
Operations Research Letters 41 (2013) 457–461
Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Solving two-stage robust optimization problems using a
column-and-constraint generation method
Bo Zeng ∗, Long Zhao
Department of Industrial and Management Systems Engineering, University of South Florida, United States

a r t i c l e i n f o

Article history:
Received 27 August 2012
Received in revised form
5 April 2013
Accepted 11 May 2013
Available online 3 June 2013

Keywords:
Two-stage robust optimization
Cutting plane algorithm
Location-and-transportation

a b s t r a c t

In this paper, we present a column-and-constraint generation algorithm to solve two-stage robust
optimization problems. Compared with existing Benders-style cutting plane methods, the column-and-
constraint generation algorithm is a general procedure with a unified approach to deal with optimality
and feasibility. A computational study on a two-stage robust location-transportation problem shows that
it performs an order of magnitude faster.
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1. Introduction

Robust optimization (RO) [4–6,12,9,10] is a recent optimization
approach to deal with data uncertainty. Because it is derived to
hedge against any perturbation in the input data, a solution to a
(single-stage) ROmodel tends to be overly conservative. To address
this issue, two-stage RO (and themore generalmulti-stage RO), also
known as robust adjustable or adaptable optimization, has been
introduced and studied [3], where the second-stage problem is
to model decision making after the first-stage decisions are made
and the uncertainty is revealed. Due to the improved modeling
capability, two-stage RO has become a popular decision making
tool. Applications include network/transportation problems [1,16,
13], portfolio optimization [17], and power system scheduling
problems [21,15,8].

However, two-stage RO models are very difficult to compute.
As shown in [3], even a simple two-stage RO problem could be
NP-hard. To overcome the computational burden, two solution
strategies have been studied. The first is the use of approximation
algorithms, which assume that second-stage decisions are simple
functions, such as affine functions, of the uncertainty; see exam-
ples in [7]. The second type of algorithms seeks to derive exact
solutions in the line of Benders’ decomposition method, i.e. they
gradually construct the value function of the first-stage decisions
using dual solutions of the second-stage decision problems [19,21,
8,15,13]. So, we call them Benders-dual cutting plane algorithms.
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In [21], we implement a different cutting plane strategy to solve
a power system scheduling problem with an uncertain wind sup-
ply. This strategy does not create constraints using dual solutions
of the second-stage decision problem; instead, it dynamically gen-
erates constraints with recourse decision variables in the primal
space for an identified scenario, which is very different from the
philosophy behind Benders-dual procedures. For this reason, it
was denoted as a primal cut algorithm in [21], but actually it is a
column-and-constraint generation procedure. In this study, we de-
velop and present this solution procedure in a general setting and
benchmark with a Benders-dual cutting plane procedure.

In the column-and-constraint generation procedure, the gener-
ated variables and constraints are very similar to those in a two-
stage stochastic programming model. Also, when the uncertainty
set is discrete and finite, by enumerating variables and constraints
for each scenario in the set, an equivalent monolithic optimization
formulation can be constructed [17]. However, to the best of our
knowledge, except for the work in [21], no algorithm has been re-
ported that uses these variables and constraints within a cutting
plane procedure to solve two-stage RO problems. This is the first
presentation of this cutting plane algorithm in a general setup and
the first theoretical and systematic comparison of its performance
with the Benders-dual cutting plane method.

2. Two-stage RO and Benders-dual cutting plane method

Although this solution strategy can be easily extended to
nonlinear formulations, we focus on linear formulations in this
paper, where both the first- and second-stage decision problems
are linear optimizationmodels and the uncertainty is either a finite
discrete set or a polyhedron. Let y be the first-stage and x be the
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second-stage decision variables, respectively. Unless mentioned
explicitly, they can take either discrete or continuous values. The
uncertainty set U could be a discrete set or a polyhedron. The
general form of two-stage RO formulation is

min
y

cTy + max
u∈U

min
x∈z(y,u)

bTx (1)

s.t. Ay ≥ d, y ∈ Sy
where z(y, u) = {x ∈ Sx : Gx ≥ h − Ey − Mu} with Sy ⊆ Rn

+
and

Sx ⊆ Rm
+
. A few cutting plane basedmethods have been developed

and implemented to derive the exact solution when Sx = Rm
+

[19,21,8,15]. Because they are designed in the line of Benders’
decomposition [2,14] and make use of the dual information of
the second-stage decision problem, we call them Benders-dual
cutting plane methods or Benders-dual methods for short. We briefly
describe them as follows.

Consider the case where the second-stage decision problem is
a linear programming (LP) problem in x. We first take the relatively
complete recourse assumption that this LP is feasible for any given y
and u. Let π be its dual variables. Then, we obtain its dual problem,
which is a maximization problem and can be merged with the
maximization over u. As a result, we have the following problem,
which yields the subproblem in the Benders-dual method.

SP1 : Q(y) = max
u,π

{(h − Ey − Mu)Tπ : GTπ ≤ b,

u ∈ U, π ≥ 0}. (2)

Note that the resulting problem in (2) is a bilinear optimization
problem. Several solution strategies have been developed, either
in a heuristic fashion [8] or for instances with specially-structured
U [19,21,15,13]. Assume that, for given y∗

k , an optimal solution
(u∗

k , π
∗

k ) that solves Q(y∗

k) can be obtained by a solution oracle.
Then, a cutting plane in the form of

η ≥ (h − Ey − Mu∗

k)
Tπ∗

k (3)

can be generated. It can be included into the master problem, i.e.,

MP1 : min
y,η

cTy + η

s.t. Ay ≥ d (4)
η ≥ (h − Ey − Mu∗

l )
Tπ∗

l , ∀l ≤ k
y ∈ Sy, η ∈ R,

which can compute an optimal solution (y∗

k+1, η
∗

k+1). Note that
cTy∗

k +Q(y∗

k) provides an upper bound and cTy∗

k+1 +η∗

k+1 provides
a lower bound to the optimal value of (1). Therefore, by iteratively
introducing cutting planes (3) and computing MP1, lower and
upper bounds will converge and an optimal solution of (1) can
be obtained (see A1 in the Electronic Companion [11] for details).
Note that π∗

k and u∗

k are extreme points (or discrete points) of their
respective feasible sets.We have the following result regarding the
algorithm’s complexity.

Proposition 1. Let p be the number of extreme points of U if it is
a polyhedron or the cardinality of U if it is a discrete set. Let q be
the number of extreme points of {π : GTπ ≤ b, π ≥ 0}. Then,
the Benders-dual algorithmwill generate an optimal solution to (1) in
O(pq) iterations.

Compared with classical Benders’ decomposition procedures
[2,14], the generated cut in (3) can be treated as an optimality cut. In
the cases where the relatively complete recourse assumption does
not hold, Terry [18] and Jiang et al. [15] discuss the feasibility cut
issue.

3. A column-and-constraint generation algorithm

In this section, we present another cutting plane procedure
to solve two-stage RO problems. Because the generated cutting
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planes are defined by a set of created recourse decision variables in
the forms of constraints of the recourse problem, the whole proce-
dure is a column-and-constraint generation (C&CG) procedure. To
make our exposition simple, we firstmention an observationwhen
U is a finite discrete set. Let U = {u1, . . . , ur} and {x1, . . . , xr} be
the corresponding recourse decision variables. Then, the two-stage
RO in (1) in Section 2 can be reformulated as the following:

min
y

cTy + η (5)

s.t. Ay ≥ d (6)

η ≥ bTxl, l = 1, . . . , r (7)

Ey + Gxl ≥ h − Mul, l = 1, . . . , r (8)

y ∈ Sy, xl ∈ Sx, l = 1, . . . , r. (9)

As a result, solving a two-stage RO problem reduces to solve
an equivalent (probably large-scale) mixed integer program.
When the uncertainty set is very large or is a polyhedron,
developing the equivalent formulation by enumerating all the
possible uncertain scenarios in U and deriving its optimal value
is not practically feasible. Nevertheless, based on constraints in
(7), it is straightforward that a formulation based on a partial
enumeration, i.e., a formulation defined over a subset of U,
provides a valid relaxation (and, consequently, a lower bound) to
the original two-stage RO (or its equivalent formulation). Hence, by
expanding a partial enumeration by adding non-trivial scenarios
gradually, stronger lower bounds can be expected. With this
observation in mind, we were motivated to design a column-and-
constraint generation procedure that expands a subset of U by
identifying and including significant scenarios, i.e., generating the
corresponding recourse decision variables and (7)–(8) on the fly.

Similar to the Benders-dual method, this column-and-
constraint generation procedure is implemented in a master-
subproblem framework. We assume that an oracle can solve the
following subproblem in the procedure. It can either derive an op-
timal solution (u∗, x∗) with a finite optimal value Q(y) or identify
some u∗

∈ U for which the second-stage decision problem is in-
feasible. Q(y) in the latter case is set to +∞ by convention.

SP2 : Q(y) = {max
u∈U

min
x

bTx : Gx ≥ h − Ey − Mu, x ∈ Sx}. (10)

Column-and-constraint generation (C&CG) algorithm

1. Set LB = −∞,UB = +∞, k = 0 and O = ∅.
2. Solve the following master problem.

MP2 : min
y,η

cTy + η

s.t. Ay ≥ d

η ≥ bTxl, ∀l ∈ O (11)
Ey + Gxl ≥ h − Mu∗

l , ∀l ≤ k

y ∈ Sy, η ∈ R, xl ∈ Sx ∀l ≤ k.

Derive an optimal solution (y∗

k+1, η
∗

k+1, x
1∗, . . . , xk∗) and up-

date LB = cTy∗

k+1 + η∗

k+1.
3. Call the oracle to solve subproblem SP2 in (10) and updateUB =

min{UB, cTy∗

k+1 + Q(y∗

k+1)}.
4. If UB − LB ≤ ϵ, return y∗

k+1 and terminate. Otherwise, do
(a) if Q(y∗

k+1) < +∞, create variables xk+1 and add the
following constraints
η ≥ bTxk+1 (12)

Ey + Gxk+1
≥ h − Mu∗

k+1 (13)
toMP2 where u∗

k+1 is the optimal scenario solving Q(y∗

k+1).
Update k = k + 1, O = O ∪ {k + 1} and go to Step 2.
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(b) if Q(y∗

k+1) = +∞, create variables xk+1 and add the
following constraints
Ey + Gxk+1

≥ h − Mu∗

k+1 (14)
to MP2 where u∗

k+1 is the identified scenario for which
Q(y∗

k+1) = +∞. Update k = k + 1 and go to Step 2. �

Note that constraints (12)–(13) generated in Step 4(a) serve as
optimality cuts and constraints (14) generated in Step 4(b) serve
as feasibility cuts. In fact, because constraint (12) with xk+1 for
an infeasible scenario is also valid, we can simply generate both
(12) and (13) for any identified scenario. Therefore, it yields a
unified approach to dealwith optimality and feasibility. Next, if the
second-stage problem is LP and the relatively complete recourse
assumption holds, this algorithm terminates in a finite number of
iterations (see A2 in the Electronic Companion [11] for the proof).

Proposition 2. Let p be the number of extreme points of U if it is a
polyhedron or the cardinality of U if it is a finite discrete set. Then,
the C&CG algorithm will converge to the optimal value of (1) in O(p)
iterations.

We note some significant differences between Benders-dual
method and the above algorithm:

(i) Decision variables in the master problem. The C&CG algorithm
increases the dimensionality of the solution space by intro-
ducing a set of new variables in each iteration, while the
Benders-dual algorithm keeps working with the same set of
variables.

(ii) Feasibility cut. The C&CG algorithm provides a general ap-
proach to deal with the feasibility issue, while current ap-
proaches for the Benders-dual algorithmare problem-specific.

(iii) Computational complexities. Compared with the Benders-dual
algorithm, the C&CG algorithm solves the master program
with a larger number of variables and constraints. However,
under the relatively complete recourse assumption, accord-
ing to Propositions 1 and 2, the number of iterations in the
C&CG algorithm is reduced by the order of O(q) if the second-
stage decision problem is an LP. Actually, as the number of
extremepoints is exponentialwith respect to numbers of vari-
ables and constraints (in the second stage), such a reduction
is very significant. The computational study presented in [21]
and in Section 4 confirms this point.

(iv) Solution capability.Different from the Benders-dual algorithm,
which requires the second-stage problem to be an LP problem,
the C&CG algorithm is indifferent to the variable types in the
second stage. We recently extended this algorithm in a nested
fashion to deal with two-stage RO with a mixed integer re-
course problem [20].

(v) Strength of the cut. Under the relatively complete recourse as-
sumption, the following proposition (see A3 in the Electronic
Companion [11] for the proof) shows that the optimal value of
MP1 is an underestimation of that ofMP2.

Proposition 3. For the same set of scenarios u∗

1, u
∗

2, . . . , u
∗

k that are
considered in both of the master problems, the objective function of
MP1 is an underestimation of that of MP2.

Next, we present a method to deal with general polyhedral
uncertainty sets. Several solution methods are developed for
both relatively simple cardinality uncertainty sets and structured
polyhedral uncertainty sets, including an outer approximation
algorithm [8] and mixed integer linear reformulations [19,21,15,
13]. The first is a heuristic procedure to solve SP1 with a general
polyhedral uncertainty set. The latter group uses the special
structure of the uncertainty set to convert the bilinear program
SP1 into an equivalentmixed integer linear program. Nevertheless,
it remains a challenging problem to exactly solve two-stage RO
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with a general polyhedral uncertainty set. To address this issue, we
make use of the classical Karush–Kuhn–Tucker (KKT) conditions
to handle a general polyhedral uncertainty set, provided that the
relatively complete recourse assumption holds.

Consider SP2. Letπ be the vector of dual variables to the second-
stage decision problem. Using KKT conditions, SP2 is equivalent to
the following:

max bTx (15)

s.t. Gx ≥ h − Ey − Mu (16)

GTπ ≤ b (17)

(Gx − h + Ey + Mu)iπi = 0, ∀i (18)

(b − GTπ)jxj = 0, ∀j (19)

u ∈ U, x ∈ Sx, π ≥ 0. (20)

Constraints in (18) and (19) are complementary slackness condi-
tions, where i and j are appropriate indices for variables or con-
straints. Bymaking use of the big-M method, they can be linearized
by introducing binary variables. For example, we introduce a bi-
nary variable vj for a constraint in (19). Then, it can be reformulated
as

xj ≤ Mvj, (b − GTπ)j ≤ M(1 − vj), vj ∈ {0, 1}. (21)

So, SP2 can be converted into a 0–1 mixed integer program and
computed by an existing solver. We recognize that if a tight bound
on big-M can be analytically obtained, e.g., the study in [13] on the
robust location-transportation problem, a better performance can
be achieved.

4. Case study: robust location-transportation problem

4.1. Two-stage robust location-transportation problem

Consider the following location-transportation problem. To
supply a commodity to customers, it will be first stored at m
potential facilities and then be transported to n customers. The
fixed cost of the building facilities at site i is fi and the unit capacity
cost is ai for i = 1, . . . ,m. The demand is dj for j = 1, . . . , n, and
the unit transportation cost between i and j is cij for i − j pair.
The maximal allowable capacity of the facility at site i is Ki and

i Ki ≥


j dj ensures feasibility. Let yi ∈ {0, 1} be the facility
location variable, zi ∈ R+ be the capacity variable, and xij ∈ R+ be
the transportation variable. Then, the nominal formulation of this
location-transportation problem is as follows:

min
y,z,x


i

fiyi +


i

aizi +


i


j

cijxij (22)

s.t. zi ≤ Kiyi, ∀i (23)
j

xij ≤ zi, ∀i (24)


i

xij ≥ dj, ∀j (25)

yi ∈ {0, 1}, zi ≥ 0 ∀i, xij ≥ 0 ∀i, j. (26)

The objective function in (22) is to minimize the overall cost,
including the fixed cost, capacity cost, and transportation cost.
Constraints in (23) and (24) require that capacity can be installed
only at a site with a built facility, and the supply cannot exceed the
capacity. Constraints in (25) guarantee that the demand is satisfied.

In practice, the demand is unknown before any facility is built
and capacity is installed. A popular way to capture that uncertainty
57 خودت ترجمه کن : 
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is as follows [7,15,1]:

D =


d : dj = dj + gjd̃j, gj ∈ [0, 1],


j

gj ≤ Γ , j = 1, . . . , n


(27)

where dj is the basic demand, d̃j is the maximal deviation, and Γ , a
predefined integer value, is introduced to define the constraint of
budget uncertainty to control the conservative level. Note thatmore
complicated constraints, which may lead to a general polyhedron,
could be used by the decision maker to describe more general
uncertainty sets. With the uncertainty set on the demand, to
minimize the total cost in the worst situation, a two-stage robust
counterpart of the nominal formulation can be obtained as follows.

min
(y,z)∈Sy


i

fiyi +


i

aizi + max
d∈D

min
x∈Sx


i


j

cijxij

s.t. Sy = {(y, z) ∈ {0, 1}m × Rm
+

: (23)}

Sx = {x ∈ Rm×n
+

: (24)–(25)}

where facilities and capacities are determined and established in
the first stage and transportation will be determined in the second
stage to meet customer demands. Similar to the nominal model,
we assume


i Ki ≥ max{


j dj : d ∈ D} to ensure the existence of

feasible solutions.

4.2. Experimental results and discussion

Next, we employed both C&CG and Benders-dual methods to
study this two-stage robust problem. The detailed formulations of
master and sub-problems are omitted here but provided in A4 in
the Electronic Companion [11]. In all of our experiments, CPLEX
12.4 was used as the solver to the master problem and the oracle
to the linearized subproblem. For both the master problem and
subproblems, the optimality tolerance was set to 10−4. Both the
C&CG and Benders-dual algorithms were implemented in C++ on
a desktop Dell OPTIPLEX 760 (Intel Core 2 Duo CPU, 3.0 GHz,
3.25 GB of RAM) in a Windows 7 environment.

We first study dynamic behaviors of the C&CG and Benders-
dualmethods on a small scale. An illustrative problem is givenwith
three potential facilities, three customers, and a general polyhedral
uncertainty set. The deterministic formulation is presented as
follows:

min 400y0 + 414y1 + 326y2 + 18z0 + 25z1 + 20z2
+ 22x00 + 33x01 + 24x02 + 33x10 + 23x11 + 30x12
+ 20x20 + 25x21 + 27x22

s.t. zi ≤ 800yi, ∀i = 0, 1, 2;
j

xij ≤ zi, ∀i = 0, 1, 2;
i

xij ≥ dj, ∀j = 0, 1, 2

yi ∈ {0, 1}; zi ≥ 0 ∀i = 0, 1, 2;
xij ≥ 0 ∀i = 0, 1, 2; j = 0, 1, 2.

The uncertainty set is defined as follows:

D = {d : d0 = 206 + 40g0, d1 = 274 + 40g1, d2 = 220 + 40g2,
0 ≤ g0 ≤ 1, 0 ≤ g1 ≤ 1, 0 ≤ g2 ≤ 1,
g0 + g1 + g2 ≤ 1.8, g0 + g1 ≤ 1.2}.

The upper and lower bounds of the two algorithms are presented in
Table 1, which clearly shows the superiority of the C&CG method.
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Table 1
Algorithm performance comparison.

Iteration C&CG LB C&CG UB BD LB BD UB

1 14296 35238 14296 35238
2 33680 33680 30532 34556
3 31335.4 34556
4 31520.9 34465.3
5 32219.8 34465.3
6 33126.9 33680
7 33598.1 33680
8 33680 33680

We also performed a systematic study on a large set of random
instances to observe their general performance. To provide a basis
for an apples-to-apples comparison, instances were randomly
generated in a fashion used in [13] with an uncertainty set defined
in (27). The demand dj was obtained from [10, 500], the deviation
d̃j was αdj with α ∈ [0.1, 0.5], the maximal allowable capacity
Ki was drawn from [200, 700] with the feasibility guarantee, the
fixed cost was generated from [100, 1000], the unit capacity cost
was selected from [10, 100], and the transportation cost was in
interval [1, 1000]. With the aforementioned setup, 20 instances
were randomly generated, with 10 for the case m × n = 30 × 30
and 10 for the casem×n = 70×70. Also, to investigate the impact
of Γ , we set its value to 10%, 20%, . . . , 100% of m. So, overall, we
had two sets of 100 testing problems. We used reformulation SP1
in Section 2 to solve second-stage problems, and provided the
detailed formulations in A4.2 in the Electronic Companion [11].
We also used the method presented in [13] to set values for M ′ to
linearize subproblems.

We summarize numerical results for those 2 × 100 instances
in Tables 2 and 3, where the average performance over every 10
instances under different Γ is displayed. In those tables, Ratio
represents the ratio of the performance of the Benders-dual (BD)
algorithm to that of the C&CG method. And an average ratio is the
average of corresponding ratios rather than the ratio of average
performances.

The results of the Benders-dual algorithm generally agree
with those presented in [13]. The computational time for
Γ ∈ [20%, 80%] is typically more than that of other cases.
This is different from the results presented in [1], where the
computational times are negatively correlated with Γ . One
explanation is that the problem is solved approximately in [1],
while exact solutions are derived by the Benders-dual algorithm.
For the C&CG algorithm, we first observe that it performs an
order of magnitude faster than the Benders-dual algorithm in all
experiments. Such an improvement is more significant when the
problem size is large. Besides the reduction in the computational
time, it generally can complete within a small number of
iterations, very different from the Benders-dual method that may
need hundreds of iterations. We believe that the performance
improvement can be explained by two reasons. First, the C&CG
algorithm strictly identifies another significant scenario by solving
its subproblem, which drastically increases the convergence rate.
To the contrary, the Benders-dual method uses many iterations
to obtain the value function for a particular first-stage decision
under the same scenario. Second, the C&CG algorithm produces a
(large-scale) mixed integer program as its master problem, which
keeps the network structure of the nominal model. So, the solver
can make full use of that structure in the computation, while the
generated cutting planes by the Benders-dual method prevent it
from identifying and using that structure. It probably explains an
observation from Tables 2–3 that there is little difference between
the average computation times for these two master problems of
different scales.

We also observe that, unlike computation time, the number of
iterations in the C&CG algorithm is insensitive to problem sizes.
3057 خودت ترجمه کن : 
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Table 2
Performance of Benders-dual and C&CG algorithms on 30 × 30 instances.

Γ 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg.

BD (CPU sec.) 22.71 24.27 25.14 23.76 22.98 24.55 25.29 25.61 25.07 22.49 24.19
C&CG (CPU sec.) 1.35 2.59 3.12 2.54 1.85 2.51 1.90 2.17 1.39 0.38 1.98
Ratio 16.82 9.37 8.06 9.35 12.42 9.78 13.31 11.80 18.04 59.18 16.81

BD (# iter.) 65.4 59.4 56.8 50 47.6 45.6 45.8 43.7 43.3 42.1 49.97
C&CG (# iter.) 4.2 5.8 6.5 5.3 5.1 5.7 4.6 5.4 4 2 4.86
Ratio 15.57 10.24 8.74 9.43 9.33 8.00 9.96 8.09 10.83 21.05 11.12

BD Master (sec./iter.) 0.14 0.13 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.12
C&CG master (sec./iter.) 0.12 0.15 0.16 0.14 0.12 0.14 0.12 0.13 0.11 0.07 0.13
Ratio 1.17 0.87 0.75 0.79 0.92 0.79 0.92 0.85 1.00 1.43 0.95

 

Table 3
Performance of Benders-dual and C&CG algorithms on 70 × 70 instances.

Γ 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg.

BD (CPU sec.) 776.42 1580.71 1367.34 1300.44 1002.96 935.42 672.68 735.81 619.7 466.68 945.82
C&CG (CPU sec.) 26.16 21.27 72.3 65.22 37.88 54.62 16.72 17.64 9.66 1.55 32.3
Ratio 29.68 74.32 18.91 19.94 26.48 17.13 40.23 41.71 64.15 301.08 63.36

BD (# iter.) 203.9 152.1 117.5 127.1 137.4 143.6 126.3 134.2 136.6 132.4 141.11
C&CG (# iter.) 6.8 5 4.9 5 5.2 5.9 4.5 5.1 4.9 2 4.93
Ratio 29.99 30.42 23.98 25.42 26.42 24.34 28.07 26.31 27.88 66.20 30.90

BD Master (sec./iter.) 1.13 0.79 0.57 0.56 0.46 0.41 0.34 0.35 0.33 0.3 0.52
C&CG Master (sec./iter.) 1.45 0.58 0.57 0.58 0.55 0.72 0.47 0.5 0.51 0.12 0.61
Ratio 0.78 1.36 1.00 0.97 0.84 0.57 0.72 0.70 0.65 2.50 1.01
A similar result is also found in solving robust power system
scheduling problems [21]. Those results indicate that the number
of significant scenarios defining the worst case cost is relatively
stable and small, regardless of the problem size. So, a method to
quickly identify the significant scenarios, along with an efficient
algorithm for the resulting master problem, can greatly improve
the solution capability on two-stage RO problems.
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