
Preprocessing Techniques for Text Mining - An Overview

Dr. S. Vijayarani
1
, Ms. J. Ilamathi

2
, Ms. Nithya

3

Assistant Professor
1
, M. Phil Research Scholar

2, 3

Department of Computer Science, School of Computer Science and Engineering,

Bharathiar University, Coimbatore, Tamilnadu, India
1, 2, 3

Abstract

Data mining is used for finding the useful

information from the large amount of data. Data

mining techniques are used to implement and solve

different types of research problems. The research

related areas in data mining are text mining, web

mining, image mining, sequential pattern mining,

spatial mining, medical mining, multimedia mining,

structure mining and graph mining. This paper

discussed about the text mining and its preprocessing

techniques. Text mining is the process of mining the

useful information from the text documents. It is also

called knowledge discovery in text (KDT) or

knowledge of intelligent text analysis. Text mining is

a technique which extracts information from both

structured and unstructured data and also finding

patterns. Text mining techniques are used in various

types of research domains like natural language

processing, information retrieval, text classification

and text clustering.

Keywords: Text mining, Stemming, Stop words

elimination, TF/IDF algorithms, Word Net, Word

Disambiguation.

1.Introduction

Text mining is the process of seeking or extracting

the useful information from the textual data. It is an

exciting research area as it tries to discover

knowledge from unstructured texts. It is also known

as Text Data Mining (TDM) and knowledge

Discovery in Textual Databases (KDT). KDT plays

an increasingly significant role in emerging

applications, such as Text Understanding. Text

mining process is same as data mining, except, the

data mining tools are designed to handle structured

data whereas text mining can able to handle

unstructured or semi-structured data sets such as

emails HTML files and full text documents etc. [1].

Text Mining is used for finding the new, previously

unidentified information from different written

resources.

Structured data is data that resides in a fixed field

within a record or file. This data is contained in

relational database and spreadsheets. The

unstructured data usually refers to information that

does not reside in a traditional row-column database

and it is the opposite of structured data. Semi-

Structured data is the data that is neither raw data, nor

typed data in a conventional database system. Text

mining is a new area of computer science research

that tries to solve the issues that occur in the area of

data mining, machine learning, information

extraction, natural language processing, information

retrieval, knowledge management and classification.

Figure 1 gives the overview of text mining process.

Figure 1. Text Mining Process

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

7

ISSN:2249-5789

The remaining portion of the paper is organized as

follows. Section 2 gives the literature review. Section

3 describes the text mining preprocessing methods.

Stemming algorithms for classification are discussed

in Section 4. Conclusion is given in Section 5.

1.1 Applications of Text Mining

Information Retrieval

Information retrieval (IR) concept has been

developed in relation with database systems for many

years. Information retrieval is the association and

retrieval of information from a large number of text-

based documents. The information retrieval and

database systems, each handle various kinds of data;

some database system problems are usually not

present in information retrieval systems, such as

concurrency control, recovery, transaction

management, and update. Also, some common

information retrieval problems are usually not

encountered in conventional database systems, such

as unstructured documents, estimated search based on

keywords, and the concept of relevance. Due to the

huge quantity of text information, information

retrieval has found many applications. There exist

many information retrieval systems, such as on-line

library catalog systems, on-line document

management systems, and the more recently

developed Web search engines [1].

Information Extraction

 The information extraction method identifies key

words and relationships within the text. It does this

by looking for predefined sequences in the text, a

process called pattern matching. The software infers

the relationships between all the identified places,

people, and time to give the user with meaningful

information. This technology is very useful when

dealing with large volumes of text. Traditional data

mining assumes that the information being “mined”

is already in the form of a relational database.

Unfortunately, for many applications, electronic

information is only available in the form of free

natural language documents rather than structured

databases [1]. This process is depicted in Figure 2.

Figure 2. Process of Text Extraction

Categorization

Categorization involves identifying the main themes

of a document by inserting the document into a pre-

defined set of topics. When categorizing a document,

a computer program will often treat the document as

a “bag of words.” It does not try to process the actual

information as information extraction does. Rather,

the categorization only counts words that appear and,

from the counts, identifies the main topics that the

document covers. Categorization often relies on a

glossary for which topics are predefined, and

relationships are identified by looking for large

terms, narrower terms, synonyms, and related terms

[4].

Natural Language Processing

Natural Language Processing (NLP) is an area of

research and application that explores how computers

can be used to understand and manipulate natural

language text. NLP researchers aim to collect

knowledge on how human beings understand and use

language so that fitting tools and techniques can be

developed to make computer systems understand and

manipulate natural languages to perform the

preferred tasks [3].

The basics of NLP lie in a number of disciplines, viz.

computer and information sciences, linguistics,

mathematics, electrical and electronic engineering,

artificial intelligence and robotics, psychology, etc.

Applications of NLP include a number of fields of

studies, such as machine translation, natural language

text processing and summarization, user interfaces,

multilingual and cross language information retrieval

(CLIR), speech recognition, artificial intelligence and

expert systems and so on[3].

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

8

ISSN:2249-5789

2. Literature Review

Anjali Ganesh Jivani [22] discussed that the purpose

of stemming is to reduce different grammatical forms

or word forms of a word like its noun, adjective,

verb, adverb etc. The goal of stemming is to reduce

inflectional forms and sometimes derivationally

related forms of a word to a common base form. This

paper discusses different methods of stemming and

their comparisons in terms of usage, advantages as

well as limitations. The basic difference between

stemming and lemmatization is also discussed.

Vishal Gupta et.al [23] has analyzed the stemmer‟s

performance and effectiveness in applications such as

spelling checker varies across languages. A typical

simple stemmer algorithm involves removing

suffixes using a list of frequent suffixes, while a more

complex one would use morphological knowledge to

derive a stem from the words. The paper gives a

detailed outline of common stemming techniques and

existing stemmers for Indian languages.

K.K. Agbele

[24] discussed the technique for

developing pervasive computing applications that are

flexible and adaptable for users. In this context,

however, information retrieval (IR) is often defined

in terms of location and delivery of documents to a

user to satisfy their information need. In most cases,

morphological variants of words have similar

semantic interpretations and can be considered as

equivalent for the purpose of IR applications. The

algorithm Context-Aware Stemming (CAS) is

proposed, which is a modified version of the

extensively used Porter‟s stemmer. Considering only

generated meaningful stemming words as the

stemmer output, the results show that the modified

algorithm significantly reduces the error rate of

Porter‟s algorithm from 76.7% to 6.7% without

compromising the efficacy of Porter‟s algorithm.

Hassan Saif [25] has investigated whether removing

stop words helps or hampers the effectiveness of

Twitter sentiment classification methods. For this

investigation he has applied, six different stop word

identification methods to Twitter data from six

different datasets and observe how removing stop

words affects two well-known supervised sentiment

classification methods. The result shows that using

pre-compiled lists of stop words negatively impacts

the performance of Twitter sentiment classification

approaches. On the other hand, the dynamic

generation of stopword lists, by removing those

infrequent

terms appearing only once in the corpus appears to be

the optimal method for maintaining a high

classification performance while reducing the data

sparsity and substantially shrinking the feature space.

3. Preprocessing methods

Preprocessing method plays a very important role in

text mining techniques and applications. It is the first

step in the text mining process. In this paper, we

discuss the three key steps of preprocessing namely,

stop words removal, stemming and TF/IDF

algorithms (Figure 3).

Figure 3. Text Mining Pre-Processing Techniques

A. Extraction

 This method is used to tokenize the file

content into individual word.

B. Stop Words Elimination

Stop words are a division of natural language. The

motive that stop-words should be removed from a

text is that they make the text look heavier and less

important for analysts. Removing stop words reduces

the dimensionality of term space. The most common

words in text documents are articles, prepositions,

and pro-nouns, etc. that does not give the meaning of

the documents. These words are treated as stop

words. Example for stop words: the, in, a, an, with,

etc. Stop words are removed from documents

because those words are not measured as keywords in

text mining applications [5].

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

9

ISSN:2249-5789

C. Stop word removal methods

Four types of stop word removal methods are

followed, the methods are used to remove stop words

from the files [5].

i. The Classic Method: The classic method is based

on removing stop words obtained from pre-compiled

lists [7].

ii. Methods based on Zipf’s Law (Z-Methods): In

addition to the classic stop list, we use three stop

word creation methods moved by Zipf‟s law,

including: removing most frequent words (TF-High)

and removing words that occur once, i.e. singleton

words (TF1). We also consider removing words with

low inverse document frequency (IDF) [7, 8].

iii. The Mutual Information Method (MI)

The mutual information method (MI) is a supervised

method that works by computing the mutual

information between a given term and a document

class (e.g., positive, negative), providing a suggestion

of how much information the term can tell about a

given class. Low mutual information suggests that

the term has a low discrimination power and

consequently it should be removed [7, 8].

iv. Term Based Random Sampling (TBRS)

This method was first proposed by Lo et al. (2005) to

manually detect the stop words from web documents.

This method works by iterating over separate chunks

of data which are randomly selected. It then ranks

terms in each chunk based on their in format values

using the Kullback-Leibler divergence measure as

shown in Equation 1.

dx (t) = Px (t).log2
Px (t)

𝑝 (t) (1)

Where Px (t) is the normalized term frequency of a

term t within a mass x, and P(t) is the normalized

term frequency of t in the entire collection. The final

stop list is then constructed by taking the least

informative terms in all chunks, removing all

possible duplications [7].

D. Stemming
This method is used to identify the root/stem of a

word. For example, the words connect, connected,

connecting, connections all can be stemmed to the

word “connect” [6]. The purpose of this method is to

remove various suffixes, to reduce the number of

words, to have accurately matching stems, to save

time and memory space. This is illustrated in Figure

4.

Figure 4. Stemming Process

In stemming, translation of morphological forms of a

word to its stem is done assuming each one is

semantically related. There are two points are

considered while using a stemmer:

 Words that do not have the same meaning

should be kept separate

 Morphological forms of a word are assumed

to have the same base meaning and hence it

should be mapped to the same stem

These two rules are good and sufficient in text

mining or language processing applications.

Stemming is usually considered as a recall-enhancing

device. For languages with relatively simple

morphology, the power of stemming is less than for

those with a more complex morphology. Most of the

stemming experiments done so far are in english and

other west European languages.

4. Stemming Algorithms for Classification

Process
Usually, stemming algorithms can be classified into

three groups: truncating methods, statistical methods,

and mixed methods [8]. Each of these groups has a

typical way of finding the stems of the word variants.

These methods and the algorithms discussed in this

paper are shown in the Figure 5.

Figure 5. Stemming Algorithms

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

10

ISSN:2249-5789

A. Truncating Methods (Affix Removal)

As the name obviously suggests these methods are

related to removing the suffixes or prefixes

(commonly known as affixes) of a word [8]. The

most basic stemmer is the Truncate (n) stemmer

which truncated a word at the nth symbol i.e. keep n

letters and remove the rest. In this method words

shorter than n are kept as it is. The probability of over

stemming increases when the word length is small.

Another simple approach was the S-stemmer – an

algorithm conflating singular and plural forms of

English nouns. This algorithm was proposed by

Donna Harman. The algorithm has rules to remove

suffixes in plurals so as to convert them to the

singular forms [9].

1. Lovins Stemmer

This was the first trendy and effective stemmer

proposed by Lovins in 1968. The Lovins stemmer

removes the longest suffix from a word. Once the

ending is removed, the word is recoded using a

different table that makes various adjustments to

convert these stems into valid words. It always

removes a maximum of one suffix from a word, due

to its nature as a single pass algorithm. The

advantages of this algorithm are it is very fast and

can handle the removal of double letters in words like

„getting‟ being transformed to „get‟ and also handles

many irregular plurals like – mouse and mice, index

and indices etc. A drawback of the Lovins approach

is it is time consuming one. Furthermore, many

suffixes are not available in the table of endings. It is

sometimes highly unreliable and frequently fails to

form words from the stems or to match the stems of

like-meaning words.

2. Porters Stemmer

Porters stemming algorithm [11, 12] is one of the

most popular stemming algorithm proposed in 1980.

Many modifications and enhancements have been

made and suggested on the basic algorithm. It is

based on the idea that the suffixes in the English

language (approximately 1200) are mostly made up

of grouping of smaller and simpler suffixes. It has

five steps, and within each step, rules are applied

until one of them passes the conditions. If a rule is

accepted, the suffix is removed consequently, and the

next step is performed. The resultant stem at the end

of the fifth step is returned.

The rule looks like the following:

<condition> <suffix> → <new suffix>

For example, a rule (m>0) EED → EE means “if the

word has at least one vowel and consonant plus EED

ending, change the ending to EE”. So “agreed”

becomes “agree” while “feed” remains unchanged.

This algorithm has about 60 rules and very easy to

understand. Porter designed a detailed framework of

stemming which is known as „Snowball‟. The main

purpose of the framework is to allow programmers to

develop their own stemmers for other character sets

or languages.

However it was noted that Lovins stemmer is a

heavier stemmer that produces a better data reduction

[13]. The Lovins algorithm is obviously larger than

the Porter algorithm, because of its very extensive

endings list. But in one way that is used to advantage:

it is faster. It has effectively traded space for time,

and with its large suffix set it needs just two major

steps to remove a suffix, compared with the five of

the Porter algorithm.

3. Paice/Husk Stemmer

The Paice/Husk stemmer is an iterative algorithm

with one table containing about 120 rules indexed by

the last letter of a suffix [14]. It tries to find the

applicable rule by the last character of the word. Each

rule specifies either a deletion or replacement of an

ending. If there is no such rule, it terminates. It also

terminates if a word starts with a vowel and there are

only two letters left or only three characters left.

Otherwise, the rule is applied and the process repeats.

The advantage is simple and every iteration taking

care of both deletion and replacement as per the rule

applied. The disadvantage is it is very heavy

algorithm and over stemming may occur.

4. Dawson Stemmer

This stemmer is an extension of the Lovins approach

except that it covers much more complete list of

about 1200 suffixes. Like Lovins, it is also a single

pass stemmer and hence it is pretty fast. The suffixes

are stored in the reversed order indexed by their

length and last letter. In fact they are organized as a

set of divided character trees for rapid access. The

advantage is that it covers more suffixes than Lovins

and is fast in execution. The disadvantage is it is very

complex, and lacks a standard reusable

implementation [8].

B. Statistical Methods

These are the stemmers who are based on statistical

analysis and techniques. Most of the methods remove

the affixes, but after implementing some statistical

procedure [8].

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

11

ISSN:2249-5789

1. N-Gram Stemmer

It is language independent stemmer. The string-

similarity approach is used to convert word inflation

to its stem. N-gram is a string of n, usually adjacent,

characters extracted from a section of continuous

text. N-gram is a set of n following characters

extracted from a word. The main idea behind this

approach is, similar words will have a high quantity

of n-grams in common. For n equals to 2 or 3, the

words extracted are called diagrams or trigrams,

respectively [7, 8].

 For example, the word

„INTRODUCTIONS‟ results in the generation of the

diagrams:

*I, IN, NT, TR, RO, OD, DU, UC, CT, TI, IO, ON,

NS, S* and the trigrams:

**I, *IN, INT, NTR, TRO, ROD, ODU, DUC, UCT,

CTI, TIO, ION, ONS, NS*, S**

Where '*' denotes a padding space. There are n+1

such diagram and n+2 such trigrams in a word

containing n characters. Most stemmers are language-

specific. Usually a value of 4 or 5 is selected for n.

After that a textual data or document is analyzed for

all the n-grams. It is clear that a word root generally

occurs less frequently than its morphological form.

This means a word generally has an affix associated

with it.

This stemmer has an advantage that it is language

independent and hence very useful in many

applications. The disadvantage is it requires huge

memory and storage for creating and storing the n

grams and indexes and hence it is not a practical

approach.

2. HMM Stemmer

This stemmer is based on the concept of the Hidden

Markov Model (HMMs) which are finite-state

automata where transitions between states are ruled

by probability functions. At each transition, the new

state emits a symbol with a given probability. This

model was proposed by Melucci and Orio [15]. This

method is based on unsupervised learning and does

not need a prior linguistic knowledge of the dataset.

In this method the probability of each path can be

computed and the most probable path is found in the

automata graph. In order to apply HMMs to

stemming, a sequence of letters that forms a word can

be considered the result of a concatenation of two

subsequences: a prefix and a suffix. A way to model

this process is through an HMM where the states are

divided into two disjoint sets: initial can be the stems

only and the latter can be the stems or suffixes.

Transitions between states define word structure

process. There are some assumptions that can be

made with this method:

1. Initial states belong only to the stem-set – a

word always starts with a stem

2. Transitions from states of the suffix-set of

states of the stem-set always have a null

probability - a word can be only a

concatenation of a stem and a suffix.

3. Final states belong to both sets - a stem can

have a number of different derivations, but it

may also have no suffix.

The advantage of this method is it is unsupervised

and hence knowledge of the language is not required.

The disadvantage is it is a little complex and may

over stem the words sometimes [15].

3. YASS Stemmer

The name is an acronym for Yet another Suffix

Striper. This stemmer was proposed by Prasenjit

Majumder [16]. According to the authors the

performance of a stemmer generated by clustering a

lexicon without any linguistic input is equivalent to

that obtained using standard, rule-based stemmers

such as Porter‟s. This stemmer comes under the class

of statistical as well as corpus based. It does not rely

on linguistic expertise. Retrieval experiments by the

authors in French, English, and Bengali datasets

which shows that the proposed approach is effective

for languages that are primarily suffixed in nature.

C. Mixed Methods
1. Inflectional and Derivational Methods

This is another approach in stemming and it involves

both the inflectional as well as the derivational

morphology analysis. The corpus should be very

large to develop these types of stemmers and hence

they are part of corpus base stemmers too. In case of

inflectional the word variants are related to the

language specific syntactic variations like a plural,

gender, case, etc., whereas in derivational the word

variants are related to the part-of-speech (POS) of a

sentence where the word occurs [7].

a. Krovetz Stemmer (KSTEM)

The Krovetz stemmer was presented in 1993 by

Robert Krovetz [17] and is a linguistic lexical

validation stemmer. Since it is based on the

inflectional property of words and the language

syntax, it is very complicated in nature. It effectively

and accurately removes inflectional suffixes in three

steps:

1. Transforming the plurals of a word to its

singular form

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

12

ISSN:2249-5789

2. Converting the past tense of a word to its

present tense

3. Removing the suffix „ing‟

The conversion process first removes the suffix and

then through the process of checking in a dictionary

for any recoding, returns the stem to a word. The

dictionary lookup also performs any transformations

that are required due to spelling exception and also

converts any stem produced into a real word. Since

this stemmer does not find the stems for all word

variants, it can be used as a pre stemmer before

actually applying a stemming algorithm. This would

increase the speed and effectiveness of the main

stemmer. Compared to Porter and Paice / Husk, this

is a very light stemmer.

The Krovetz stemmer attempts to increase accuracy

and robustness by treating spelling errors and

meaningless stems. If the input document size is large

this stemmer becomes weak and does not perform

very effectively. The major and clear flaw in

dictionary-based algorithms is their incapability to

manage with words, which are not in the lexicon.

This stemmer does not consistently produce a good

recall and precision performance [17].

b. Xerox Inflectional and Derivational Analyzer
The linguistics groups at Xerox have developed a

number of linguistic tools for English which can be

used in information retrieval. In particular, they have

produced an English lexical database which provides

a morphological analysis of any word in the lexicon

and identifies the base form. Xerox linguists have

developed a lexical database for English and some

other languages also which can analyze and generate

inflectional and derivational morphology. The

inflectional database reduces each surface word to the

form which can be found in the dictionary, as follows

[12]:

 nouns singular (e.g. children child)

 verbs infinitive (e.g. understood understand)

 adjectives positive form (e.g. best good)

 pronoun nominative (e.g. whom who)

The derivational database reduces surface forms to

stems which are related to the original in both form

and semantics.

Advantages
This stemmer works well with a large document also

and removes the prefixes also whereever applicable.

All stems are valid words since a lexical database

which provides a morphological analysis of any word

in the lexicon is available for stemming. It has proved

to work better than the Krovetz stemmer for a large

corpus.

Disadvantage
The output depends on the lexical database which

may not be exhaustive. Since this method is based on

a lexicon, it cannot correctly stem the words which

are not part of the lexicon. This stemmer has not been

implemented successfully in many other languages.

Dependence on the lexicon makes it a language

dependent stemmer.

2. Corpus Based Stemmer

This method of stemming was proposed by Xu and

Croft in their paper “Corpus-based stemming using

co-occurrence of word variants” [8]. They have

optional an approach which tries to overcome some

of the drawbacks of Porter stemmer.

 For example, the words „policy‟ and „police‟ are

conflated though they have a different meaning, but

the word „index‟ and „indices‟ are not conflated

though they have the same root. Porter stemmer also

generates stems which are not real words like

„iteration‟ becomes „iter‟ and „general‟ becomes

„gener‟.

 Corpus based stemming refers to automatic

modification of conflation classes – words that have

resulted in a common stem, to suit the characteristics

of a given text corpus using statistical methods. The

advantage of this method is it can potentially avoid

making conflations that are not appropriate for a

given corpus and the result is an actual word and not

an incomplete stem. The disadvantage is that we need

to develop the statistical measure for every corpus

separately and the processing time increases as in the

first step two stemming algorithms are first used

before using this method.

3. Context Sensitive Stemmer

This is a very interesting method of stemming unlike

the usual method where stemming is done before

indexing a document, over here for a Web Search,

context sensitive analysis is done using statistical

modeling on the query side. This method was

proposed by Funchun Peng et. al.[19].

Basically for the words of the input query, the

morphological variants which would be useful for the

search are predicted before the query is submitted to

the search engine. This severely reduces the number

of bad expansions, which in turn reduces the cost of

additional computation and improves the precision at

the same time. After the predicted word variants of

the query have been derived, a context sensitive

document matching is done for these variants. This

conservative strategy serves as a safeguard against

spurious stemming, and it turns out to be very
important for improving precision. This stemming

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

13

ISSN:2249-5789

process is divided into four steps [19] after the query

is fired:

a. Candidate generation:

Over here the Porter stemmer is used to generate the

stems from the query words. This has completely no

relation to the semantics of the words. For a better

output the corpus-based analysis based on

distributional similarity is used. The foundation of

using distributional word similarity is that true

variants tend to be used in similar contexts. In the

distributional word similarity calculation, each word

is represented by a vector of features derived from

the context of the word. We use the bigrams to the

left and right of the word as its context features, by

mining a huge Web corpus. The similarity between

two words is the cosine similarity between the two

corresponding feature vectors [7].

b. Query Segmentation and head word detection:

When the queries are long, it is important to detect

the major concept of the query. The query is broken

into segments which are normally the noun phrases.

For each noun phrase the most important word is

detected which is the head word. Sometimes a word

is split to know the content. The mutual information

of two adjacent words is found and if it passes a

threshold value, they are kept in the same segment.

Finding the headword is by using a syntactical parser

[7, 8].

c. Context sensitive word expansion:

The keywords words are obtained by using

probability measures and it decided which word

variants would be most useful – generally they are

the plural forms of the words. This is done using the

simplest and most successful approach to language

modeling, which is the one based on the n-gram

model which uses the chain rule of probability. In

this step all the important head word variants are

obtained. The traditional way of using stemming for

Web search, is referred as the naïve model. This is to

treat every word variant equivalent for all possible

words in the query. The query “book store” will be

transformed into “(book OR books) (store OR

stores)” when limiting stemming to pluralization

handling only, where OR is an operator that denotes

the equivalence of the left and right arguments [8].

d. Context sensitive document matching:

The context is the left or the right non-stop segments

of the original word. Considering the fact that queries

and documents may not represent the intent in

exactly the same way, this proximity constraint is to

allow variant occurrences within a window of some

fixed size [7]. The smaller the window size is, the

more restrictive the matching. The advantage of this

stemmer is it improves selective word expansion on

the query side and conservative word occurrence

matching on the document side. The disadvantage is

the processing time and the complex nature of the

stemmer. There can be errors in finding the noun

phrases in the query and the nearest words.

Term Frequency-Inverse Document Frequency

Term Frequency–Inverse Document Frequency (tf-

idf) is a numerical statistic which reveals that a word

is how important to a document in a collection. The

Tf - IDF is often used as a weighting factor in

information retrieval and text mining. The value of tf-

idf increases proportionally to the number of times a

word appears in the document, but is counteracting

by the frequency of the word in the corpus. This can

help to control the fact that some words are generally

more common than others. Tf–IDF can be

successfully used for stop-words filtering in various

subject fields including text summarization and

classification. Tf–IDF is the product of two statistics

which are termed frequency and inverse document

frequency. To further distinguish them, the number of

times each term occurs in each document is counted

and sums them all together. Term Frequency (TF) is

defined as the number of times a term occurs in a

document [20, 21].

𝑇𝑓(𝑡, 𝑑) = .5 +
0.5∗𝑓 𝑡 ,𝑑

𝑀𝑎𝑠𝑖𝑚𝑢𝑚 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠

Inverse Document Frequency- an Inverse Document

Frequency (IDF) is a statistical weight used for

measuring the importance of a term in a text

document collection. IDF feature is incorporated

which reduces the weight of terms that occur very

frequently in the document set and increases the

weight of terms that occur rarely.

IDF t, d 𝑙𝑜𝑔 =
lDl

(𝑛𝑜. 𝑜𝑓 𝑑𝑜𝑐. , 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑛𝑠)

Then Term Frequency - Inverse document frequency

[TF-IDF] is calculated for each word using the

formula,

Tfidf (t, f, d) = tf (t, d)*idf (t, d)

In this equation (1) and (2) ft, d denotes the

frequency of the occurrence of term t in document d.

In equation (3) TF-IDF is calculated for each term in

the document by using Term Frequency (Tft, d) and

Inverse Document Frequency (idft, d).

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

14

ISSN:2249-5789

4. Conclusion

Text mining is the process of seeking or extracting

the useful information from the textual data. It tries to

find interesting patterns from large databases. It uses

different pre-processing techniques likes stop words

elimination and stemming. This paper has given

complete information about the text mining

preprocessing techniques, i.e. stop words elimination

and stemming algorithms. We hope this paper will

help the text mining researcher‟s community and they

get good knowledge about various preprocessing

techniques.

Reference

[1] Vishal Gupta and Gurpreet S. Lehal, A Survey of

Text Mining Techniques and Applications,

JOURNAL OF EMERGING TECHNOLOGIES IN

WEB INTELLIGENCE, VOL. 1, NO. 1, AUGUST

2009.

[2] Shaidah Jusoh 1and Hejab M. Alfawareh,

Techniques, Applications and Challenging Issue in

Text Mining, IJCSI International Journal of

Computer Science Issues, Vol. 9, Issue 6, No 2,

November 2012, ISSN (Online): 1694-0814.

[3] S.Jusoh and H.M. Alfawareh, Natural language

interface for online sales, in Proceedings of the

International

Conference on Intelligent and Advanced System

(ICIAS2007). Malaysia: IEEE, November 2007, pp.

224–228.

[4] Saleh Alsaleem, Automated Arabic Text

Categorization Using SVM and NB, International

Arab Journal of e-Technology, Vol. 2, No. 2, June

2011.

[5] M.F. Porter, An Algorithm for Suffix Stripping,

Program, vol. 14, no. 3, pp. 130-137, 1980.

[6] C.Ramasubramanian and R.Ramya, Effective Pre-

Processing Activities in Text Mining using Improved

Porter‟s Stemming Algorithm, International Journal

of Advanced Research in Computer and

Communication Engineering Vol. 2, Issue 12,

December 2013, ISSN (Online) : 2278-1021.

[7] Ms. Anjali Ganesh Jivani, A Comparative Study

of Stemming Algorithms, Anjali Ganesh Jivani et al,

Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938,

ISSN:2229-6093.

[8] Deepika Sharma, Stemming Algorithms, A

Comparative Study and their Analysis, International

Journal of Applied Information Systems (IJAIS) –

ISSN : 2249-0868, Foundation of Computer Science

FCS, New York, USA, Volume 4– No.3, September

2012 – www.ijais.org.

[9] Harman Donna, How effective is suffixing?

Journal of the American Society for Information

Science, 1991; 42, 7-15 7.

[10] J. B. Lovins, Development of a stemming

algorithm, Mechanical Translation and Computer

Linguistic., vol.11, no.1/2, pp. 22-31, 1968.

[11] Porter M.F, An algorithm for suffix stripping,

Program. 1980; 14, 130-137.

[12] Porter M.F, Snowball: A language for stemming

algorithms. 2001.

[13] Mladenic Dunja, Automatic word

lemmatization. Proceedings B of the 5th International

Multi- Conference Information Society IS. 2002,

153-159.

[14] Paice Chris D, Another stemmer. ACM SIGIR

Forum, Volume 24, No. 3. 1990, 56-61.

[15] Melucci Massimo and Orio Nicola, A novel

method for stemmer generation based on hidden

Markov models. Proceedings of the twelfth

international conference on Information and

knowledge management. 2003, 131-138.

[16] Plisson Joel, Lavrac Nada and Mladenic Dunja,

A rule based approach to word lemmatization.

Proceedings C of the 7th International Multi-

Conference Information Society IS. 2004.

[17] Krovetz Robert, Viewing morphology as an

inference process. Proceedings of the 16th annual

international ACM SIGIR conference on Research

and development in information retrieval. 1993,191-

202.

[18] Xu Jinxi and Croft Bruce W, Corpus-based

stemming using co-occurrence of word variants.

ACM Transactions on Information Systems. Volume

16, Issue 1. 1998, 61-81.

[19] Funchun Peng, Nawaaz Ahmed, Xin Li and

Yumao Lu, Context sensitive stemming for web

search.

Proceedings of the 30th annual international ACM

SIGIR conference on Research and development in

information retrieval. 2007, 639-646.

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

15

ISSN:2249-5789

http://www.ijais.org/

[20] Menaka S and Radha N, Text Classification

using Keyword Extraction Technique, International

Journal of Advanced Research in Computer Science

and Software Engineering, Volume 3, Issue 12,

December 2013, ISSN: 2277 128X.

[21] S.Charanyaa and K.Sangeetha, Term Frequency

Based Sequence Generation Algorithm for Graph

Based Data Anonymization, International Journal of

Innovative Research in Computer and

Communication Engineering, (An ISO 3297: 2007

Certified Organization), Vol. 2, Issue 2, February

2014, ISSN(Online): 2320-9801.

[22] Anjali Ganesh Jivani , A Comparative Study of

Stemming Algorithms, International Journal of

Computer, Technology and Application, Volume 2,

ISSN:2229-6093.

[23] Vishal Gupta, Gurpreet Singh Lehal, A Survey

of Common Stemming Techniques and Existing

Stemmers for Indian Languages, Journal of Emerging

Techniloigies in Web Intelligence, VOL. 5, NO. 2,

MAY 2013.

[24] Agbele, A.O. Adesina, N.A. Azeez, & A.P.

Abidoye

, Context-Aware Stemming Algorithm for

Semantically Related Root Words, African Journal of

Computing & ICT.

[25] Hassan Saif, Miriam Fernandez,Yulan He,

Harith Alani

, On Stopwords, Filtering and Data

Sparsity for Sentiment Analysis of Twitter.

Dr.S.Vijayarani et al , International Journal of Computer Science & Communication Networks,Vol 5(1),7-16

16

ISSN:2249-5789

