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Abstract—The Internet of Things (IoT) paradigm is expected 
to bring ubiquitous intelligence through new applications in 
order to enhance living and other environments. Several research 
and standardization studies are now focused on the Middleware 
level of the underlying communication system. For this level, 
several challenges need to be considered, among them the Quality 
of Service (QoS) issue. The Autonomic Computing paradigm is 
now recognized as a promising approach to help communication 
and other systems to self-adapt when the context is changing. 
With the aim to promote the vision of an autonomic Middleware-
level QoS management for IoT-based systems, this paper 
proposes a set of QoS-oriented mechanisms that can be 
dynamically executed at the Middleware level to correct QoS 
degradation. The benefits of the proposed mechanisms are also 
illustrated for a concrete case of Enhanced Living Environment. 

Keywords—Internet of Things; Enhanced Living 
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I. INTRODUCTION 

The Internet of Things (IoT) is expected to bring a large 
and promising spectrum of ubiquitous intelligence through 
new applications in various domains such as health, transport, 
industry, energy, environment, retail or logistics. Living 
environments should strongly benefit from those new 
communication capabilities that will make possible the 
execution of dynamic and autonomous actions going from, for 
instance in healthcare context, accurate supervision of patients 
to intervention in case of emergency. To make possible the 
deployment of such Enhanced Living Environments (ELE), 
network-level communication capabilities (such as Bluetooth, 
Zigbee, Wi-Fi, or wired technologies) are not sufficient.  
Indeed, Middleware-level platforms are required to allow 
hiding complexity of heterogeneous devices (sensors, 
effectors, tags, etc.) and communication technologies. Without 
such an intermediate abstraction layer between the IoT 
applications and the underlying communication technologies, 
the implementation of each application would be dependent on 
the devices technologies, leading to a vertical fragmentation 
between IoT applications and an impossible extensibility when 
new devices/capabilities appear.  

In 2012, the ETSI standardization effort resulted in the 
proposition of the Machine-to-Machine (M2M) architectural 
framework [1] enabling the management of IoT applications, 

the abstraction of networks and devices heterogeneity, etc. 
This specification has been extended recently under the 
oneM2M architectural framework [2] which is now 
recognized as the de facto standard for the IoT paradigm.  

Basically, both ETSI M2M and oneM2M frameworks are 
built on 4 levels: (1) Application level where business 
applications (home automation, smart metering, smart grid, 
etc.) offering final solutions are defined; (2) Middleware level 
that aims at hiding the details of various underlying networks 
and technologies to facilitate interoperability; (3) Network 
level that includes different types of networks to interconnect 
equipment; and (4) Device level that includes IoT sensor / 
actuators devices. An instantiation of this framework (Fig. 1) 
is composed of Business applications, Server and Gateways 
acting as Middleware entities, and finally Devices 
interconnected to their Gateways through specific network 
technologies (Bluetooth, Zigbee, etc.). 

 
Fig. 1. Instantiation of the oneM2M framework for IoT. 

ELE are expected to be driven by several kinds of 
applications. In healthcare context, IoT can bring remote 
supervision of patients’ health (heartbeat rate, glycaemia, etc.) 
and intervention when critical situation occurs. Each activity 
may be supported thanks to several devices held by the 
patients themselves, but also by all the entities involved in the 
global process (pharmacy, doctor, hospitals, etc.). All the 
exchanges have different priorities depending on the context: 
for instance, an alarm indicating a heart attack of a “risky-
condition” patient is more important than supervision 
information of a young jogger. In terms of communication, 
such differences have to be translated into quality of service 
(QoS) requirements: the transmission delay of an alarm is 
expected to be as fast as possible, while a great delay of a non-
sensitive supervision data could be acceptable. 
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Providing IoT platforms with QoS-oriented capabilities 
becomes a necessity that remains under research study [3, 4]. 
QoS issue in such environments is more considered at the 
network and device levels by the proposition of packet 
scheduling algorithms [5], service differentiation techniques 
[6], routing protocols [7] and adaptive architectures for 
devices [8]. The work presented in this paper focuses on the 
Middleware level and aims at promoting the vision of a 
dynamic and autonomic management of QoS-oriented 
adaptive actions, following the autonomic computing 
paradigm (AC) [9]. As depicted in Fig. 2, this paradigm is 
based on the monitoring, analysis, planning and execution 
steps, which are aimed at applying adaptation actions on the 
managed system according to its state thanks to a shared 
knowledge base. In our case, the considered system is an 
ETSI-M2M compliant Middleware platform, the open-source 
OM2M platform [10]. 

 

Fig. 2. Deployment context of the proposed autonomic computing-based 
approach for Middleware-level QoS management. 

The contributions of this paper are foccussed on the 
adaptation actions that may be performed to go toward the 
respect of the required QoS. Two kinds of adaptation actions 
are considered: “request-oriented” adaptation deals with the 
differentiation actions that can be done in the processing of 
requests having different QoS requirements; “resource-
oriented” actions deals with the adaptation of the deployment 
resources, for instance at the virtual machine level for 
Middleware-level entities that are deployed in a cloud 
environment (typically IoT Servers). 

The rest of this paper is structured as follows. Section II 
describes the QoS-oriented mechanisms that we propose at the 
Middleware level for an ETSI M2M compliant IoT platform. 
Section III illustrates how some of those mechanisms can be 
implemented within a typical example of ELE scenario. 
Performance measurements allow showing the benefits that 
can be induced with the application of those mechanisms. 
Finally, section V provides conclusion and future work. 

II. QOS-MANAGEMENT MECHANISMS AT THE 

MIDDLEWARE LEVEL 

In order to satisfy the requirements of critical IoT 
applications, Middleware-level functionalities need to be 
extended to include QoS management mechanisms. In this 
section, we propose two levels of mechanisms: (1) request-
oriented mechanisms that intervene on incoming HTTP 

requests; and (2) resource-oriented mechanisms that re-
configure Middleware resources. Those mechanisms are 
supposed to be configured by an autonomic manager (AM), 
and more specifically by its planning component, according to 
the QoS constraints of critical IoT applications but also to the 
type of the managed entity (Server or Gateway) and its current 
performance state. 

A. Request-oriented Mechanisms 

Request-oriented mechanisms are inspired by the 
mechanisms used in the Internet, specifically at the Transport 
and Network layers of the TCP/IP architecture. The approach 
follows the main principles of the DiffServ model [11], which 
is based on packet marking at the network entry and 
differentiation of the packet processing in each core routers 
depending on their mark. To implement a similar approach at 
the Middleware level, we add a field to the HTTP request 
specifying its priority; this priority allows guiding the request 
processing through the mechanisms components. 

Two successive steps are then carried out (Fig. 3). The first 
one is the classification and priority marking based on a 
number of criteria defined by the AM; this step is done by the 
Classification and Marking Component (CMC). The second 
step is the processing of the request based on its priority by the 
Performance Enhancing-Proxy (PEP), and then its possible 
redirection to the Middleware entity (i.e. server or gateway)  

 
Fig. 3. Architectural composition of request-oriented mechanisms. 

1) Classification and Marking Component 

The Classification and Marking Component (CMC) adds a 
TOS_HTTP header (Type Of Service for HTTP) that contains 
the priority assigned to the HTTP request. The CMC interacts 
with two main actors: 

● Source: sender of the HTTP request towards the 
system. We consider two types of sources: QoS-
unaware sources that are not able to express their QoS 
requirements, and QoS-aware sources that are able to 
express them through the adding of the TOS_HTTP 
field with an appropriate priority ; 

● Autonomic Manager: responsible of the 
configuration of the underlying components (CMC, 
PEP and Middleware). For the CMC, the AM 
intervenes for the classification (requests classes) and 
the marking (priority of each class) policies. 

As described in Fig. 4, the CMC contains the following 
components: 

● CMC Manager: acts as a communication interface 
with the AM; it allows activation/deactivation of the 
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CMC as well as management of classification and 
marking policies; 

● CMC Receiver: receives requests from sources. 
When activated, it directs the traffic either to the 
“Request Classifier” if the TOS_HTTP header does 
not exist, or directly to the “HTTP Forwarder” if it 
exists or if the component is deactivated; 

● Request Classifier: classifies the incoming requests 
according to the classification policy. It first analyses 
the HTTP request (without TOS_HTTP header) 
according to the criteria specified in the policy (source 
IP address, destination IP address, resource URL, 
etc.), and then redirects it to the “Request Marker”; 

● Request Marker: assigns a priority to each request 
based on its membership class. It is based on the 
marking policy and adds the TOS_HTTP header to the 
HTTP request with the corresponding priority. For 
instance, the TOS_HTTP can get as a value 
PRIORITY_HIGH, PRIORITY_MEDIUM or 
PRIORITY_LOW; 

● CMC Forwarder: redirects the request containing the 
TOS_HTTP header to the PEP component if the QoS 
management is activated, otherwise to the OM2M 
platform. 

 
Fig. 4. Internal composition of the CMC. 

2) Performance Enhancing Proxy 

The Performance Enhancing Proxy (PEP) is responsible 
for processing requests according to their priorities 
(TOS_HTTP). This component can make either request 
rejection, request delaying, request scheduling, or a 
combination of these mechanisms depending on the policy 
communicated by the AM. As illustrated in Fig. 5, the PEP 
contains the following components: 

● PEP Manager: applies the policy coming from the 
AM. It includes the mechanism(s) to be triggered 
(rejection, delaying or scheduling) as well as the 
configuration to be applied (percentage of rejection, 
delaying duration, scheduling policy to be applied and 
weight of each priority, etc.); 

● PEP Receiver: receives requests containing the 
TOS_HTTP header and sends them to the “PEP 
Controller”; 

● PEP Controller: analyses the TOS_HTTP header of 
the requests and sends them to one of the internal 
components according to the management  policy; 

● PEP Rejecter: is responsible for rejecting requests 
based on their priorities. Each priority corresponds to 
a percentage of rejection; 

● PEP Delayer: delays requests according to their 
priorities. Each priority corresponds to a delaying 
duration; 

● PEP Scheduler: schedules the incoming requests 
according to their priorities. This component offers 
two scheduling policies: priority-first and weighted far 
queuing; 

● PEP Forwarder: redirects requests to the OM2M 
platform for processing. 

 
Fig. 5. Internal composition of the PEP. 

The diagram presented by Fig. 6 describes the algorithm 
implemented by the PEP. M1, M2, and M3 respectively 
represent the rejecter, delayer and scheduler algorithms. 

 

Fig. 6. PEP algorithm flow chart. 
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In addition to request-oriented mechanisms, here after we 
propose resource-oriented mechanisms in order to manage the 
resources of M2M platforms deployed in dynamic 
environments such as cloud computing.  

B. Resource-oriented Mechanisms 

These mechanisms are inspired by those used in 
virtualisation deployment environments such as cloud 
computing. They target the adaptation of the underlying 
computing resources available in order to improve 
performances of the Middleware entities. This type of 
mechanism is more suitable for the server entity that can be 
run on a cloud platform. 

1) Horizontal Scalability oriented Mechanisms 

Horizontal scalability consists in adding new instances of 
the server entity (or part of its components). “Federation” and 
“Clustering” are two deployment approaches that allow 
exploitation of the distribution properties of the OM2M 
platform. Several mechanisms can be used in each approach. 

The federation-oriented management that is proposed here 
consists in the subdivision of the OM2M platform into several 
components and the dynamic distribution of some of them 
onto independent virtual machines (VMs). This action can 
involve, for instance, the Database (DB) by deploying it in 
another VM (Fig. 7) in order to allow the platform to manage 
several concurrent accesses and thus reduce the consequent 
losses. 

 
Fig. 7. Distribution mechanism. 

Clustering-oriented management mechanisms consist in 
the creation of several instances of OM2M and the use of a 
load balancer (Fig. 8) to distribute the HTTP requests. The 
distribution policy can be guided by several techniques, 
among them: 

● Round Robin: fair distribution of the load among all 
OM2M instances; 

● Weighted Round Robin: distribution according to 
weights attributed to each OM2M instance; 

● Load-oriented: forwarding of the requests to the 
OM2M instances depending on their load. 

 
Fig. 8. Load balancing-based adaptation mechanism. 

2) Vertical Scalability oriented Mechanisms 

Vertical scalability allows adaptation (increasing or 
decreasing) of the OM2M platform resources in order to 
support the traffic load. Given that the implementation of the 
platform is based on the JAVA programming language, three 
adaptation levels are considered (Fig. 9): 

● dynamic adaptation of the VM resources: the 
adapter allows dynamic adjustment (addition or 
deletion) of VM resources, based on the use of 
physical resources (processors, memory, physical 
disk, etc.); 

● dynamic adaptation of JVM resources: by 
dynamically taking into account the new resources 
allocated to the VM; 

● dynamic adaptation of OM2M resources: OM2M 
has a number of internal resources (such as threads). 
The adapter allows dynamic configuration of these 
resources to improve the performance of OM2M. For 
example: dynamic configuration of maxThreads to 
process new requests according to the load. 

 
Fig. 9. Multi-level resources adaptation. 

In the next section, we give a scenario of application of a 
request-oriented mechanism in order to demonstrate the 
benefits in the case of a critical IoT application. Due to space 
limits, we do not provide a similar scenario demonstrating the 
benefits of a resource-oriented mechanism. 

III. VALIDATION SCENARIO 

This section shows the benefits of the previous 
mechanisms for a critical application (i.e. having some QoS 
requirements) through a proof-of-concept. Due to space limits, 
we only focus on request-oriented mechanisms through the 
implementation of a rejection policy. Validation is done 
through performance measurements performed upon an 
emulation platform allowing generating HTTP requests from 
different sources towards a real M2M Middleware platform 
(in our case, the open source OM2M platform). 

A. Considered ELE and its applications 

Let us consider an ELE consisting in a connected nursing 
home in which the residents are submitted to different kinds of 
monitoring according to their individual health situation. 
These monitoring can range from the simple location of 
patients or their daily diet to potentially very fine supervision, 
for example during a convalescence period after medical 
treatment or surgical procedure. Numerous sensors have to be 
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used in the context of multiple applications. In this scenario, 
we consider three kinds of monitoring applications having 
characteristics and QoS requirements exposed in Table I. 

TABLE I. FEATURES AND QOS REQUIREMENTS OF THE CONSIDERED 
MONITORING APPLICATIONS 

Application Average 
requests 

rate 

Acceptable 
RTT 

Acceptable 
Loss rate 

Postoperative monitoring 6 req/s < 350 ms 0%

Location monitoring 2 req/s ~10s 50%

Calories monitoring 2 req/s No constraint No constraint

Let now study how those features and requirements may 
be taken into account thanks to the proposed QoS oriented 
mechanism. 

B. The validation platform 

As shown in Fig. 10, the validation platform is composed 
of the following entities: 

● Traffic Emulator: allows generating http traffic from 
different IoT sources in order to implement the 
application scenario. This emulator is based on a 
controller for injectors configuration. Each injector is 
able to simulate the traffic of a given application 
independently of the other injectors. The traffic can be 
stochastic, periodic or burst; 

● Request-oriented QoS Manager: consists in the 
CMC and PEP components. The CMC relies on the IP 
source address to assign priority and the PEP  uses  
the rejection mechanism; 

● GSCL: OM2M platform following the SmartM2M 
standard deployed on a Gateway. 

 
Fig. 10. Validation platform based emulation. 

The different components have the physical resources 
described in Table II. The frequency of each processor is 
1.6GHz. 

TABLE II. PHYSICAL RESOURCES ALLOCATION 

Resource Emulator CMC PEP GSCL

RAM (MB) 1024 1024 2048 512

CPU (core) 1 1 2 1

In this scenario, the collected metrics are: RTT (round trip 
delay), CPU and RAM consumption. 

C. Implementation of the rejection-oriented policy 

In this scenario, we consider the monitoring applications 
introduced in section A. The traffic generated by each 
application is emulated by a traffic injector. The injectors send 
HTTP traffic (POST requests) to the Gateway environing the 
patients. We focus on the injector representing the 
Postoperative monitoring (PostOp_Inj) for which the system 
has to respect strong QoS constraints in presence of the other 
monitoring application flows (Loc_Inj and Food_Inj). 

Given those constraints, the CMC assigns a priority to 
each request coming from a given injector, with respect to its 
loss tolerance (CMC is guided by the injector ID). It assigns 
priority HIGH to PostOp_Inj, MEDIUM to Loc_Inj and LOW 
to Food_Inj. The PEP implements the actions described in 
Table III depending on the priorities (medium and low 
priorities (MED_PR & LOW_PR)) in order to meet RTT 
required by PostOp_Inj. The RTT state is supposed to be 
triggered when five successive RTT values satisfy the state 
condition. 

TABLE III. ADAPTATION ACTIONS BASED ON THE RTT STATE 

RTT (ms) State MED_PR 
Rejection 

LOW_PR 
Rejection

RTT < 300 Normal 0 0

300 ≤ RTT < 400 Warning 30 70

RTT ≥ 400 Critical 40 80

For adaptation actions, when the PostOp_Inj RTT 
approaches the required RTT threshold, an alarm is set up in 
order to anticipate the degradation of the response time. 

D. Results and analysis 

Fig. 11 represents the RTT evolution of PostOp_Inj 
requests in presence of traffic from Loc_Inj and Food_Inj, 
without QoS mechanisms. We note that the RTT threshold is 
fast exceeded at the 36th request (RTT = 536 ms) and evolves 
quickly to reach huge RTT values  (RTT > 6000 ms). We can 
then conclude that by default, without QoS mechanisms 
integration, the system is not able to guarantee a systematic 
respect of QoS constraints for critical applications. 

 
Fig. 11. RTT evolution without QoS management. 
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By integrating QoS management through CMC and PEP, 
and applying the rules and actions described above, the RTT 
of PostOp_Inj evolves as described by Fig. 12. In this 
rejection scenario, the RTT of initial requests is less than the 
“Warning” threshold. After saturation of the gateway, the RTT 
increases to exceed a threshold of 400ms, which generates a 
“Critical” state (41th request). The generation of this symptom 
leads to activate the critical policy allowing the PEP to reject 
40% of the Loc_Inj (MEDIUM priority) traffic and 80% of the 
Food_Inj (LOW priority) traffic. This action reduces the load 
of the Gateway and allows again having a RTT in a normal 
state (less than 300ms) from the 57th request.  

When this state lasts a certain time (after 12 events), it 
leads to the generation of a state "Normal" which disables the 
blocking of requests  from other injectors. By applying this 
policy, the system returns to the initial conditions at the 
beginning of the scenario (197th request). 

 
Fig. 12. RTT evolution with rejection mechanism. 

In terms of benefices, the average PostOp_Inj RTT for the 
entire scenario is 222 ms and therefore remains under the 
threshold (350 ms). Regarding the integration cost of this 
management, the additional average processing time induced 
by the CMC and PEP components  is 7,992 ms. In terms of 
resources consumption, the consumed CPU (Fig. 13) of the 
two mechanisms remains low with an average consumption of 
30%. 

 
Fig. 13. CPU usage by the CMC and PEP. 

In the same time, the RAM consumption (Fig. 14) of the 
CMC and the PEP increases gradually until becoming 
insufficient; this is due to the Garbage Collector default 
configuration. 

Based on this validation scenario, the integration of a 
rejection mechanism provides response times that match the 
requirements of the Postoperative monitoring application, 
leading to the improvement of the patient health monitoring 
and intervention in case of emergency. We can therefore 
conclude that an IoT system “alone” may not be sufficient, 

and that it is necessary to integrate a QoS management taking 
into account constraints of the different applications, in order 
to enhance the living environments of people (here the 
patients). 

 
Fig. 14. RAM usage by the CMC and PEP. 

IV. CONCLUSIONS ET PERSPECTIVES 

The IoT paradigm is expected to bring ubiquitous 
intelligence through new applications in order to enhance 
living and other environments. IoT applications present 
different features and QoS requirements. Both Network and 
Middleware underlying levels have to be considered to tackle 
those QoS requirement. This paper focused on the Middleware 
level for which QoS-oriented mechanisms are proposed, 
specified and implemented. Those mechanisms are evaluated 
through an emulation platform combining applicative traffic 
emulation and real ETSI M2M compliant Middleware 
platform. The obtained results allows showing both the need 
in QoS management and the benefits that can be performed 
within an instance of ELE thanks to the application of simple 
QoS-oriented mechanisms. 

Our vision is to propose an autonomic QoS-oriented 
Middleware for the IoT.  The current work presents a set of 
QoS-oriented mechanisms that can be used by the autonomic 
manager to manage the Middleware platform. The next step 
will be to integrate the required intelligence to guide the 
planning component of the Autonomic Manager and propose 
the most efficient plan. This intelligence can be based on 
artificial intelligence paradigm in order to choose the adequate 
mechanism(s) to activate and compute their settings (policies) 
depending on the characteristics (entity type, deployment 
context) and the state of the managed entity. 
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