ID stored within the server table.

The server responds back with an RST message indicating an invalid object ID. At

this point, the server does not know if a client is an intruder or a legitimate one. An

intruder may re-transmit the same CON message up to 4 times provided it uses the same

object ID, message ID and token for each re-transmission attempt. After exhausting all

16

attempts, the client is declared as an intruder and any further attempts are considered

as attacks. The server refrains from any further communication with the given client,

i.e., the intruder. On the other hand, re-transmission with a different ID will generate

an RST response which is an indication that no further communication will take place

for establishing a session. An intruder may eavesdrop on the wireless link between a

legitimate client and the server, stole the object ID and use it for communication with

the server. There will be a match of IDs and the server will generate a challenge. As the

intruder does not have a valid λi, so it will not be able to decipher the challenge. In case

of a legitimate client, a match will always be found in the look-up table unless its object

ID is tempered. Even if the object ID is tempered by an error-prone communication link

or an intruder, the client has the option to re-transmit the CON message after waiting

for a×r seconds. A match with the server table is not a guarantee that a session will be

negotiated with a given client. If the IDs match, the server further evaluates the request

to verify if an ongoing established session exists with the given client. If a session is

found, the server responds back with an ACK message indicating that the client needs

to refrain from further re-transmissions.

The object ID of a client plays a crucial role in resource allocation and utiliza-

tion. In the server table, each ID is linked with a matching λi, the key required for

deciphering a challenge. The use of an invalid object ID generates an RST response

while eavesdropping results in an unsuccessful attempt of deciphering the server chal-

lenge. In both cases, the intruder fails to authenticate itself and is unable to observe

the resource, i.e., temperature readings, at the server. The procedure for detecting the

resource exhaustion attack is shown in Algorithm 2.

Apart from resource exhaustion and DoS attacks, our scheme is resilient to the

replay attack as well. In our authentication scheme, ηserver and ηclient are generated by

a pseudo-random number,Ri, which is appended to a timer, Ti. This combination ofRi

and Ti assures that an intruder will find it even more difficult to replay messages. Here,

Ti is used to guarantee that ηserver and ηclient are non-reproducible whileRi is used to

ensure that ηserver and ηclient are non-predictable. The non-reproducible nature of Ti

and the non-predictable features of Ri make it quite difficult for an intruder to launch a

replay attack. If in case, an intruder manages to capture µkey , it may communicate with

17

Algorithm 2 : Detection of Resource Exhaustion Algorithm
1: Initialization: A[][], Object_IDi, Re_Try

2: Step 1: [Input: (Object_IDi, λi)]

3: for i = 1 : N do

4: for j = 1 : 2 do

5: input (A[i][j])

6: end for

7: end for

8: Step 2: Client Ci sends a session initiation request

9: Step 3: Server S retrieves Object ID from the session initiation request

10: for i : 1 : N do . Search through the server table

11: if Object_IDi == A[i][j] then . Object ID of the client matches the Object ID in the server table

12: Step 4: Check for an ongoing established session

13: if OnGoingSession == True then

14: Step 5: Discard Session Initiation Request

15: Step 6: Send ACK response to Ci . ACK informs Ci that this client is already observing resources

16: else

17: Generate a Server Challenge and send to Ci

18: if Ci decipher the challenge then

19: Ci is a legitimate client . S proceeds with establishing a session after successful authentication

20: else

21: Ci is an Intruder . S refrain from further communication

22: end if

23: end if

24: end if

25: if Object_IDi does not match A[i][j] then

26: Step 7: S responds back with an RST

27: Step 8: Ci does not proceed with any re-transmission attempts

28: else

29: Step 9: Ci re-transmits after waiting for a× r seconds

30: Re_Try++

31: end if

32: if Re_Try > 4 then

33: Ci is an intruder and is blacklisted

34: else

35: Step 10: Ci re-transmits again

36: end if

37: end for

18

a given client by posing itself as the server of the network. The intruder may intercept

the data in-transit between the client and a server, uses the captured µkey and replay

the incoming data from the server to the client. Moreover, it may replay the captured

data to other clients in the network as well. This type of replay attack is short-lived and

last only for the duration of a particular session.

Upon successful mutual authentication, both the client and the server are authorized

to use µkey for exchanging the data packets. Each client sends a registration request to

the server for resource observation. The Registration Request Message (RRM) has an

observe option, which has a 24-bit sequentially incremental sequence number. When

the server realizes the presence of an observe option in an RRM, it registers the client

and notifies it upon each state change of a resource. The client may specify certain con-

ditions for the transmission of data from a server, also known as notification updates.

Upon transmission to a server, each client stores the transmitted RRM in its queue,

which has a unique token and a message ID for correlating the notification updates

from the server. The incoming notifications from the server will have an incremental

sequence number, a token and a message ID similar to an RRM. Potentially, a single

RRM can generate an enormous amount of notification updates. Once the conditions

specified by a client for notification updates are fulfilled at the server, data packets,

βdata, are transmitted to the given client as shown in Equation 6.

κclient-server = AES{µkey, βdata}. (6)

In Equation 6, βdata is encrypted with µkey . This encrypted data can only be

deciphered by the client which possesses a valid λi and µkey .

In Figure 4, an intruder A eavesdrops on a full-duplex wireless link between the

server S and a client C1. It captures µkey , seizes the data packets and replay them to

C1, C2 and C4 along the way by posing to be a legitimate server. To detect a replay

attack, each client compares the message ID and token of an incoming notification

against the similar parameters of an RRM. If these parameters match, the client checks

the sequence number of the incoming notification. To do so, the client can make use

of a simple logic by comparing the incoming notification with the previously received

19

notification from a server as shown in Equation 7.

Ωfreshness = fresh when[(Vi < Vj) ∧ (Vj − Vi < 223)]∨

[(Vi > Vj) ∧ (Vi − Vj > 223)]. (7)

Figure 4: The Replay Attack in an IoT Environment

In Equation 7, we have used the freshness of the notification updates, Ωfreshness,

from a server as a measure to detect a replay attack. In this equation, Vj and Vi are

the 24-bit sequence numbers of an observe option in the incoming and the previously

received notifications. A notification is fresh and latest if Vj is greater than Vi and their

difference is less than 223. An incoming notification is also fresh if Vj is smaller than

20

Vi and their difference is greater than 223. The latter is the case when the value of Vj

rolls over [33].

In Figure 4, the intruder may or may not alter the sequence numbers of the incoming

notifications from a server. Irrespective of the alteration, the clients C2 and C4 can

easily detect a replay attack because these incoming notifications are intended for C1

only. There will be a mismatch between the token and message ID of an RRM and

those of the incoming notifications at C2 and C4 respectively. If the sequence numbers

of the notifications are altered, C1 can easily detect it by comparing the notifications

with the previous one. However, if the intruder replays the notifications without any

modification, it becomes a tricky situation as C1 is indeed waiting for such notifications

from the server. There will be a match of the tokens and message IDs between an RRM

and the incoming notifications. Moreover, the sequence numbers are also in the same

order as expected by this client. To solve this puzzle, C1 may use a time-stamp field in

the RRM and the notification updates [34]. Alternatively, C1 may store in a queue the

notifications previously received from a server within the acknowledgement timeout.

As the incoming notifications at C1 are replayed by an intruder, their timeout values

play a crucial role. At this point of time, C1 does not know whether the incoming

notifications are replayed or not. Therefore, it checks the sequence number of these

notifications against the previously received notifications in a sequential order. For

example, the incoming notification, Vn, is checked against Vn−1 to determine if it was

received within the acknowledgement timeout after the successful reception of Vn−1.

The entire mechanism of replay attack detection is shown in the flowchart of Figure 5.

In our proposed scheme, an intruder can only launch a replay attack during the

exchange of data between a legitimate client and a server. Replay attack is not possible

at the time of establishing a session, i.e., mutual authentication, because each client has

its own λi known only to the given client and the server. An intruder may capture the

server challenge payload and retrieve ηserver and µkey from it. However, it still require

λi for encrypting the payload. The lack of an authentic λi will generate a suspicious

payload which will be identified easily by the clients.

21

Start

Transmit Registration

Request Message (RRM)

Server Registers RRM

Condition

 Fulfilled by

server?

Yes No

Transmit notification

to the client

Refrain from

transmission

Message ID and

Token Matches

 ?

 Freshness (ῼ)
 Fulfilled?

Yes

Valid Notification

Yes

No
Replay Attack

No
Check Timeout

Received within

Timeout?

Yes

Valid Notification

Replay Attack

No

Yes

Notification Generated

Figure 5: Flowchart for the Replay Attack Detection

5. Experimental Results

In this section, we provide the experimental results for our proposed scheme. We

used NetDuino Plus 2 boards for the client and server interaction model. We performed

our experimental work using .NET Micro Framework, a .NET Framework platform for

resource-constrained devices with at least 256 KB of flash and 64 KB of RAM. The

NetDuino server uses a DS18B20 temperature sensor to obtain the temperature read-

ings. Upon successful authentication, the clients are allowed to observe the temperature

22

resource. We use the CoAPSharp6 library which provides a very basic communication

model for resource exchanges. For the authentication provisioning, we have created

our own library, CoAPMicro, which runs on top of the CoAPSharp and uses its com-

munication model for security provisioning. Our library is efficient and robust, and

consumes relatively less amount of resources. To justify our claim, a detailed compar-

ison against various existing schemes is presented here.

5.1. Authentication

Each client needs to authenticate itself for observation of the resources. In Figure

6(a), the successful handshake between a client and the server is shown. The Auth and

the Auth-Msg-Type are the extended options used only for our authentication purpose.

They are yet to be assigned numbers by IANA, so they appear as unrecognized. We use

temporary numbers 0x101(257) and 0x102(258) for these options in our library using

the option registry mechanism. The client and the server have successfully agreed upon

a common session key and the handshake duration along with the round-trip response

time is obtained. In Figure 6(b), the client is unable to decipher the server challenge

as it does not possess the required secret, λi. The outcome is an incorrect session

key which causes the denial of access to the resource. In both cases, the presence or

absence of the pre-shared secret determines the outcome of the authentication.

Exchange routine started on thread 0x03.
-SERVER- Key: 4F9DB1949D924031-8C77BE06276ECB25 Nonce1:
 26C1B93F46C133A7-376D867B0F990023 Nonce2:
Exchange routine started on thread 0x04.
#1 [0xCA337F4A6DDBB66C] ACK 4.01 (Unauthorized)
-CLIENT- Sending AUTH greeting message to server.
[WARNING] Unrecognized option 0x101. Defaulted to opaque format.
[WARNING] Unrecognized option 0x102. Defaulted to opaque format.
-CLIENT- Server challenge: #2 [0x44A2B63A183163C6]
 ACK 2.01 (Created), 1196 ms
-CLIENT- Key: 5CDA810C12EE36AE-16C3D4FA0EA79FDF
 Nonce1: 26C1B93F46C133A7-376D867B0F990023
 Nonce2: 7562DB9C6D7DED45-5D767BD30B3EA320
-CLIENT- Replying to server challenge...
-CLIENT- Final reply from server: #3 [0xF845FAFB4C983061]
 ACK 2.04 (Changed), 96 ms
-CLIENT- Total handshake duration: 2559 ms
-CLIENT- Mutual trust acquired.
 Authentication handshake completed.
-CLIENT- Server is TRUSTED.

(a) Resource Access Granted

The thread '<No Name>' (0x2) has exited with code 0 (0x0).
[CLIENT] Started.
The thread '<No Name>' (0x2) has exited with code 0 (0x0).
[SERVER] Started.
[SERVER] Key: 4F9DB1949D924031-8C77BE06276ECB25
Nonce1: 4BAFCDE9430E5773-24E5095A6614BF17
Nonce2:
[CLIENT] Key: 6619DB083FA7049A-70F225566ED3847A
Nonce1: 4BAFCDE9430E5773-24E5095A6614BF17
Nonce2: 6DFB243F1F64BE50-142C6CFE3382DAAF
[CLIENT] Replying to server challenge...
[CLIENT] Resource access denied.

(b) Resource Access Denied

Figure 6: The Authentication Process

6http://www.coapsharp.com/

23

5.2. Handshake Duration

The handshake duration is computed as the sum of time taken by two round-trip

messages, i.e., the session initiation request and the client response & challenge. The

client’s session initiation request is acknowledged through a server challenge whereas

the client response & challenge is acknowledged through a server response. The hand-

shake duration, dhandshake, is computed at the client-end using Equation 8.

dhandshake = Tsession + Tchallenge + δproc. (8)

In this equation, Tsession is the round-trip time taken by session initiation request,

Tchallenge is the round-trip taken by client response & challenge and the δproc is the

processing time taken by the client. The processing time at the server is part of the two

round-trip messages.

To compute the handshake duration, we perform 20 random handshakes between

the clients and the server. To determine the variability and accuracy among the read-

ings, we compute the standard deviation using Equation 9.

σ =

√√√√ 1

N

N∑

i=1

(xi − µ)2. (9)

Here, σ is the standard deviation, N is the total number of readings, µ is the mean

value and xi is the actual handshake duration of each individual reading.

In Figure 7, we have compared our scheme with the CoAP-based DTLS implemen-

tation (INDIGO) for smartphones. DTLS∗ represents the handshake between a smart-

phone and a standard computer. In this case, the smartphone acts as a client whereas

the standard computer acts as a server. DTLS+ represents the smartphone as a server

and the computer as a client. Both these implementations use DTLS on the client and

the server. The creation of stateless cookie at the server and the exchange of compu-

tationally complex certificates and raw-public keys contribute to a higher handshake

duration for DTLS∗ and DTLS+ respectively. Moreover, the simultaneous execution

of multiple processes inside an android device contributes to a much higher standard

deviation values for these schemes.

24

2404.5

3387.2

4881.4

23.4

393.3 489.6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

CoAPMicro DTLS* DTLS+

D
u

ra
ti

o
n

 (
m

s)

Handshake Duration Standard Deviation

Figure 7: The Handshake Duration

5.3. Average Response Time

In our scheme, the CoAP messages are exchanged asynchronously over the UDP

sockets. Each client maintains the record of the transmitted CON request messages

to keep track of their transit through the network. When a matching ACK or an RST

response is received for such messages, the exchange is considered as successful.

In Figure 8(a), the average response time for each message is computed for a server

handling multiple requests at a given time. The response time increases with the in-

crease of simultaneously transmitted messages. When the number of such requests,

n, is 100, the response time is significantly higher which can ultimately cause conges-

tion, scarcity of resources and denial of services to the clients in the network. The

response time is considerably lower for 20 and 50 of multiple requests of such type

and the payload size has little impact on the average response time for these values

of n. In Figure 8(b), the average response time for a single confirmable message of

1 byte is compared with those of the DTLS and the CoAP protocol with no security.

As explained previously, the presence of certificates, raw-public keys and expensive

flight-based authentication makes DTLS as an expensive choice for the objects of an

IoT.

25

0

1000

2000

3000

4000

5000

6000

7000

1 64 128 256 512

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e
 (

m
s)

Payload [byte]

n=20 n=50 n=100

(a) Simultaneous Transmissions

25

123

219

0

50

100

150

200

250

NoSec CoAPMicro DTLS

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)

(b) Response Time at 1 Byte Payload

Figure 8: The Average Response Time

5.4. Average Memory Consumption

The average memory consumption of a message at the compile time is obtained by

using the Debug.GC() method of the Microsoft.SPOT.Native assembly. In Figure 9(a),

the average memory consumption is computed for varying payload sizes. The number

of request messages has a significant impact on the memory consumption whereas the

payload of each message has a minor impact. This is due to the fact that the server

allocates memory on per message basis rather than per byte basis.

0

50

100

150

200

250

300

350

400

450

500

1 64 128 256 512

A
ve

ra
g

e
 M

e
m

o
ry

 C
o

n
su

m
p

ti
o

n
 (

kB
)

Payload [byte]

n=20 n=50 n=100

(a) Simultaneous Transmissions

202

8458

7102

785

3922

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CoAPMicro TinyCoAP CoAPBlip HTTP HTTP/UDP

A
ve

ra
ge

 M
em

or
y

Co
ns

um
pt

io
n

(k
B)

(b) Consumption at 500 Byte Payload

Figure 9: The Average Memory Consumption

In Figure 9(b), we compare our scheme with the existing schemes for a confirmable

message of 500 bytes. CoapBlip [35] and its variant TinyCoAP [36] allocate a substan-

tial amount of memory to the messages at the compile time. CoapBlip is an adaptation

of the standard C libraries which require TinyOS component for its installation on a

sensor node. The use of C libraries is too complex for the resource constrained sensors

26

embedded in a physical object. On the other hand, HTTP/UDP has a low memory foot-

print as it does not provide a reliability mechanism or a request/response matching. Our

scheme ensures that sufficient memory is available to other tasks at the compile time.

The allocated memory is immediately released upon a successful message exchange.

5.5. Detection of Replay Attacks

As an application layer protocol, CoAP is exposed to various denial-of-service

(DoS) attacks. Even in the presence of an authentication scheme, intruders always

try to sneak into a network to conduct malicious activities. The number of such ac-

tivities increases with the increase in the number of intruders in the network. In Table

2, the number of replay attacks at the time of session initiation and data exchange is

computed over a period of 60 seconds.

Time (sec) Intruder A∗ Intruder B∗ Intruder A+ Intruder B+

0-10 3 5 8 2
11-20 6 2 4 4
21-30 3 4 11 7
31-40 4 0 4 3
41-50 1 2 8 3
51-60 7 6 0 2

Table 2: Number of Detected Replay Attacks

Here, A∗ and B∗ represent the number of replay attacks launched by intruders A

and B during session initiation request, i.e., during mutual authentication phase. The

number of replay attacks during data exchange is represented by A+ and B+. In Table

2, the number of replay attacks during data exchange is launched on packet flows,

where each flow may contain several packets. For example, during the first 10 seconds,

the intruder A+ replays 8 flows, i.e., 8 attacks, where each attack contains a series of

replayed data packets.

6. Conclusion

In this paper, we have proposed a payload-based authentication scheme to verify

the identities of the communicating clients and server in the network. It uses a simple

handshake procedure to exchange the session key for the resource observation. The

proposed scheme uses pre-shared secrets for the identity verification of objects. These

27

secrets are known only to the legitimate clients and server and they cannot be obtained

illicitly in view of the Internet Threat Model. Our experimental results show significant

improvement over the existing schemes for the resource-constrained objects. Our pro-

posed scheme is efficient against eavesdropping, DoS, replay and resource exhaustion

attacks. However, it is yet to be determined how efficient and robust the scheme is

against other types of attacks. Furthermore, the proposed scheme allocates pre-shared

keys at the provisioning phase, so it is a ideal choice for static deployment. If the

pre-shared key of an incoming mobile client is not present in the server lookup table,

the client will not be able to communicate with the server. For this type of scenario, a

dynamic key allocation is an optimal choice. This is specifically the case with a large

scale IoT environment. The scalability and mobility may further improve the proposed

scheme and broaden its scope. The resource-constrained nature of the sensor nodes

will be a challenging task in provisioning of the above facilities for such a lightweight

authentication scheme.

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet

of things: A survey on enabling technologies, protocols, and applications, IEEE

Communications Surveys & Tutorials 17 (2015) 2347–2376.

[2] A. Botta, W. De Donato, V. Persico, A. Pescapé, Integration of cloud computing

and internet of things: a survey, Future Generation Computer Systems 56 (2016)

684–700.

[3] J. Granjal, E. Monteiro, J. S. Silva, Security for the internet of things: a survey

of existing protocols and open research issues, IEEE Communications Surveys

& Tutorials 17 (2015) 1294–1312.

[4] Z. Shelby, K. Hartke, C. Bormann, The constrained application protocol (coap)

(2014).

[5] E. Rescorla, N. Modadugu, Datagram transport layer security version 1.2 (2012).

28

[6] R. T. Fielding, R. N. Taylor, Principled design of the modern web architecture,

ACM Transactions on Internet Technology (TOIT) 2 (2002) 115–150.

[7] J. Kim, J. Lee, J. Kim, J. Yun, M2m service platforms: Survey, issues, and

enabling technologies., IEEE Communications Surveys and Tutorials 16 (2014)

61–76.

[8] K. Hartke, Observing resources in the constrained application protocol (coap)

(2015).

[9] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, C. K.-Y. Tan, Performance evaluation

of mqtt and coap via a common middleware, in: 2014 IEEE Ninth International

Conference on Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP)„ IEEE, 2014, pp. 1–6.

[10] P. Saint-Andre, Extensible messaging and presence protocol (xmpp): Address

format (2015).

[11] M. Becker, T. Pötsch, K. Kuladinithi, C. Goerg, Deployment of coap in trans-

port logistics, in: Proceedings of the 36th IEEE Conference on Local Computer

Networks (LCN), 2011.

[12] S.-C. Son, N.-W. Kim, B.-T. Lee, C. H. Cho, J. W. Chong, A time synchroniza-

tion technique for coap-based home automation systems, IEEE Transactions on

Consumer Electronics 62 (2016) 10–16.

[13] M. Centenaro, L. Vangelista, A. Zanella, M. Zorzi, Long-range communications

in unlicensed bands: The rising stars in the iot and smart city scenarios, IEEE

Wireless Communications 23 (2016) 60–67.

[14] M. Becker, K. Kuladinithi, C. Görg, Wireless freight supervision using open

standards, in: 5th International Workshop on Cold Chain Management. June,

2013, pp. 10–11.

[15] W. Trappe, R. Howard, R. S. Moore, Low-energy security: Limits and opportu-

nities in the internet of things, IEEE Security & Privacy 13 (2015) 14–21.

29

[16] T. Dierks, The transport layer security (tls) protocol version 1.2 (2008).

[17] K. Hartke, Practical issues with datagram transport layer security in constrained

environments draft-hartke-dice-practical-issues-00, IETF work in progress

(2013).

[18] S. Raza, L. Seitz, D. Sitenkov, G. Selander, S3k: Scalable security with symmet-

ric keys—dtls key establishment for the internet of things, IEEE Transactions on

Automation Science and Engineering 13 (2016) 1270–1280.

[19] A. Bhattacharyya, A. Ukil, T. Bose, A. Pal, Lightweight mutual authentication

for coap (wip), draft-bhattacharyya-core-coap-lite-auth-00 (2014).

[20] J. Granjal, E. Monteiro, J. Sa Silva, On the feasibility of secure application-layer

communications on the web of things, in: 2012 IEEE 37th Conference on Local

Computer Networks (LCN), IEEE, 2012, pp. 228–231.

[21] T. Kothmayr, C. Schmitt, W. Hu, M. Brünig, G. Carle, Dtls based security and

two-way authentication for the internet of things, Ad Hoc Networks 11 (2013)

2710–2723.

[22] J. Granjal, E. Monteiro, J. S. Silva, On the effectiveness of end-to-end security for

internet-integrated sensing applications, in: 2012 IEEE International Conference

on Green Computing and Communications (GreenCom), IEEE, 2012, pp. 87–93.

[23] D. Trabalza, S. Raza, T. Voigt, Indigo: Secure coap for smartphones, in: Wireless

Sensor Networks for Developing Countries, Springer, 2013, pp. 108–119.

[24] M. A. Jan, P. Nanda, X. He, Z. Tan, R. P. Liu, A robust authentication scheme

for observing resources in the internet of things environment, in: 2014 IEEE

13th International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), IEEE, 2014, pp. 205–211.

[25] M. C. Domingo, An overview of the internet of underwater things, Journal of

Network and Computer Applications 35 (2012) 1879–1890.

30

[26] D. R. Raymond, S. F. Midkiff, Denial-of-service in wireless sensor networks:

Attacks and defenses, Pervasive Computing, IEEE 7 (2008) 74–81.

[27] K. Pelechrinis, M. Iliofotou, S. V. Krishnamurthy, Denial of service attacks in

wireless networks: The case of jammers, Communications Surveys & Tutorials,

IEEE 13 (2011) 245–257.

[28] H. Liu, P. Luo, D. Wang, A distributed expansible authentication model based on

kerberos, Journal of Network and Computer Applications 31 (2008) 472–486.

[29] L. Seitz, G. Selander, Design considerations for security protocols in constrained

environments, draft-seitz-ace-design-considerations-00 (WiP), IETF (2014).

[30] S. K. Sood, A. K. Sarje, K. Singh, A secure dynamic identity based authenti-

cation protocol for multi-server architecture, Journal of Network and Computer

Applications 34 (2011) 609–618.

[31] P. Chown, Advanced encryption standard (aes) ciphersuites for transport layer

security (tls) (2002).

[32] E. Rescorla, B. Korver, Guidelines for writing rfc text on security considerations

(2003).

[33] R. Elz, Serial number arithmetic (1996).

[34] J. Arkko, A. Keranen, Coap security architecture, draft-arkko-core-security-arch-

00 (work in progress) Internet Draft (2011).

[35] K. Kuladinithi, O. Bergmann, T. Pötsch, M. Becker, C. Görg, Implementation of

coap and its application in transport logistics, Proc. IP+ SN, Chicago, IL, USA

(2011).

[36] A. Ludovici, P. Moreno, A. Calveras, Tinycoap: a novel constrained application

protocol (coap) implementation for embedding restful web services in wireless

sensor networks based on tinyos, Journal of Sensor and Actuator Networks 2

(2013) 288–315.

31

Dr. Mian Ahmad Jan
(mianjan@awkum.edu.pk)

Mian Ahmad Jan is an Assistant Professor at the Department of
Computer Science, Abdul Wali Khan University Mardan, Pakistan.
He has completed his Ph.D. in Computer Systems from the Faculty
of Engineering and Information Technology (FEIT), at the
University of Technology Sydney (UTS) Australia. He had been the
recipient of various prestigious scholarships during his PhD studies.
He was recipient of International Research Scholarship (IRS) at the
University of Technology Sydney Australia and Commonwealth
Scientific Industrial Research Organization (CSIRO) scholarships.
He has been awarded the best researcher award for the year 2014 at
the University of Technology Sydney Australia. His research
interests are Cluster-based Hierarchical routing protocols in Wireless
Sensor Networks, Congestion detection and mitigation, Internet and
Web of Things and efficient Intrusion and malicious attack detection
in Wireless Sensor Networks. Recently, he has been involved in
latest developments in the field of Underwater Sensor Network
Localization and Secured Ticketing, Internet of Vehicles security and
privacy issues, Software-defined Radio VANET, Vehicular Ad hoc
Network, and Big Data Analytics. He has published his research
work in top-ranked transactions, magazine and conferences. His
research has been published in IEEE Transactions on Mobile
Computing, Elsevier Computer Networks, Elsevier Future
Generations Computer Systems, Elsevier Information Sciences,
Wiley Journal of Concurrency and Computations. Also, he has
published in high ranked conferences such as TrustCom, WWIC,
HPCC and Future 5V. Recently, he has been chair of various
conferences and special sessions such as IEEE CCODE-2017, EAI
Future5V and EAI IoT-BC2. He has been invited to serve as a
Technical Program Committee Member for 8 international
conferences such as IEEE TrustCom, IEEE Eurocon and IEEE VTC.
He is guest editor of Special Issue title: “Current and Future Trends
in Wireless Communications’ Protocols and Technologies in
ACM/Springer’s MONET journal. He has been an active reviewer
for 7 high-cited and highly ranked international journals, including
IEEE Transactions on Dependable and Secure Computing (TDSC),
Elsevier Computer Networks, Springer MONET and Wiley
Concurrency and Computation: Practice and Experience.

Fazlullah Khan

(fazlullah@awkum.edu.pk)

Fazlullah Khan is an Assistant Professor at the Department of
Computer Science, Abdul Wali Khan University Mardan, Pakistan.
Currently, he is pursuing his PhD at the department of computer
science, Abdul Wali Khan University Mardan, Pakistan. He has
completed his MS in Information Engineering from the Faculty of
Electrical Electronics & Information Engineering, at Nagaoka
University of Technology (NUT) Japan. He has MS degree in
Computer Software Engineering from National University of
Sciences and Technology Islamabad, Pakistan. He was awarded gold
medal in BS in Information Technology from the University of
Peshawar, Pakistan. He had been the recipient of various prestigious

scholarships during his studies. He was the recipient of MEXT
scholarship for two years at NUT Japan. His research interests are
cross layer signaling and performance analysis of Mobile Ad Hoc
Networks, Vehicular Ad Hoc Networks, Cognitive Radio Networks,
Wireless Sensor Networks, Wireless Sensor and Actor Networks,
and Cognitive Radio Sensor Networks. Recently, he has been
involved in latest developments in the field of Underwater Sensor
Network Localization and Secured Ticketing, Internet of Vehicles
security and privacy issues, Software-defined Radio VANET,
Internet of Vehicles, and Big Data Analytics. He has published his
research work in various IEEE and ACM/Springer International
conferences and in the Institute of Electronics, Information and
Communication (IEICE), Japan. Recently, he has been chair of
various conferences and special sessions such as IEEE EAI
Future5v-2017, CCODE-2017, EAI IoT-BC2. He has been invited to
serve as a Technical Program Committee Member for various IEEE
international conferences. He has been an active reviewer for high-
cited and highly ranked international journals, including Springer
MONET, IET Wireless Sensor Systems.

Dr. Muhammad Alam

(alam@av.it.pt)

M. Alam holds a PhD degree in computer science from University of
Aveiro, Portugal (2013-14). In 2009, he joined the Instituto de
Telecomunicações - Aveiro (Portugal) as researcher and completed
his Ph.D from University of Aveiro with a specialization in Inter
Layer and Cooperative Design Strategies for Green Mobile
Networks. He has participated in several European Union FP7
projects such as Hurricane, C2POWER, ICSI, PEACE and
Portuguese government funded projects such SmartVision.
Currently, he is working as senior researcher at Instituto de
Telecomunicações and participating in European Union and
Portuguese government funded projects. His research interests
include IoT, Real-time wireless communication, 5G, Vehicular
networks, Context-aware systems and Radio resource management in
next generation wireless networks. He is the editor of Book
“Intelligent Transportation Systems, Dependable Vehicular
Communications for Improved Road Safety”. He is the author of
several journal and conference publications as well as book chapters.
He is also the TPC member and reviewer for a number of reputed
conferences, journals, and magazines. He is IEEE and IEEE IES
member. He served as general co-chair of future 5V conference and
also served as session chairs in a number of reputed conferences such
as IEEE IECON 2016, IEEE WFCS 2016, IEEE ITSC 2015. He also
provided his services as guest editor to several journals.

Dr. Mian A

 Mr. Fazlul

 Dr. Muha

Ahmad Jan

lah Khan

ammad Alam

