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The model is also user-interpretable.

We train a machine learning model to predict the duration of Big Data workloads.
We leverage these predictions to recommend an optimal task configuration.

We evaluate our method with an Apache Spark benchmark on a testbed.

We observe up to a 51% gain on performance with these recommendations.
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In-memory cluster computing platforms have gained momentum in the last years, due to their abil-
ity to analyse big amounts of data in parallel. These platforms are complex and difficult-to-manage
environments. In addition, there is a lack of tools to better understand and optimize such platforms
that consequently form the backbone of big data infrastructure and technologies. This directly leads
to underutilization of available resources and application failures in such environment. One of the key
aspects that can address this problem is optimization of the task parallelism of application in such
environments. In this paper, we propose a machine learning based method that recommends optimal
parameters for task parallelization in big data workloads. By monitoring and gathering metrics at system
and application level, we are able to find statistical correlations that allow us to characterize and predict
the effect of different parallelism settings on performance. These predictions are used to recommend an
optimal configuration to users before launching their workloads in the cluster, avoiding possible failures,
performance degradation and wastage of resources. We evaluate our method with a benchmark of 15
Spark applications on the Grid5000 testbed. We observe up to a 51% gain on performance when using the
recommended parallelism settings. The model is also interpretable and can give insights to the user into
how different metrics and parameters affect the performance.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Planning big data processes effectively on these platforms can
become problematic. They involve complex ecosystems where de-

Big data technology and services market is estimated to grow
at a CAGR! of 22.6% from 2015 to 2020 and reach $58.9 billion
in 2020 [1]. Highly visible early adopters such as Yahoo, eBay
and Facebook have demonstrated the value of mining complex
information sets, and now many companies are eager to unlock the
value in their own data. In order to address big data challenges,
many different parallel programming frameworks, like Map Re-
duce, Apache Spark or Flink have been developed [2-4].
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velopers need to discover the main causes of performance degrada-
tion in terms of time, cost or energy. However, processing collected
logs and metrics can be a tedious and difficult task. In addition,
there are several parameters that can be adjusted and have an
important impact on application performance.

While users have to deal with the challenge of controlling this
complex environment, there is a fundamental lack of tools to
simplify big data infrastructure and platform management. Some
tools like YARN or Mesos [5,6] help in decoupling the programming
platform from the resource management. Still, they do not tackle
the problem of optimizing application and cluster performance.

Please cite this article in press as: A.B. Hernindez, et al., Using machine learning to optimize parallelism in big data applications, Future Generation Computer Systems

(2017), http://dx.doi.org/10.1016/j.future.2017.07.003.



http://dx.doi.org/10.1016/j.future.2017.07.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:abrandon@fi.upm.es
http://dx.doi.org/10.1016/j.future.2017.07.003

2 A.B. Herndndez et al. / Future Generation Computer Systems I (R1EN) INE-E1N

One of the most important challenges is finding the best paral-
lelization strategy for a particular application running on a parallel
computing framework. Big data platforms like Spark?® or Flink® use
JVM'’s distributed along the cluster to perform computations. Par-
allelization policies can be controlled programmatically through
APIs or by tuning parameters. These policies are normally left as
their default values by the users. However, they control the number
of tasks running concurrently on each machine, which constitutes
the foundation of big data platforms. This factor can affect both
correct execution and application execution time. Nonetheless, we
lack concrete methods to optimize the parallelism of an application
before its execution.

In this paper, we propose a method to recommend optimal
parallelization settings to users depending on the type of applica-
tion. Our method includes the development of a model that can
tune the parameters controlling these settings. We solve this opti-
mization problem through machine learning, based on system and
application metrics collected from previous executions. This way,
we can detect and explain the correlation between an application,
its level of parallelism and the observed performance. The model
keeps learning from the executions in the cluster, becoming more
accurate and providing several benefits to the user, without any
considerable overhead. In addition, we also consider executions
that failed and provide new configurations to avoid these kinds of
errors. The main two contributions of this paper are:

e A novel method to characterize the effect of parallelism in
the performance of big data Workloads. This characteriza-
tion is further leveraged to optimize in-memory big data
executions by effective modelling of the performance cor-
relation with application, system and parallelism metrics.

e A novel algorithm to optimize parallelism of applications
using machine learning. Furthermore, a flavour of our pro-
posed algorithm addresses the problem of accurate settings
in the execution of applications due to its ability to draw pre-
dictions and learn from the comparison with actual results
dynamically.

We choose Spark running on YARN as the framework to test
our model because of its wide adoption for big data processing.
The same principles can be applied to other frameworks, like Flink,
since they also parallelize applications in the same manner.

This paper is structured as it follows. Section 2 provides some
background about Spark and YARN. In Section 3, we motivate the
problem at hand through some examples. Section 4 details the
proposed model and learning process. In Section 5, we evaluate
the model using Grid 5000 testbed [7]. Section 6 discusses related
work. Finally, Section 7 presents future work lines and conclusions.

2. Overview of YARN and spark
2.1. YARN: A cluster resource manager

YARN was born from the necessity of decoupling the program-
ming model from the resource management in the cluster. The
execution logic is left to the framework (e.g., Spark) and YARN
controls the CPU and memory resources in the nodes. This tracking
is done through the Resource Manager (RM), a daemon that runs
in a machine of the cluster.

An application in YARN is coordinated by a unit called the Ap-
plication Master (AM). AM is responsible for allocating resources,
taking care of task faults and managing the execution flow. We can
consider the AM as the agent that negotiates with the manager to

2 http://spark.apache.org/ (last accessed Jan 2017).
3 https://flink.apache.org/ (last accessed Jan 2017).
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Fig. 1. YARN Architecture. In the example a MPI and MapReduce application have
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get the resources needed by the application. In response to this
request, resources are allocated for the application in the form of
containers in each machine. The last entity involved is the Node
Manager (NM). It is responsible for setting up the container’s envi-
ronment, copying any dependencies to the node and evicting any
containers if needed. A graphical explanation of the architecture is
depicted in Fig. 1.

The number of available resources can be seen as a two di-
mensional space formed by memory and cores that are allo-
cated to containers. Both the MB and cores available in each
node are configured through the node manager properties:
yarn.nodemanager .resource.memory-mb and
yarn.nodemanager.resource.cpu-vcores respectively. An
important aspect to take into account is how the scheduler con-
siders these resources through the ResourceCalculator. The default
option, DefaultResourceCalculator, only considers memory when
allocating containers while DominantResourceCalculator, takes into
account both dimensions and make decisions based on what is
the dominant or bottleneck resource [8]. Since CPU is an elastic
resource and we do not want to have a limit on it, we will use the
DefaultResourceCalculator for YARN in our experiments. By doing
this, we will be able to scale up or down the number of tasks
running without reaching a CPU usage limit.

2.2. Spark: A large data processing engine

Spark [9] is a fault-tolerant, in-memory data analytics engine.
Spark is based on a concept called resilient distributed dataset
(RDDs). RDDs are immutable resilient distributed collections of
data structures partitioned across nodes that can reside in memory
or disk. These records of data can be manipulated through transfor-
mations (e.g map or filter). A RDD is lazy in the way that will only
be computed when an action is invoked (e.g count number of lines,
save as a text file). A Spark application is implemented as a series
of actions on these RDDs. When we execute an action over a RDD, a
job triggers. Spark then formulates an execution Directed-Acyclic-
Graph (DAG) whose nodes will represent stages. These stages are
composed of a number of tasks that will run in parallel over chunks
of our input data, similar to the MapReduce platform. In Fig. 2 we
can see a sample DAG that represents a WordCount application.

When we launch a Spark application, an application master is
created. This AM asks the resource manager, YARN in our case,
to start the containers in the different machines of the cluster.
These containers are also called executors in the Spark framework.
The request consists of number of executors, number of cores per
executor and memory per executor. We can provide these values
through the ——num-executors option together with the param-
eters spark.executor.cores and spark.executor.memory.

(2017), http://dx.doi.org/10.1016/j.future.2017.07.003.
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Fig. 2. Example DAG for WordCount.

One unit of spark. executor. cores translates into one task slot.
Spark offers a way of dynamically asking for additional executors
in the cluster as long as an application has tasks backlogged and
resources available. Also executors can be released by an applica-
tion if it does not have any running tasks. This feature is called
dynamic allocation [10] and it turns into better resource utiliza-
tion. We use this feature in all of our experiments. This means
that we do not have to specify the number of executors for an
application as Spark will launch the proper number, based on the
available resources. The aim of this paper is to find a combination
for spark.executor.memory and spark.executor.cores to
launch an optimal number of parallel tasks in terms of perfor-
mance.

3. Studying the impact of parallelism

The possibility of splitting data into chunks and processing
each part in different machines in a divide and conquer manner
makes it possible to analyse big amounts of data in seconds. In
Spark, this parallelism is achieved through tasks that run inside
executors across the cluster. Users need to choose the memory
size and the number of tasks running inside each executor. By
default, Spark considers that each executor size will be of 1 GB with
one task running inside. This rule of thumb is not optimal, since
each application is going to have different requirements, leading
to wastage of resources, long running times and possible failures
in the execution among other problems.

We explore these effects in the following experiments. We
deployed Spark in four nodes of the Taurus cluster in the Grid
5000 testbed [7]. We choose this cluster because we can also
evaluate the power consumption through watt-metres in each
machine [11]. These machines have two processors Intel Xeon E5-
2630 with six cores each, 32 GB of memory, 10 Gigabit Ethernet
connection and two hard disks of 300 GB. The operating system
installed in the nodes is Debian 3.2.68, and the software versions
are Hadoop 2.6.0 and Spark 1.6.2. We configure the Hadoop cluster
with four nodes working as datanodes, one of them as master node
and the other three as nodemanagers. Each nodemanager is going
to have 28 GB of memory available for containers. We set the value
of vcores to the same number as physical cores. Note however that
we are using all the default settings for YARN and by default the
resource calculator is going to be DefaultResourceCalculator [12].
This means that only memory is going to be taken into account
when deciding if there are enough resources for a given applica-
tion. HDFS is used as the parallel filesystem where we read the
files. We intend toillustrate the difference in level of parallelism for
applications that have varied requirements in terms of /O, CPU and

Table 1
Combinations of Spark parameters used for the experiments.

spark.executor.memory spark.executor.cores

512m 1

1g 1

2g 1

2g 2

2¢g 3

3g 1

3g 3

3g 4

4g 1

4g 3

4g 6

6g 1

kMedr‘m App 10°
600 [ 3
» 500 [
i z
S ool 12 2
g 400 2
= 300 8
g &
B -
& 200 | H1 &
= £a}
[
100 H
0 T T T 0
1g/1 4g/6 512m/1

‘ 00 Energy |0 Duration ‘

Fig. 3. Run time in seconds and power consumption in watts for a kMeans App. The
default, best and worst configurations are depicted.

memory. To this end, we utilize one commonly used application
which is CPU intensive, like kMeans and another common one that
is intensive in consumption of I/O, CPU and memory, like PageRank.

Our objective is to see what is the effect of the number
of concurrently running tasks on the performance of an appli-
cation. To do that, we are going to try different combinations
of spark.executor.memory and spark.executor.cores, as
seen in Table 1. We choose these values to consider different
scenarios including many small JVM’s with one task each, few
JVM’s with many tasks or big JVM’s which only host one task.

In Fig. 3, we can see the time and energy it takes to run
a kMeans application in the cluster with the default, best and
worst configuration. We can observe several effects in both energy
and duration for each configuration. Firstly, we observe that the
best configuration is 4 GB and 6 spark.executor.cores. Since
kMeans only shuffles a small amount of data, the memory pressure
and I/O per task are low, allowing this configuration to run a
higher number of tasks concurrently and reducing execution times.
Additionally, we can see that the worst configuration is the one
with 512 MB and 1 spark.executor.core. Spark allows us to
store data in memory for iterative workloads like kMeans. Since
spark.executor.memory is sized as 512 MB, the system does
not have enough space to cache data blocks into the executors. This
means that in later stages we will have to read that block from disk,
incurring in additional latency, specially if that block is in another
rack.

The other example is Page Rank, a graph application. Its DAG
involves many stages and the configuration will have a great im-
pact on the application performance, as we can see in Fig. 4. There
is a difference of almost 14 min between the best execution and
the worst one. In comparison to kMeans, PageRank caches data
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Fig. 4. Run time in seconds and power consumption in watts for a Page Rank App.
The default, best and worst configurations are depicted.

into memory that grows with every iteration, filling the heap space
often. It also shuffles gigabytes of data that have to be sent through
the network and buffered in memory space. The best configuration
is the 2g and 2 spark.executor.cores configuration since it
provides the best balance between memory space and number of
concurrent tasks. For the default one, the executors are not able to
meet the memory requirements and the application crashed with
an out of memory error. Also, we observed that for the 6g and 1
spark.executor. cores, the parallelism is really poor with only
a few tasks running concurrently in each node.

We can draw the conclusion that setting the right level of
parallelism does have an impact on big data applications in terms
of time and energy. The degree of this impact varies depending on
the application. For PageRank it can prevent the application from
crashing while for kMeans it is only a small gain. Even so, this
moderate benefit may have a large impact in organizations that run
the same jobs repeatedly. Avoiding bad configurations is equally
important. Providing a recommendation to the user can help him to
avoid out of memory errors, suboptimal running times and wasting
cluster resources through constant trial and error runs.

4. Model to find the optimal level of parallelism

As we have seen in the previous section, setting the right
level of parallelism can be done for each application through
its spark.executor.memory and spark.executor. cores pa-
rameters. These values are supposed to be entered by the user and
are then used by the resource manager to allocate JVM'’s. However,
clusters are often seen as black-boxes where it is difficult for the
user to perform this process. Qur objective is to propose a model to
facilitate this task. Several challenges need to be tackled to achieve
this objective:

o The act of setting these parallelization parameters cannot
be detached from the status of the cluster: Normally, the
user set some parameters without considering the memory
and cores available at that moment in the cluster. However,
the problem of setting the right executor size is highly de-
pendent on the memory available in each node. We need the
current resource status on YARN as a variable when making
these decisions.

o Expert knowledge about the application behaviour is
needed: This needs monitoring the resources consumed and
metrics of both the application plus the system side.

o We have to build a model that adapts to the environment
we are using: Different machines and technologies give
room to different configurations and parallelism setting.

e We have to be able to apply the experience of previous ob-
servations to new executions: This will simplify the tuning
part to the user every time he launches a new application.

To solve these problems we leverage the machine learning
techniques. Our approach is as follows. First, we will use our
knowledge about YARN internals to calculate the number of tasks
per node we can concurrently run for different configurations,
depending on the available cluster memory. These calculations,
together with metrics gathered from previous executions for that
application, will form the input of the machine learning module.
Then, the predictions will be used to find the best configuration.
In the following subsections we will explain how we gather the
metrics, how we build a dataset that can be used for this problem
and the methodology we use to make the recommendations.

4.1. Gathering the metrics and building new features

Normally predictive machine learning algorithms need a
dataset with a vector of features x1, x,, ..., X; as an input. In this
section we will explain which features we use to characterize Spark
applications. They can be classified in three groups:

e Parallelism features: They are metrics that describe the
concurrent tasks running on the machine and the cluster.
Please note that these are different from the paralleliza-
tion parameters. The parallelization parameters are the
spark.executor.cores and spark.executor.memory
parameters, which are set up by the users, while the par-
allelism features describe the effect of these parameters
on the applications. We elaborate upon these features in
Section 4.1.1.

e Application features: These are the metrics that describe the
status of execution in Spark. Examples of these features are
number of tasks launched, bytes shuffled or the proportion
of data that was cached.

e System features: These are the metrics that represent the
load of the machines involved. Examples include CPU load,
number of I/O operations or context switches.

In the following subsections, we will explain how we monitor
these metrics and how we build new additional metrics, like the
number of tasks waves spanned by a given configuration or the
RDD persistence capabilities of Spark. An exhaustive list of metrics
isincluded as an appendix (see Table A.3), together with a notation
table, to ease the understanding of this section (Table B.4).

4.1.1. Parallelism features

A Spark stage spans the number of tasks that are equal to
the number of partitions of our RDD. By default, the number of
partitions when reading an HDES file is given by the number
of HDFS blocks of that file. It can also be set statically for that
implementation through instructions in the Spark API. Since we
want to configure the workload parallelism at launch time, de-
pending on variable factors, like the resources available in YARN,
we will not consider the API approach. The goal is to calculate,
before launching an application, the number of executors, tasks
per executors and tasks per machine that will run with a given
configuration and YARN memory available. These metrics will be
later used by the model to predict the optimal configuration. To
formulate this, we are going to use the calculations followed by
YARN to size the containers. We need the following variables:

Please cite this article in press as: A.B. Hernandez, et al., Using machine learning to optimize parallelism in big data applications, Future Generation Computer Systems
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e Filesize (fsiz ): The number of tasks spanned by Spark is given
by the file size of the input file.

o dfs.block.size (byqs): An HDFS parameter that specifies the
size of the block in the filesystem. We keep the default value
of 128 MB.

e yarn.scheduler.minimum.allocation-mb (minyq, ): The min-
imum size for any container request. If we make requests
under this threshold it will be set to this value. We use its
default value of 1024 MB.

e spark.executor.memory (memspq): The size of the memory
to be used by the executors. This is not the final size of the
YARN container, as we will explain later, since some off-
heap memory is needed.

e spark.executor.cores (CoTspark): The number of tasks that will
run inside each executor.

e yarn.nodemanager.resource.memory-mb parameter
(memyoqe): This sets the amount of memory that YARN will
have available in each node.

e spark.yarn.executor.memoryOverhead (overygm):

The amount of available off-heap memory. By default, its
value its 384.

e Total available nodes (Npqqes): This represents the number of

nodes where we can run our executors.

The size of an executor is given by:

Siz@exee = MeMgpgrk + Max(0VeTyam, MeMgpar * 0.10) (1)

The 0.10 is a fixed factor in Spark and it is used to reserve a
fraction of memory for the off-heap memory. We then round up
the size of the executor to the nearest multiple of yarn minyq, to
get the final size. For example, if we get a Sizeeyc = 1408, we will
round up to two units of miny,, resulting in Sizee,. = 2048. Now
we can calculate the number of executors in each node as Neyec =
[ meMyoge /Sizeexec ] and the number of task slots in each node as
slotspode = [Nexec * COTspark]. Consequently, the total number of
slots in the cluster are slotScjyster = [SI0tSpode * Nnodes | -

Finally, we also want to know the number of waves that will
be needed to run all the tasks of that stage. By waves we mean
the number of times a tasks slot of an executor will be used, as
depicted in Fig. 5. We first calculate the number of tasks that will
be needed to process the input data. This is given by Nygs =
[fsize/bnass]. Then the number of waves is found by dividing this
task number between the number of slots in the cluster Nygpes =
[ Ntasks/SlotSciuster |- Summarizing all the previous metrics that are
useful to us, we get the following set of metrics, which we will call
parallelism metrics:

{NtaSkSa slotsnode, SIOtSciuster s Nwaves» SiZ€exec Corspark} - (2)

These are the metrics that will vary depending on the resources
available in YARN and the configuration we choose for the Spark
executors and that will help us to model performance in terms of
parallelism.

4.1.2. Application features

Spark emits an event every time the application performs an
action at the task, stage, job and application levels explained in
Section 2.2. These events include metrics that we capture through
Slim,* a node.js server that stores these metrics in a MongoDB>
database and aggregates them at task, stage, job and application
level in a bottom to up manner. This means that if we aggregate
the counters for all the tasks belonging to a stage, we will have the
overall metrics for that stage. The same is done at job level, by ag-
gregating the stage metrics and at application level, by aggregating
the jobs, as shown in Fig. 6.

4 https://github.com/hammerlab/slim (last accessed Jan 2017).
5 https://www.mongodb.com/ (last accessed Jan 2017).
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Fig. 5. A set of waves spanned by two executors with three spark.executor.cores.
If we have 16 tasks to be executed then it will take three waves to run them in the
cluster.
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Fig. 6. Slim bottom-up aggregation. If we have the metrics for the tasks, Slim can
aggregate the ones belonging to a stage to calculate that stage metrics. It does the
same at the job and application execution level.

This however creates an issue. We want to characterize appli-
cations, but if we aggregate the metrics for each tasks then we
will have very different results depending on the number of tasks
launched. As we explained in Section 4.1.1, the number of tasks
spanned depends on the size of the input file. This is not descriptive
as we want to be able to detect similar applications, based on their
behaviour and the operations they perform, even if they operate
with different file sizes. Let us assume we have some metrics we
gathered by monitoring the only stage of the Grep application
with 64 tasks. We need these metrics to describe the application,
independently of the file size with which it was executed. In this
example, if this same stage is launched again in the future with
128 tasks, its metrics have to be similar to the ones of the 64 tasks
execution in order to apply what the model learned so far for Grep
or similar behaving applications.

To even out these situations, we calculate the mean of the
metrics for the tasks of that stage. Fig. 7 shows that the mean gives
us similar metrics independently of the filesize for a stage of Sort.
The metrics are normalized from 0 to 1 to be able to plot them
together, since they have different scales.

We also define an additional metric at the application level to
describe how Spark persists data. We derive a persistence score
vector for each stage of an application that describes how much of
the total input was read from memory, local disk, HDFS or through
the network. For a stage S, we have a total number of task (Nigsks ).
We count the number of these tasks that read their input from
different sources as memory (Nmemory ), disk (Ngisk ), HDFS (Npgs) and
network Nperwork- The vector for that stage Vs is:

Nnetwork }
N[asks

V. { Nmemory Ndisk thfs
s = 5 ) )
N, tasks N tasks N, tasks
This vector will describe if the stage processes data that is
persisted in memory, disk or if it was not on that node at all and

had to be read through the network. We also use the HDFS variable
to know if the stage reads the data from the distributed file system.
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Application metrics for different execution sizes
\ \ \ \

— 00 40 Tasks
] 00 81 Tasks
0,010 00 128 Tasks
o 0. | ||
E
=
Q
X
E
g 0.020 -
Z.
|~ BEL BE0 BEO,
T T T T
K <& & &
C)&’\ *87\& &"7“”0 o&
G & ¥ N
> & 4,3’9
5> & <

Application Metrics

Fig. 7. Mean application metrics values for a stage of a Sort application with
different filesizes. We can see how the mean of the metrics is almost the same for
40, 81 and 128 tasks.

Usually this belongs to the first stage of an application, since it is
the moment when we first read data and create the RDD.

An important issue to notice here is that Vs can change depend-
ing on the execution. Sometimes, Spark will be able to allocate
tasks in the same node where the data is persisted. In some other
executions, it will not be possible because all slots are occupied or
because the system has run out of memory. However, the objective
is not to have a detailed description of the number of tasks that read
persisted data. Instead, we want to know if that stage persists data
at all and how much it was able to. Later on, the model will use this
to statistically infer how different configurations can affect a stage
that persists data.

4.1.3. System features

There are aspects of the workload that cannot be monitored
at application level, but at system level, like the time the CPU
is waiting for I/O operations or the number of bytes of memory
paged in and out. To have a complete and detailed signature of
the behaviour of an application, we also include these kind of
metrics. We include here features like cpu_usr, bytes paged in/out
or bytes sent through the network interface. To capture them, we
use GMone [ 13]. GMone is a cloud monitoring tool that can capture
metrics of our interest on the different machines of the cluster.
GMone is highly customizable and it allows developing plugins
that will be used by the monitors in each node. We developed a
plugin that uses Dstat.® With this, we obtain a measure per second
of the state of the CPU, disk, network and memory of the machines
in our cluster.

Since one task will run only in one node, we calculate the mean
of the system metrics on the node during the lifespan of that task.
This will give us descriptive statistics about the impact of that task
at the system level. Then, for each stage we will calculate the mean
of the metrics for all of its tasks in a similar bottom up way, as we
explained Section in 4.1.2. This will represent what happened at
the system level while this application was running.

6 http://dag.wiee.rs/home-made/dstat/ (last accessed Jan 2017).

4.2. Building the dataset and training the model

For each stage executed in our cluster, we get a vector that we
use as a data point. We will represent this database of stages as:

StagESDB = {Xapph Xsystem 5 Xparallelism7 Yduration}

where the X’s are the features at application (Section 4.1.2), system
(Section 4.1.3) and parallelism level (Section 4.1.1) and Ygyration iS
the duration of that stage or target variable to predict. Now we
have to build the dataset that we will use to train the model. We
want to answer the following question: If we have a stage with
metrics Xapp and Xsyseem, collected under some Xparaiielism conditions
and its duration was Ygyration, What will be the new duration under
some different Xparaiielism conditions? We can regress this effect from
the data points we have from previous executions. However, we
have to take into account that metrics change depending on the
original conditions in which that stage was executed. For instance
it is not the same executing a stage with executors of 1 GB and 1
task compared to 3 GB and 4 tasks. Metrics like garbage collection
time will increase if tasks have less memory for their objects. In
addition, CPU wait will increase if we have many tasks in the same
machine competing for I/O. We can see this effect in Fig. 8, where
the metrics of a stage of a support vector machine implementation
in Spark change depending on the number of tasks per node we
choose.

To solve this variance in the metrics, we have to include two set
of parallelism values in the learning process:

e The parallelism conditions under which the metrics were
collected. We will call them Xpara,,e,ismref.

e The new parallelism conditions under which we will run the
application. We will call them Xparattetismyy, -

Now building the dataset is just a matter of performing a
cartesian product between the metrics {Xapp, Xsystem, Xparatielism} Of
a stage and the {Xparatielism, Yauration} Of all the executions we have
for that same stage. For example, let us assume we have two
executions of a stage with different configurations like 10 and 4
tasks per node. We also have all their features, including system
plus application metrics, and the duration of the stage. The logic
behind this cartesian product is: If we have the metrics (X19) and the
duration (Y19) of an execution with 10 tasks per node and we have
the metrics (X4) and the duration (Y,4) of an execution with 4 tasks per
node (tpn), then the metrics of the 10 tasks execution together with a
configuration of 4 tasks per node can be correlated with the duration
of the 4 tpn execution, creating a new point like:

{XIOappa Xl Osystem s X]Oparallelismref B X4parallelismmn 5 Y4durarion } (3)

Note here that we consider that two stages are the same when
they belong to the same application and the same position in the
DAG. The algorithm is shown in Algorithm 1.

Now we can train the machine learning model with this dataset
and check its prediction accuracy. First we have to choose the
most accurate implementation. Since this is a regression problem,
we try different state-of-the-art regression algorithms: Bayesian
Ridge, Linear Regression, SGD Regressor, Lasso, Gradient Boosting
Regressor, Support Vector Regression and MLPRegressor, all from
the sklearn Python library [ 14]. First of all, we choose these regres-
sion algorithms versus other solutions, like Deep Learning, because
they are interpretable. Apart from this, the chosen algorithms are
easily evaluated with cross validation techniques, as K-fold, Leave
P-out or Leave One Group Out, among others. From a practical
point of view, these algorithms are available in the scikit-learn
package, which provides implementations ready to be used right
out of the box. They also allow us to create pipelines where we
perform a series of preprocessing steps before training the model.
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Fig. 8. Changes in the metrics for a stage of a support vector machine implementation in Spark. Note how the CPU metrics change depending on the number of tasks per
node. Also garbage collection and the deserialize time of an stage increases with this number.

Algorithm 1 Building the training dataset for the machine learning algorithm

: procedure BUILDATASET
stages = {(Xapp, Ksystem , Xparallelism Yduration)n}
dataset = )
for all s € stages do
B = {x € stages | x = s}

add new to dataset
end for
9: return dataset
10: end procedure

0N OYU AW N =

new = S[Xappv Xsystem i Xparallelismref] X B[Xparallelisrnrun s Yduration]

> The stage executions that we have

> All the stages that are the same as s

We build a pipeline for each of the previous algorithms, where we
first standardize the data and then fit the model. Standardization
of the data is a common previous step of many machine learning
estimators. It is performed for each feature, by removing its mean
value, and then scaling it by dividing by its standard deviation.
This ensures an equal impact of different variables on the final
outcome and not being biased towards variables that have higher
or lower numerical values. Then for each pipeline, we perform a ten
times cross validation with 3 k-folds [15]. The results are shown
in Fig. 9. The metric used to evaluate the score is Mean Absolute
Error (MAE) [16]. It is calculated by averaging the absolute errors
between predicted and true values for all the data points. MAE
will allow us to evaluate how close the different predictors are to
the real values. We do not include SGD Regressor, since its MAE
is just too high to compare with the other methods. As we can see,
boosted regression trees have the best accuracy amongst the seven
methods and also the lowest variance. In addition, decision trees
are interpretable. This means that we will be able to quantify the ef-
fect of any of the features of the model on the overall performance
of the application.

4.3. Using the model: providing recommendations for applications

So far, we have only characterized and built our model for
stages. An application is a DAG made out of stages. So how we
provide a parallelization recommendation based on the previous
explained concepts?. Remember that a configuration in Spark
is given at application level. Thus, if we set some values for
spark.executor.memory and spark.executor.cores, they
will be applied to all the stages. If we have a list listofconfs with
combinations of different values for these two parameters, and
we launch an application with a different combination each time,
each execution will have different tasks per node, waves of tasks
and memory per task settings. In other words, and following the
previously introduced notation, each execution will have different

Xparaiielism features. The dataset built in Algorithm 1 had data points
like:

(4)

therefore, we can plug in new values for Xpgratielismy,, DY iterating
through the different configurations in listofconfs, and predict the
new Yguaion fOr the parameters. In addition, the objective is to
know the effect of a given configuration on the whole application.
So we can perform this process for all the stages that are part of
the application and sum the predictions for each configuration.
Then we only have to choose as the optimal configuration the
one from the list that yields the minimum predicted duration.
Algorithm 2 describes this process for a given application and its
input data size. The time complexity of the boosted decision trees
model, used to make the predictions, is O(ntree = n x d), where
ntree is the number of trees of the boosted model, d is the depth
of those trees and n is the number of data points to be predicted.
We have to do this prediction for the nconf configurations of the
configuration list, which transforms it into O(ntree x n x d * nconf ).
Note that the only term that is variable here is the number of data
points n, that will grow as we have more executions on our system.
The rest will remain constant as they are fixed the moment we
train the model and are small numbers. We have to point out that
we do not consider stages that launch only one task, since it is
trivial that parallelism will not bring any benefit to them. The DAG
engine of Spark can also detect that some stages do not have to be
recomputed and so they can be skipped. We do not consider these
kind of stages in the DAG either since their runtime is always 0.
Fig. 10 shows a graphical depiction of the workflow for a Sort app
example.

{Xapp, Xsystemv Xparallelismref s Xparallelismnm s Yduration}

4.4. Dealing with applications that fail

When we explained the process by which we predict the best
parallelism configuration, we assumed that we have seen at least
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Algorithm 2 Recommending a parallelism configuration for an application and its input datasize

: procedure PREDICTCONFBOOSTED(app, filesize, listofconfs)
S = {s € stages | s € DAG(app) }
listofconfsandduration = ¢
for all conf € listofconfs do
foralls € Sdo
if s.ntasks # 1 then
S[Xparatielismyn | = calculateParallelism(filesize, conf)
duration = duration + predictBoostedTrees(s)
end if
end for
add (duration, conf) to listofconfsandduration
12: end for
13: return min(listofconfsandduration)
14: end procedure

—_
—_ O W 0 NG U A WN =

> All the stages that belong to the app

> Some stages only have on task. We do not consider those
> As explained in 4.1.1
> we accumulate the prediction of each stage

10-Fold CV evaluation for the different estimators
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Fig. 9. 10 CV with 3 K-Fold MAE score for different regression algorithms. Gra-
dientBoostingRegressor is the clear winner with a median absolute error of 23 s,
a maximum of 94 s in the last 10th iteration and a minimum of 2.7 s for the 3rd
iteration.

once all the stages of an application. However, this is not always
the case, since some configurations may crash. For example, for
a Spark ConnectedComponent application with a filesize of 8 GB,

Sort App

the only configurations that were able to complete successfully in
our experiments were the ones with 4 GB and 1 core and 6 GB and
1 core. The reason behind it is that graph processing applications
are resource hungry and iterative by nature. This can put a lot of
pressure in the memory management, specially when we cache
RDD’s like in these kind of implementations. In this particular
example, the 8 GB file we initially read from HDFS grows to a
17.4 GB cached RDD in the final stages of the application.

Thus, if we choose an insufficient memory setting, like the de-
fault 1 GB configuration, the application will not finish successfully
and we will not have either the complete number of stages or
the metrics for that application. Incomplete information means
that the next configuration recommended could be non-optimal,
drawing us into a loop where the application continuously crashes,
as depicted in Fig. 11.

To solve this, we use the approach explained in Algorithm 3.
When a user launches an application, we check if there are any
successful executions for it. If we cannot find any then we retrieve
the furthest stage the application got to. This can be considered
as the point where the execution could not continue. For that
stage we find the k-nearest neighbours from all the stages that
we have seen so far. These neighbouring stages belong to a set of
applications. Then we follow a conservative approach where we
choose the configuration amongst these applications that resulted
in the most number of stages completed. The intuition behind it is
that a configuration with a high number of completed stages means
better stability to the application. With this, we aim to achieve a
complete execution of the application and to collect the features
of all the stages with it. If the user executes the same application in
the future, we can use this complete information together with the
standard boosted gradient model to recommend a new configura-
tion. By trying different values for the number of k neighbours, we

Calculate tasks

per node, waves
Dataset S
App  System Parallelism Parallelism i ;
A List of New Parallelism|
name | Stage [Features Stage FeaturesFeatures  Ref Run Configurations E Run
1723
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Fig. 10. An example with a Sort App, where we iterate through a configuration list. Notice the different parallelism features: {p1, ..

conditions under which the metrics were collected, {p, ...

, Dn}nun the parallelism conditions under which the application run for that execution and {p;, ...

., Dn}res Tepresent the parallelism
’ pn}new the

new parallelism conditions that we want to try and the ones we will pass to the machine learning module. The rest of the metrics are kept constant. Then we just have to
group by configuration and sum up each of the stages predictions to know which one is best.
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Fig. 11. A deadlock situation in which the same configuration is recommended
continuously. The application crashes with the default configuration. Based on
whichever stages executed successfully the next recommendation also crashes. If
we do not get past the crashing point the recommendation will always be the same.

found that 3 is a good number for this parameter. Going above this
value can retrieve too many diverse stages, which could make the
application to crash again. Going below it can take us to the same
deadlock depicted in Fig. 11. Remember that the objective is not
to find an optimal configuration, but a conservative configuration,
which enables a complete execution without failures.

The kNeighbours approach uses a K-D Tree search approach,
where the complexity is O(log(n)) with n being the number of data
points.

4.5. The recommendation workflow

Now that we have developed the models with which we make
recommendations, we can connect everything together and de-
scribe the workflow we follow to find the best parallelism settings.
When a user wants to execute an application, first we check if
we have any information of it in our database of previously seen
applications. If we do not have it, we execute it with the default
configuration. This execution will give us the metrics we need to
tune the application in future executions. If we do have information
about that application, we check if it completed successfully or not:

e Incase it did not, we apply the procedure of Algorithm 3 for
crashed executions.

e In case it did, we apply the Algorithm 2 with the boosted
regression trees model.

Whatever the case is, the monitoring system adds the metrics
for that run to our database so they can be applied for future
executions. Applications in a cluster are recurring [ 17]. This means
that the precision of the model will increase with the time since
we will have more data points. We assume the machine learning
algorithm has been trained beforehand and we consider out of the
scope of this paper and as future work, when and how to retrain it.
A final algorithm for the process is depicted in Algorithm 4.

5. Evaluation

We perform an offline evaluation of the model with the traces
we got from a series of experiments in Grid 5000.

Cluster setup: Six nodes of the Adonis cluster in the Grid 5000
testbed. These machines have two processors Intel Xeon E5520
with four cores each, 24 GB of memory, 1 Gigabit Ethernet and 1
card InfiniBand 40G and a single SATA hard disk of 250 GB. The
operating system installed in the nodes is Debian 3.2.68, and the
software versions are Hadoop 2.6.0 and Spark 1.6.2. We configure
the Hadoop cluster with six nodes working as datanodes, one of
them as master node and the other five as nodemanagers. Each
nodemanager has 21 GB of memory available for containers. We
set the value of vcores to the same number as physical cores.
We build a benchmark that is a combination of Spark-bench [18],
Bigdatabench [19] and some workloads that we implemented on
our own. The latter ones were implemented to have a broader
variety of stages and each one has different nature:

e RDDRelation: Here we use Spark SQL and the dataframes
APIL We read a file that has pairs of (key, value). First we
count the number of keys using the RDD API and then using
the Dataframe APl with a select count (*) type of query.
After that, we do a select from query in a range of values
and store the data in a Parquet data format.” This workflow
consist of four stages in total.

e NGramsExample: We read a text file and we construct a
dataframe where arow is a line in the text. Then we separate
these lines in words and we calculate the NGrams=2 for each
line. Finally these Ngrams are saved in a text file in HDFS.
This gives us a stage in total since it is all a matter of mapping
the values and there is no shuffles involved.

e GroupByTest: Here we do not read any data from disk but we
rather generate an RDD with pairs of (randomkey, values).
The keys are generated inside a fixed range so there will be
duplicate keys. The idea is to group by key and then perform
a count of each key. The number of pairs, the number of par-
titions of the RDD and consequently the number of tasks can
be changed through the input parameters of the application.
This gives us two stages like in a typical GroupBy operation.

We run all the applications of this unified benchmark with three
different file sizes as we want to check how the model reacts
when executing the same application with different amounts of
data. Some implementations, like the machine learning ones, ex-
pect a series of hyperparameters. These are kept constant across
executions and their effect is left out of the scope of this paper.
We also try different values for spark.executor.memory and
spark.executor. cores for each application and data size com-
binations. These executions generate a series of traces that we
use to train and evaluate our model offline. Since the usefulness
of our approach is that it can predict the performance of new
unseen applications, we train the model by leaving some apps
outside of the training set. Those apps will be later used as a test
set. A description of the benchmark is depicted in Table 2. The
reason for choosing this benchmark, is to have a representative
collection of batch processing applications that are affected differ-
ently by their parallelization, i.e. graph processing, text processing
and machine learning. These three groups allow us to prove that
applications with different resource consumption profiles have
different optimal configurations. We leave as future work the effect
of parallelization in data streaming applications. The files were
generated synthetically. At the end we have 5583 stages to work
with. As before we use the dynamic allocation feature of Spark and
the DefaulResourceAllocator for YARN.

7 https://parquet.apache.org/ (last accessed Jan 2017).
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Algorithm 3 Finding a configuration for an application that failed

1: procedure PREDICTCONFKNEIGHBOURS(app)
2 S = {s € stages | s € DAG(app) A s[status] = failed }
: x = lastexecutedstage € S
neighbours = find3neighbours(x, stages)

return res.configuration

3
4
5: res = {n € neighbours | n.stagesCompleted = max(n.stagesCompleted) }
6
7

: end procedure

Algorithm 4 Providing an optimal configuration for a application and a given input file size

1: procedure CONFIGURATIONFORAPPLICATION(application, filesize)
2 A = {apps € appDB | apps.name = application) }

3 if A = () then

4 conf =(1g, 1)

5. elseif A # () then

6 if (Vapp € A | app.status = failed) then

7 conf = predictconfkneighbours(app)

8 else

9: conf = predictconfboosted(app, filesize)

10: end if
11: end if

12: submittospark(app, conf)

13: add monitored features to stageDB and appDB
14: end procedure

Table 2

Different applications used. File size denotes the three different sizes used for that application. Group by does not read
any file but creates all the data directly in memory with 100 partitions.

Application

Dataset split

File size Type of app

ShortestPath
Connected Component
Logistic Regression

20GB, 11 GB,8 GB Graph Processing

Support Vector Machine Test 18 GB, 10 GB, 5 GB Machine Learning

Spark PCA Example

Grep Text Processing

SVDPlusPlus

??gigfe“goum 20 GB, 11 GB, 8 GB Graph Processing

Strongly Connected Component

Linear Regression

kMeans . Machine Learning
- Train

Decision Tree

Tokenizer 18 GB, 10 GB, 5 GB

Sort Text Processing

WordCount

RDDRelation SparkSQL

GroupBy 100 tasks Shuffle

5.1. Overhead of the system

In this section, we want to evaluate the overhead of monitor-
ing the system, training the model and calculating a prediction.
The first concern is if Slim and GMone introduce some overhead
when launching applications. We executed five batches of two
applications running in succession: Grep and LinearRegression. We
measured the time it took to execute these five batches with and
without monitoring the applications. The results are depicted in
Fig. 12. As we can see, the overhead is negligible.

Also we want to evaluate how much time it takes to train the
model and to calculate the optimal configuration for an application.
We train the model with the traces we got from Grid5000 in our
local computer. The specifications for the CPU are 2,5 GHz Intel
Core i7 of 4 cores and for the memory is 16 GB of DDR3 RAM. The
overhead of training the model depends on the number of data
points, as shown in Fig. 13. For the complete training set of 55139
the latency is 877 s. For the overhead of the predictions, we take all
the data points in the test set for each application and predict their

execution times. As we can see in Fig. 14, the overhead is negligible,
with a maximum latency of 0.551 s for the LogisticRegression App
that has 10206 points in the test set. Note that this process is run
on a laptop but it can be run on a node of the cluster with less
load and more computation power, like the master node. We must
also consider that we trained the model with sklearn, but there are
distributed implementations of boosted regression trees in MLIib®
for Spark that can speed up the process. We leave as future work
when and how the model should be trained.

5.2. Accuracy of predicted times

Now we evaluate the accuracy of the predicted durations. As
we mentioned earlier, we built the training and the test set by
splitting the benchmark in two different groups. First, we start
by evaluating the duration predictions for different stages. To do
that, we take all the data points for a stage, we feed them to the

8 http://spark.apache.org/mllib/ (last accessed Jan 2017).
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Fig. 12. Overhead introduced by monitoring and storing the traces versus non-
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Fig. 13. Duration of training the model depending on the number of data points.
For the whole dataset of 85664 points the duration is 1536 s.

model and we average the predictions for each configuration. The
results can be seen in Fig. 15. For some stages, the predictions are
really precise, like the stage O of Shortest Path with 8 GB. Some
others, like the Stage 1 of Support Vector Machine for 10 GB, do
not follow the exact same trend as the real duration but effectively
detect the minimum. We show here some of the longest running
stages across applications, since optimizing their performance will
have a greater impact on the overall execution. Remember that our
final objective is not to predict the exact run time but rather to
know which configurations will affect negatively or positively the
performance of an application.

5.3. Accuracy of parallelism recommendations for an application

Now that we have seen the predictions for separate stages,
we are going to evaluate the method for a complete application.
The objective is to compare our recommendations with a default
configuration that a user will normally use and with the best
improvement the application can get. We also want to evaluate
how the predictions evolve with time, as we add more data points
to our database of executions. To achieve that, we are going to
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Fig. 14. Latency in the predictions for different applications. The latency is always
less than 1 s with a maximum of 0.519 for a Logistic Regression App.

assume a scenario where the user launches a set of applications
recurrently with different file sizes. If the application has not been
launched before, the recommendation will be the default one. After
that first execution, the system will have monitored metrics for
that application. We can start recommending configurations and
the user will always choose to launch the workload with that
configuration. In the scenario, for the non-graph applications in
the test set, the user executes each one with 5 GB, 10 GB and
18 GB consecutively. For the graph applications we do the same
with their 20 GB, 8 GB and 11 GB sizes. In this case, we invert
the order, since none of the 20 GB executions finished correctly
because of out of memory errors and we use them to get the
metrics instead. The results of these executions can be seen in
Figs. 16 and 17. Note how we separate the figures for graphs and
non-graph applications. The reason is that with one gigabyte for
spark.executor.memory, the graph workloads always crashed,
so we do not include this default execution. Best shows the lowest
possible latency that we could get for that application. Predicted is
the configuration proposed by our model. Default is the runtime for
a 1g/1core configuration. Worst is the highest run time amongst
the executions that finished successfully. We do not show here
any application that did not complete successfully. For some ap-
plications the recommendations achieve the maximum efficiency
like Grep with 10 GB, Logistic Regression with 18 GB or SVM with
18 GB. For example in Grep 10 GB the maximum improvement is of
11%. This means 11% of savings in energy and resource utilization,
which may be significant when these applications are executed re-
currently. These recommendations can also help the user to avoid
really inefficient configurations, like the one in Grep 10 GB. For
graph executions, the benefits are more obvious. Since the initial
default execution always crashed, the first recommendation by
the system was drawn out of the neighbours procedure explained
early. The latency for this first recommendation is not optimal, but
we have to keep in mind that this is a conservative approach to
get a first complete run and a series of traces for the application.
After getting this information and applying the boosted model,
we can get an improvement up to 50% for the case of connected
component with 11 GB. We also want to prove that the model can
converge to a better solution with every new execution it monitors.
Note that we are not talking about retraining the model, but about
using additional monitored executions to improve the accuracy.
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Stage 0 of 8GB Shortest Path

Stage 1 of 10GB SVM
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Fig. 15. Predictions for stages of different apps with the highest duration and so highest impact inside their applications. For Shortest Path the predictions are pretty accurate.

For SVM and Logistic Regression the trend of the predicted values follows the real ones.
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Fig. 16. Executions for the non-graph processing applications of the test set. Best shows the lowest possible latency that we could get for that application. Predicted is the
configuration proposed by our model. Default is the runtime for a 1g and 1 task slot per executor configuration. Worst is the highest run time amongst the executions that

finished successfully.

As an example, we keep executing the shortest path application
first with 11 GB and then with 8 GB until the model converges to
an optimal solution. The evolution can be seen in Fig. 18. For the
11 GB execution, the first point is the duration for the neighbours
approach. After that, the execution recommended with the boosted
regression model fails, but the model goes back to an optimal
prediction in the next iteration. In the 8 GB case, it goes down again
from the conservative first recommendation to a nearly optimal
one. This is an added value of the model. The system can become
more intelligent with every new execution and will help the user
to make better decisions about parallelism settings.

Finally, we include in Fig. 19 the time that it takes to find an
optimal configuration for each application. For the boosted deci-
sion trees approach, the average overhead is 0.3 s and it increases
slightly for those applications that have more stages, like logistic
regression. We consider this negligible, since a 0.3 s delay will not
be noticeable by the user. The kNeighbours approach is faster, but
it is only applied to those applications that crash with the default
execution of 1g/1core.

5.4. Interpretability of the model

Another advantage of decision trees is that they are inter-
pretable. That means that we can evaluate the impact of certain
features on the outcome variable (duration in our case). One of
the possible applications is to explain how the number of tasks
per node affects a given workload. This information can be valu-
able when the user wants to manually choose a configuration.
For example, in Fig. 20 we see the partial dependence of three

Graph executions
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Fig. 17. Executions for the graph processing applications of the test set. Best shows
the lowest possible latency that we could get for that application. Predicted is the
configuration proposed by our model. Worst is the worst running time. All the
default configurations crashed for these kinds of applications.

applications. Shortest Paths is a graph processing application and,

as we saw earlier, it benefits from a low number of tasks per node.
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Evolution of Shortest Path
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Fig. 18. Evolution for the predictions of a recurrently executed shortest path
application. From the conservative kNeighbours approach, we go to nearly optimal
execution times. Note how the first prediction of the boosted model results in an
OOM error.
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Fig. 19. Time needed to calculate a recommended configuration with the boosted
regression method and the kNeighbours method for each of the applications in our
simulated scenario. Note that some of the applications do not use the kNeighbours
method, since it is needed only when the application crashes with the default
configuration of 1g and 1 core.

Shortest Paths

KMeans sweet spot seems to be around a default 10-12 tasks per
node. For PCA, the points between 0 and 5 correspond to stages
with only one or few tasks, something very common in machine
learning implementations. Again everything from 8 to 15 is a good
configuration while more than that, it is counterproductive. Also
note how the partial dependence shows us the degree to which
parallelism affects that workload. For example in Shortest Paths
it ranges from 2000 to —4000 while in kMeans it goes from 100
to —100. Indeed, as we saw in the experiments of the motivation
section, the benefit of parallelism is more obvious on graph ap-
plications than in kMeans. This feature of a decision tree proves
to be useful and can help the user to understand how different
parameters affect their workloads.

6. Related work

There are several areas of research that are related to our work:

Using historical data to predict the outcome of an applica-
tion: Several lines of research try to optimize different aspects
of applications. In [20], the authors present the Active Harmony
tuning system. It was born from the necessity to automatically tune
scientific workflows and e-commerce applications. The challenge
lies on choosing an optimal parametrization from a large search
space. To narrow this space, it considers only the parameters that
affect performance the most. In contrast, we do not need to narrow
the parameter space, because we evaluate the performance of a
configuration through the machine learning module, which has a
negligible overhead. Another different approach in [21] is to use a
benchmark of HPC workloads from different domains to create a
reference database of execution profiles. These profiles are called
kernels. The paper presents a framework with the reference ker-
nel implementations, their execution profiles and a performance
model already trained that can predict their execution time with
other problem sizes and processor. Our solution does not need
this reference database already built and it dynamically creates
the model with every new execution that comes in. There is work
that considers the characteristics of the input data as an input to
the learning model. In [22], the authors sample from the data a
series of characteristics (e.g. number of numerical and categorical
attributes of the dataset) that constitute the variables of a linear
regression model that predicts the run time of a C4.5 algorithm.
However, they do not consider how we can speed up applications
or any configuration parameters. Multilayer neural networks were
used in [23] to predict execution times on the parallel application
SMG2000. It explains a typical machine learning process where
data from different executions is gathered into a training and a
test set. A problem of neural networks though is that they are not
interpretable. This does not suit our objective of assisting the user
when using big data platforms.

Optimizing and predicting performance of Hadoop: When
Hadoop was the main tool for big data analytics, a series of pub-
lications focused on optimizing its default settings. Starfish [24]
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Fig. 20. Partial dependence for different applications. Shortest Paths works better with a low number of tasks per node. kMeans best setting is 12 tasks per node. For PCA
the points between 0 and 5 corresponds to stages with only one or few tasks, while with many tasks 7 is a good configuration.
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is an auto-tuning system for MapReduce that optimizes the
parametrization through a cost based model. However, this model
introduces a profiling overhead and is rigid, meaning that if the
underlying infrastructure changes, so should the model. A machine
learning approach can adapt itself by training on new data. The
authors in [25] propose a method to predict the runtime of Jagl
queries. It trains two models for each query type: one to predict
the processing speed of the query and a second one to predict the
output cardinality. A query is considered similar to another one
if they have the same jaql functions. With these two models we
can estimate the execution time. This is a really restrictive model,
especially to new incoming queries that does not have any other
similar observations. Our model does not need any features of a
specific domain like jagl but relies instead on more general Spark
and machine metrics. It can also be applied to any new incoming
observations. ALOJA-ML [26] uses machine learning techniques to
tune the performance of Hadoop and discover knowledge inside
a repository of around 16.000 workload executions. This allows
the authors to evaluate the impact of variables like hardware
configurations, parameters and cloud providers. However, Spark
works in a different way compared to Hadoop, specially because
of its in-memory computing capabilities. In [27], the authors also
study how to configure a MapReduce job in addition to calculating
the number of virtual machines and its size needed to run that
application. It does so by clustering applications that show a similar
CPU, memory and disk usage rate. For each cluster, it builds a
SVM regression model. In contrast, our approach does not need
to cluster similar applications together but generalizes depending
on the features of the workload. MROnline [28] provides an online
tuning system that is based on statistics of the job and a grey-box
smart hill climbing algorithm. The tuning is made at task level.
This system is oriented to MapReduce and needs tasks test runs to
converge into the optimal solution. Cheng et al. [29] use genetic
algorithms to configure MapReduce tasks in each node, taking
into account cluster heterogeneity. The parameters are changed,
depending on how well a parameter value works in a machine.
However, it does not work well for short jobs, since it needs time
to converge into a good solution.

Optimizing and predicting performance of Spark: Spark is a
relatively new technology and its popularity is on the rise. Tuning
up its performance is an important concern of the community and
yet there is not much related work. In [30], the authors present,
to the best of our knowledge, the only Apache Spark prediction
model. Again sampling the application with a smaller data size is
used to get statistics about the duration of the tasks and plugged
into a formula that gives an estimation of the total run time for
a different file size. However, it does not considers tuning any
parameters and their effect on duration. MEMTune [31] is able to
determine the memory of Spark’s executors by changing dynami-
cally the size of both the JVM and the RDD cache. It also prefetches
data that is going to be used in future stages and evicts data blocks
that are not going to be used. However, the method is an iterative
process that takes some time to achieve the best result and it does
not work well with small jobs. It does not learn from previous
executions either. In [32], the authors perform several runs of a
benchmark and iterate through the different parameters of Spark
to determine which ones are of most importance. With the expe-
rience acquired from these executions, they build a block diagram
through a trial and error approach of different parameters. The ob-
vious drawback is that we have to execute the application several
times and follow the process every time the input size changes.
Tuning garbage collection has also been considered in [33]. The
authors analyse in depth the logs of JVM usage and come to the
conclusion that G1GC implementation improves execution times.
Finally, in [34], a new model for shuffling data across nodes is
proposed. The old model of creating a file in each map tasks for

each reduce task was too expensive in terms of I0. Their solution is
to make the map tasks running in the same core write to the same
set of files for each reduce task.

Task contention: One of the objectives of our model is to detect
task contention and act accordingly, by increasing or decreasing
the number of tasks. This topic has also been explored in [35].
Bubble up proposes a methodology to evaluate the pressure that
a given workload generates in the system and the pressure that
this same workload can tolerate. With this characterization, better
colocation of tasks can be achieved. Nonetheless, this requires
using the stress benchmark in all the new applications that we
launch. Paragon [36] takes into account both heterogeneity of
machines and contention between tasks when scheduling. By using
SVD, it can calculate performance scores of a task executed in a
given machine configuration and co-located with another work-
load. Same as in previous references, it needs benchmarking each
time a different workload comes in. Moreover, we are not trying to
create a scheduler, but to assist the user in using big data platforms.
In [37], the authors propose another scheduler that is based on
the assumption that resource demands of the different stages can
be known in advance. By considering the maximum amount of
resources an executor will use, Prophet can schedule JVM's on
different machines to avoid over-allocation or fragmentation of
resources. This results in a better utilization of the cluster and less
interference between applications. This work assumes again that
the user already knows the parallelism settings for the application
and tries to optimize from there. Our work helps the user to choose
a right configuration before sending it to the cluster manager and
also gives an interpretation of this decision.

7. Conclusions and future work

The results of this paper show that it is possible to accurately
predict the execution time of a big data-based application with
different file sizes and parallelism settings using the right models.
This is a first step in a longer path towards a much higher control
of big data analytics processes. It is necessary to reduce complexity
and allow centralized management of environments with multiple
technologies. To achieve this, the next generation of big data infras-
tructure solutions need to be vendor-agnostic and user friendly.
In addition, processes, monitoring and incident response must be
increasingly automated to boost speed and eliminate human error,
thereby increasing system uptime.

Regarding our research plans, we aim at applying these con-
cepts to an heterogeneous environment with different machine
specifications. This could be done by modelling at task-level, in-
stead of stage-level. We also want to consider choosing these
parallelism settings when there are already other applications
running in the cluster and modelling their interference. We also
plan to focus on mitigating issues related to data skew, where some
executors receive more shuffled data than others, causing out-of-
memory errors if the JVM is not sized correctly. As the IT arena
expands and large workloads execution pave the way for it, it is
important to develop concrete methods to reduce the resource
wastage and optimize utilization at every stage of execution.

All in all, both industry and academy need to continue col-
laborating to create solutions that make it possible to manage
the lifecycle of applications, data and services. In particular, new
solutions will be necessary that simplify management of big data
technologies and generate reliable and efficient root cause analysis
mechanisms to understand the health of big data systems and to
optimize its performance.
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Table A.3
In this table we summarize the different features we used as input for the machine learning models. The monitor system column refers to the system that gathered the
metric, namely Gmone, Slim or None, the latter meaning that this metric was derived from other ones.

Feature/Metric Description Monitor system Feature group
BytesReadDisk Number of bytes read from Disk Slim Application
BytesWrittenDisk Number of bytes written to disk Slim Application
ExecutorDeserializeTime Time that the stage spends deserialising the tasks in the executor Slim Application
JVMGCTime Time that the stage spends doing Garbage Collection Slim Application
MemoryBytesSpilled Memory bytes used before spilling to disk Slim Application
DiskBytesSpilled Disk bytes used to spill to disk Slim Application
ShuffleBytesRead Number of inputs Bytes Read from shuffle Slim Application
ShuffleBytesWritten Number of output bytes written for shuffling Slim Application
ShuffleReadTime Time to read all the shuffle input Slim Application
ShuffleWriteTime Time to write all the shuffle output Slim Application
TaskCountsFailed Number of tasks that failed for that stage Slim Application
TaskCountsNum Total number of tasks that need to run for that stage Slim Parallelism
TasksThatRunned Total number of tasks that finished successfully None(Derived) Application
totalTaskDuration Total duration of the tasks in the stage Slim Application
spark.executor.bytes Number of memory bytes allocated to the executor Slim Parallelism
spark.executor.cores Number of cores allocated to the executors. Slim Parallelism
Equivalent to the number of tasks running inside the executors
tasksPerNode Number of tasks slots per node None (Derived) Parallelism
tasksPerCluster Number of tasks slots in the whole cluster None (Derived) Parallelism
memoryPerTask Bytes of memory for each task. Is calculated None (Derived) Parallelism
by dividing spark.executor.bytes/spark.executor.cores
nWaves Number of waves of tasks needed to complete the stage None(Derived) Parallelism
cpu_wait % of cpu on wait GMone System
cpu_usr % of cpu on usage GMone System
cpu_idl % of cpu that is idle GMone System
paging_in number of bytes paged in GMone System
paging_out number of bytes paged out GMone System
io_total_read number of 10 read operations GMone System
io_total_write number of I0 write operations GMone System
sys_contswitch Number of system context switches GMone System
sys_interrupts Number of system interrupts GMone System
Disk Percentage of tasks that read their data from Disk None (Derived) Application
Hadoop Percentage of tasks that read their data from HDFS None (Derived) Application
Memory Percentage of tasks that read their data from Memory None (Derived) Application
Network Percentage of tasks that read their data through the Network None (Derived) Application
Table B.4
Here we provide a notation table for the different terms we have used through the paper. We also include the section in which the term was first mentioned.

Notation Description Mentioned in section
fsize File size of the input file
bhags Size of the block in HDFS
Minyam Minimum size of a container request
memgpqy Size of the memory to be used by executors
COTspark Number of tasks that will run inside each executor
meMyode This sets the amount of memory

that YARN has available in each node
overym The amount of available off-heap memory Section 4.1.1. Parallelism features
Niodes The total number of nodes
Sizeexec The total size of an executor in Spark
Nexec The number of executors in each node
slotsyode The number of task slots per node
slotScpyster The number of task slots per cluster
Niasks Number of tasks needed to process the data
Nuaves Number of waves of tasks needed to process the data
Vs Data persistence vector for one stage
Ninemory Number of tasks that read from memory
Naisk Number of tasks that read from disk . s
Nhdgs Number of tasks that read from HDFS Section 4.1.2. Application features
Nretwork Number of tasks that read from network
Xapp The vector with the features at application level for one stage
Xsystem The vector with the features at system level for one stage
Xparallelism The vector with the features at parallelism level for one stage . o
Xiamug,,-smmf The parallelism vector under which the other metrics were collected Section 4.2. Building the dataset
Xparallelismpun The new parallelism conditions under which the stage will be run
Yduration The duration of the stage
listofconfs The list of configurations which we will iterate through, Section 4.3. Using the model

in order to find an optimal one
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chine learning
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Appendix B. Notation table with the terms used in the text
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