
Preprocessing Techniques for Text Mining - An Overview 

Dr. S. Vijayarani
1
, Ms. J. Ilamathi

2
, Ms. Nithya

3
 

Assistant Professor
1
, M. Phil Research Scholar

2, 3 

Department of Computer Science, School of Computer Science and Engineering, 

Bharathiar University, Coimbatore, Tamilnadu, India
1, 2, 3

 

 

Abstract 

Data mining is used for finding the useful 

information from the large amount of data.  Data 

mining techniques are used to implement and solve 

different types of research problems.  The research 

related areas in data mining are text mining, web 

mining, image mining, sequential pattern mining, 

spatial mining, medical mining, multimedia mining, 

structure mining and graph mining.  This paper 

discussed about the text mining and its preprocessing 

techniques.  Text mining is the process of mining the 

useful information from the text documents.  It is also 

called knowledge discovery in text (KDT) or 

knowledge of intelligent text analysis.  Text mining is 

a technique which extracts information from both 

structured and unstructured data and also finding 

patterns.  Text mining techniques are used in various 

types of research domains like natural language 

processing, information retrieval, text classification 

and text clustering. 

Keywords: Text mining, Stemming, Stop words 

elimination, TF/IDF algorithms, Word Net, Word 

Disambiguation. 

1.Introduction 

Text mining is the process of seeking or extracting 

the useful information from the textual data. It is an 

exciting research area as it tries to discover 

knowledge from unstructured texts. It is also known 

as Text Data Mining (TDM) and knowledge 

Discovery in Textual Databases (KDT). KDT plays 

an increasingly significant role in emerging 

applications, such as Text Understanding. Text 

mining process is same as data mining, except, the 

data mining tools are designed to handle structured 

data whereas text mining can able to handle  

 

 

 

unstructured or semi-structured data sets such as 

emails HTML files and full text documents etc. [1]. 

Text Mining is used for finding the new, previously 

unidentified information from different written 

resources. 

  

Structured data is data that resides in a fixed field 

within a record or file.  This data is contained in 

relational database and spreadsheets. The 

unstructured data usually refers to information that 

does not reside in a traditional row-column database 

and it is the opposite of structured data. Semi-

Structured data is the data that is neither raw data, nor 

typed data in a conventional database system. Text 

mining is a new area of computer science research 

that tries to solve the issues that occur in the area of 

data mining, machine learning, information 

extraction, natural language processing, information 

retrieval, knowledge management and classification.  

Figure 1 gives the overview of text mining process. 

 

 
Figure 1. Text Mining Process 
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The remaining portion of the paper is organized as 

follows. Section 2 gives the literature review. Section 

3 describes the text mining preprocessing methods. 

Stemming algorithms for classification are discussed 

in Section 4. Conclusion is given in Section 5.  

1.1 Applications of Text Mining 

Information Retrieval 

Information retrieval (IR) concept has been 

developed in relation with database systems for many 

years. Information retrieval is the association and 

retrieval of information from a large number of text-

based documents. The information retrieval and 

database systems, each handle various kinds of data; 

some database system problems are usually not 

present in information retrieval systems, such as 

concurrency control, recovery, transaction 

management, and update. Also, some common 

information retrieval problems are usually not 

encountered in conventional database systems, such 

as unstructured documents, estimated search based on 

keywords, and the concept of relevance. Due to the 

huge quantity of text information, information 

retrieval has found many applications. There exist 

many information retrieval systems, such as on-line 

library catalog systems, on-line document 

management systems, and the more recently 

developed Web search engines [1]. 

 

Information Extraction 

 The information extraction method identifies key 

words and relationships within the text. It does this 

by looking for predefined sequences in the text, a 

process called pattern matching. The software infers 

the relationships between all the identified places, 

people, and time to give the user with meaningful 

information. This technology is very useful when 

dealing with large volumes of text. Traditional data 

mining assumes that the information being “mined” 

is already in the form of a relational database. 

Unfortunately, for many applications, electronic 

information is only available in the form of free 

natural language documents rather than structured 

databases [1]. This process is depicted in Figure 2. 

 

Figure 2. Process of Text Extraction 

Categorization 

Categorization involves identifying the main themes 

of a document by inserting the document into a pre-

defined set of topics. When categorizing a document, 

a computer program will often treat the document as 

a “bag of words.” It does not try to process the actual 

information as information extraction does. Rather, 

the categorization only counts words that appear and, 

from the counts, identifies the main topics that the 

document covers. Categorization often relies on a 

glossary for which topics are predefined, and 

relationships are identified by looking for large 

terms, narrower terms, synonyms, and related terms 

[4]. 

 

Natural Language Processing 

Natural Language Processing (NLP) is an area of 

research and application that explores how computers 

can be used to understand and manipulate natural 

language text. NLP researchers aim to collect 

knowledge on how human beings understand and use 

language so that fitting tools and techniques can be 

developed to make computer systems understand and 

manipulate natural languages to perform the 

preferred tasks [3].  

 

The basics of NLP lie in a number of disciplines, viz. 

computer and information sciences, linguistics, 

mathematics, electrical and electronic engineering, 

artificial intelligence and robotics, psychology, etc. 

Applications of NLP include a number of fields of 

studies, such as machine translation, natural language 

text processing and summarization, user interfaces, 

multilingual and cross language information retrieval 

(CLIR), speech recognition, artificial intelligence and 

expert systems and so on[3].  
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2. Literature Review 

Anjali Ganesh Jivani [22] discussed that the purpose 

of stemming is to reduce different grammatical forms 

or word forms of a word like its noun, adjective, 

verb, adverb etc. The goal of stemming is to reduce 

inflectional forms and sometimes derivationally 

related forms of a word to a common base form. This 

paper discusses different methods of stemming and 

their comparisons in terms of usage, advantages as 

well as limitations. The basic difference between 

stemming and lemmatization is also discussed.  

Vishal Gupta et.al [23] has analyzed the stemmer‟s 

performance and effectiveness in applications such as 

spelling checker varies across languages. A typical 

simple stemmer algorithm involves removing 

suffixes using a list of frequent suffixes, while a more 

complex one would use morphological knowledge to 

derive a stem from the words. The paper gives a 

detailed outline of common stemming techniques and 

existing stemmers for Indian languages. 

  

K.K. Agbele
 

[24] discussed the technique for 

developing pervasive computing applications that are 

flexible and adaptable for users. In this context, 

however, information retrieval (IR) is often defined 

in terms of location and delivery of documents to a 

user to satisfy their information need. In most cases, 

morphological variants of words have similar 

semantic interpretations and can be considered as 

equivalent for the purpose of IR applications. The 

algorithm Context-Aware Stemming (CAS) is 

proposed, which is a modified version of the 

extensively used Porter‟s stemmer. Considering only 

generated meaningful stemming words as the 

stemmer output, the results show that the modified 

algorithm significantly reduces the error rate of 

Porter‟s algorithm from 76.7% to 6.7% without 

compromising the efficacy of Porter‟s algorithm. 

 

Hassan Saif [25] has investigated whether removing 

stop words helps or hampers the effectiveness of 

Twitter sentiment classification methods. For this 

investigation he has applied, six different stop word 

identification methods to Twitter data from six 

different datasets and observe how removing stop 

words affects two well-known supervised sentiment 

classification methods. The result shows that using 

pre-compiled lists of stop words negatively impacts 

the performance of Twitter sentiment classification 

approaches. On the other hand, the dynamic 

generation of stopword lists, by removing those 

infrequent  
 

 
 

terms appearing only once in the corpus appears to be 

the optimal method for maintaining a high 

classification performance while reducing the data 

sparsity and substantially shrinking the feature space. 

 

3. Preprocessing methods 

 
Preprocessing method plays a very important role in 

text mining techniques and applications.  It is the first 

step in the text mining process.  In this paper, we 

discuss the three key steps of preprocessing namely, 

stop words removal, stemming and TF/IDF 

algorithms (Figure 3). 

 
Figure 3. Text Mining Pre-Processing Techniques 

 

A. Extraction 

 This method is used to tokenize the file 

content into individual word. 

 

B. Stop Words Elimination  

Stop words are a division of natural language. The 

motive that stop-words should be removed from a 

text is that they make the text look heavier and less 

important for analysts. Removing stop words reduces 

the dimensionality of term space. The most common 

words in text documents are articles, prepositions, 

and pro-nouns, etc. that does not give the meaning of 

the documents. These words are treated as stop 

words. Example for stop words: the, in, a, an, with, 

etc. Stop words are removed from documents 

because those words are not measured as keywords in 

text mining applications [5]. 
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C. Stop word removal methods 

Four types of stop word removal methods are 

followed, the methods are used to remove stop words 

from the files [5]. 

i. The Classic Method: The classic method is based 

on removing stop words obtained from pre-compiled 

lists [7].   

 

ii. Methods based on Zipf’s Law (Z-Methods): In 

addition to the classic stop list, we use three stop 

word creation methods moved by Zipf‟s law, 

including: removing most frequent words (TF-High) 

and removing words that occur once, i.e. singleton 

words (TF1). We also consider removing words with 

low inverse document frequency (IDF) [7, 8].   

 

iii. The Mutual Information Method (MI) 

The mutual information method (MI) is a supervised 

method that works by computing the mutual 

information between a given term and a document 

class (e.g., positive, negative), providing a suggestion 

of how much information the term can tell about a 

given class. Low mutual information suggests that 

the term has a low discrimination power and 

consequently it should be removed [7, 8].  

 

iv. Term Based Random Sampling (TBRS) 

This method was first proposed by Lo et al. (2005) to 

manually detect the stop words from web documents. 

This method works by iterating over separate chunks 

of data which are randomly selected. It then ranks 

terms in each chunk based on their in format values 

using the Kullback-Leibler divergence measure as 

shown in Equation 1. 

dx (t) = Px (t).log2 
Px (t)

𝑝  (t)                       (1) 

Where Px (t) is the normalized term frequency of a 

term t within a mass x, and P(t) is the normalized 

term frequency of t in the entire collection. The final 

stop list is then constructed by taking the least 

informative terms in all chunks, removing all 

possible duplications [7]. 

 

D. Stemming 
This method is used to identify the root/stem of a 

word. For example, the words connect, connected, 

connecting, connections all can be stemmed to the 

word “connect” [6]. The purpose of this method is to 

remove various suffixes, to reduce the number of 

words, to have accurately matching stems, to save 

time and memory space. This is illustrated in Figure 

4. 
 

 

 
Figure 4. Stemming Process 

In stemming, translation of morphological forms of a 

word to its stem is done assuming each one is 

semantically related. There are two points are 

considered while using a stemmer: 

 Words that do not have the same meaning 

should be kept separate 

 Morphological forms of a word are assumed 

to have the same base meaning and hence it 

should be mapped to the same stem 

These two rules are good and sufficient in text 

mining or language processing applications. 

Stemming is usually considered as a recall-enhancing 

device. For languages with relatively simple 

morphology, the power of stemming is less than for 

those with a more complex morphology. Most of the 

stemming experiments done so far are in english and 

other west European languages. 

 

 

4. Stemming Algorithms for Classification 

Process 
Usually, stemming algorithms can be classified into 

three groups: truncating methods, statistical methods, 

and mixed methods [8]. Each of these groups has a 

typical way of finding the stems of the word variants. 

These methods and the algorithms discussed in this 

paper are shown in the Figure 5. 

 
Figure 5. Stemming Algorithms 
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A. Truncating Methods (Affix Removal) 

As the name obviously suggests these methods are 

related to removing the suffixes or prefixes 

(commonly known as affixes) of a word [8]. The 

most basic stemmer is the Truncate (n) stemmer 

which truncated a word at the nth symbol i.e. keep n 

letters and remove the rest. In this method words 

shorter than n are kept as it is. The probability of over 

stemming increases when the word length is small. 

Another simple approach was the S-stemmer – an 

algorithm conflating singular and plural forms of 

English nouns. This algorithm was proposed by 

Donna Harman. The algorithm has rules to remove 

suffixes in plurals so as to convert them to the 

singular forms [9]. 

 

1. Lovins Stemmer 

This was the first trendy and effective stemmer 

proposed by Lovins in 1968. The Lovins stemmer 

removes the longest suffix from a word. Once the 

ending is removed, the word is recoded using a 

different table that makes various adjustments to 

convert these stems into valid words. It always 

removes a maximum of one suffix from a word, due 

to its nature as a single pass algorithm. The 

advantages of this algorithm are it is very fast and 

can handle the removal of double letters in words like 

„getting‟ being transformed to „get‟ and also handles 

many irregular plurals like – mouse and mice, index 

and indices etc. A drawback of the Lovins approach 

is it is time consuming one. Furthermore, many 

suffixes are not available in the table of endings. It is 

sometimes highly unreliable and frequently fails to 

form words from the stems or to match the stems of 

like-meaning words.  

 

2. Porters Stemmer 

Porters stemming algorithm [11, 12] is one of the 

most popular stemming algorithm proposed in 1980. 

Many modifications and enhancements have been 

made and suggested on the basic algorithm. It is 

based on the idea that the suffixes in the English 

language (approximately 1200) are mostly made up 

of grouping of smaller and simpler suffixes. It has 

five steps, and within each step, rules are applied 

until one of them passes the conditions. If a rule is 

accepted, the suffix is removed consequently, and the 

next step is performed. The resultant stem at the end 

of the fifth step is returned.  

 

The rule looks like the following:  

<condition> <suffix> → <new suffix> 

 

For example, a rule (m>0) EED → EE means “if the 

word has at least one vowel and consonant plus EED 

ending, change the ending to EE”. So “agreed” 

becomes “agree” while “feed” remains unchanged. 

This algorithm has about 60 rules and very easy to 

understand. Porter designed a detailed framework of 

stemming which is known as „Snowball‟. The main 

purpose of the framework is to allow programmers to 

develop their own stemmers for other character sets 

or languages.  

 

However it was noted that Lovins stemmer is a 

heavier stemmer that produces a better data reduction 

[13]. The Lovins algorithm is obviously larger than 

the Porter algorithm, because of its very extensive 

endings list. But in one way that is used to advantage: 

it is faster. It has effectively traded space for time, 

and with its large suffix set it needs just two major 

steps to remove a suffix, compared with the five of 

the Porter algorithm. 

 

3. Paice/Husk Stemmer 

The Paice/Husk stemmer is an iterative algorithm 

with one table containing about 120 rules indexed by 

the last letter of a suffix [14].  It tries to find the 

applicable rule by the last character of the word. Each 

rule specifies either a deletion or replacement of an 

ending. If there is no such rule, it terminates. It also 

terminates if a word starts with a vowel and there are 

only two letters left or only three characters left. 

Otherwise, the rule is applied and the process repeats. 

The advantage is simple and every iteration taking 

care of both deletion and replacement as per the rule 

applied. The disadvantage is it is very heavy 

algorithm and over stemming may occur. 

 

4. Dawson Stemmer 

This stemmer is an extension of the Lovins approach 

except that it covers much more complete list of 

about 1200 suffixes. Like Lovins, it is also a single 

pass stemmer and hence it is pretty fast. The suffixes 

are stored in the reversed order indexed by their 

length and last letter. In fact they are organized as a 

set of divided character trees for rapid access. The 

advantage is that it covers more suffixes than Lovins 

and is fast in execution. The disadvantage is it is very 

complex, and lacks a standard reusable 

implementation [8]. 

 

 
B. Statistical Methods 

These are the stemmers who are based on statistical 

analysis and techniques. Most of the methods remove 

the affixes, but after implementing some statistical 

procedure [8]. 
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1. N-Gram Stemmer 

It is language independent stemmer. The string-

similarity approach is used to convert word inflation 

to its stem. N-gram is a string of n, usually adjacent, 

characters extracted from a section of continuous 

text. N-gram is a set of n following characters 

extracted from a word. The main idea behind this 

approach is, similar words will have a high quantity 

of n-grams in common. For n equals to 2 or 3, the 

words extracted are called diagrams or trigrams, 

respectively [7, 8]. 

 

 For example, the word  

„INTRODUCTIONS‟ results in the generation of the 

diagrams: 

 

*I, IN, NT, TR, RO, OD, DU, UC, CT, TI, IO, ON, 

NS, S* and the trigrams: 

**I, *IN, INT, NTR, TRO, ROD, ODU, DUC, UCT, 

CTI, TIO, ION, ONS, NS*, S** 

 

Where '*' denotes a padding space. There are n+1 

such diagram and n+2 such trigrams in a word 

containing n characters. Most stemmers are language-

specific. Usually a value of 4 or 5 is selected for n. 

After that a textual data or document is analyzed for 

all the n-grams. It is clear that a word root generally 

occurs less frequently than its morphological form. 

This means a word generally has an affix associated 

with it. 

 

This stemmer has an advantage that it is language 

independent and hence very useful in many 

applications. The disadvantage is it requires huge 

memory and storage for creating and storing the n 

grams and indexes and hence it is not a practical 

approach. 

 

2. HMM Stemmer 

This stemmer is based on the concept of the Hidden 

Markov Model (HMMs) which are finite-state 

automata where transitions between states are ruled 

by probability functions. At each transition, the new 

state emits a symbol with a given probability. This 

model was proposed by Melucci and Orio [15]. This 

method is based on unsupervised learning and does 

not need a prior linguistic knowledge of the dataset. 

In this method the probability of each path can be 

computed and the most probable path is found in the 

automata graph. In order to apply HMMs to 

stemming, a sequence of letters that forms a word can 

be considered the result of a concatenation of two 

subsequences: a prefix and a suffix. A way to model 

this process is through an HMM where the states are 

divided into two disjoint sets: initial can be the stems 

only and the latter can be the stems or suffixes. 

Transitions between states define word structure 

process. There are some assumptions that can be 

made with this method: 

1. Initial states belong only to the stem-set – a 

word always starts with a stem 

2. Transitions from states of the suffix-set of 

states of the stem-set always have a null   

probability - a word can be only a 

concatenation of a stem and a suffix. 

3. Final states belong to both sets - a stem can 

have a number of different derivations, but it 

may also have no suffix. 

The advantage of this method is it is unsupervised 

and hence knowledge of the language is not required. 

The disadvantage is it is a little complex and may 

over stem the words sometimes [15]. 

 

3. YASS Stemmer 

The name is an acronym for Yet another Suffix 

Striper. This stemmer was proposed by Prasenjit 

Majumder [16]. According to the authors the 

performance of a stemmer generated by clustering a 

lexicon without any linguistic input is equivalent to 

that obtained using standard, rule-based stemmers 

such as Porter‟s. This stemmer comes under the class 

of statistical as well as corpus based. It does not rely 

on linguistic expertise. Retrieval experiments by the 

authors in French, English, and Bengali datasets 

which shows that the proposed approach is effective 

for languages that are primarily suffixed in nature. 

 

C. Mixed Methods 
1. Inflectional and Derivational Methods 

This is another approach in stemming and it involves 

both the inflectional as well as the derivational 

morphology analysis. The corpus should be very 

large to develop these types of stemmers and hence 

they are part of corpus base stemmers too. In case of 

inflectional the word variants are related to the 

language specific syntactic variations like a plural, 

gender, case, etc., whereas in derivational the word 

variants are related to the part-of-speech (POS) of a 

sentence where the word occurs [7]. 

 

a. Krovetz Stemmer (KSTEM) 

The Krovetz stemmer was presented in 1993 by 

Robert Krovetz [17] and is a linguistic lexical 

validation stemmer. Since it is based on the 

inflectional property of words and the language 

syntax, it is very complicated in nature. It effectively 

and accurately removes inflectional suffixes in three 

steps: 

1. Transforming the plurals of a word to its 

singular form 
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2. Converting the past tense of a word to its 

present tense 

3. Removing the suffix „ing‟ 

The conversion process first removes the suffix and 

then through the process of checking in a dictionary 

for any recoding, returns the stem to a word. The 

dictionary lookup also performs any transformations 

that are required due to spelling exception and also 

converts any stem produced into a real word. Since 

this stemmer does not find the stems for all word 

variants, it can be used as a pre stemmer before 

actually applying a stemming algorithm. This would 

increase the speed and effectiveness of the main 

stemmer. Compared to Porter and Paice / Husk, this 

is a very light stemmer.  

 

The Krovetz stemmer attempts to increase accuracy 

and robustness by treating spelling errors and 

meaningless stems. If the input document size is large 

this stemmer becomes weak and does not perform 

very effectively. The major and clear flaw in 

dictionary-based algorithms is their incapability to 

manage with words, which are not in the lexicon. 

This stemmer does not consistently produce a good 

recall and precision performance [17]. 

 

b. Xerox Inflectional and Derivational Analyzer 
The linguistics groups at Xerox have developed a 

number of linguistic tools for English which can be 

used in information retrieval. In particular, they have 

produced an English lexical database which provides 

a morphological analysis of any word in the lexicon 

and identifies the base form. Xerox linguists have 

developed a lexical database for English and some 

other languages also which can analyze and generate 

inflectional and derivational morphology. The 

inflectional database reduces each surface word to the 

form which can be found in the dictionary, as follows 

[12]: 

 nouns singular (e.g. children child) 

 verbs infinitive (e.g. understood understand) 

 adjectives positive form (e.g. best good) 

 pronoun nominative (e.g. whom who) 

The derivational database reduces surface forms to 

stems which are related to the original in both form 

and semantics. 

 

Advantages  
This stemmer works well with a large document also 

and removes the prefixes also whereever applicable. 

All stems are valid words since a lexical database 

which provides a morphological analysis of any word 

in the lexicon is available for stemming. It has proved 

to work better than the Krovetz stemmer for a large 

corpus. 

 

Disadvantage 
The output depends on the lexical database which 

may not be exhaustive. Since this method is based on 

a lexicon, it cannot correctly stem the words which 

are not part of the lexicon. This stemmer has not been 

implemented successfully in many other languages. 

Dependence on the lexicon makes it a language 

dependent stemmer. 

 

2. Corpus Based Stemmer 

This method of stemming was proposed by Xu and 

Croft in their paper “Corpus-based stemming using 

co-occurrence of word variants” [8]. They have 

optional an approach which tries to overcome some 

of the drawbacks of Porter stemmer. 

 

 For example, the words „policy‟ and „police‟ are 

conflated though they have a different meaning, but 

the word „index‟ and „indices‟ are not conflated 

though they have the same root. Porter stemmer also 

generates stems which are not real words like 

„iteration‟ becomes „iter‟ and „general‟ becomes 

„gener‟. 

 

 Corpus based stemming refers to automatic 

modification of conflation classes – words that have 

resulted in a common stem, to suit the characteristics 

of a given text corpus using statistical methods. The 

advantage of this method is it can potentially avoid 

making conflations that are not appropriate for a 

given corpus and the result is an actual word and not 

an incomplete stem. The disadvantage is that we need 

to develop the statistical measure for every corpus 

separately and the processing time increases as in the 

first step two stemming algorithms are first used 

before using this method. 

 

3. Context Sensitive Stemmer 

This is a very interesting method of stemming unlike 

the usual method where stemming is done before 

indexing a document, over here for a Web Search, 

context sensitive analysis is done using statistical 

modeling on the query side. This method was 

proposed by Funchun Peng et. al.[19]. 

Basically for the words of the input query, the 

morphological variants which would be useful for the 

search are predicted before the query is submitted to 

the search engine. This severely reduces the number 

of bad expansions, which in turn reduces the cost of 

additional computation and improves the precision at 

the same time. After the predicted word variants of 

the query have been derived, a context sensitive 

document matching is done for these variants. This 

conservative strategy serves as a safeguard against 

spurious stemming, and it turns out to be very 
important for improving precision. This stemming 
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process is divided into four steps [19] after the query 

is fired: 

a. Candidate generation: 

Over here the Porter stemmer is used to generate the 

stems from the query words. This has completely no 

relation to the semantics of the words. For a better 

output the corpus-based analysis based on 

distributional similarity is used. The foundation of 

using distributional word similarity is that true 

variants tend to be used in similar contexts. In the 

distributional word similarity calculation, each word 

is represented by a vector of features derived from 

the context of the word. We use the bigrams to the 

left and right of the word as its context features, by 

mining a huge Web corpus. The similarity between 

two words is the cosine similarity between the two 

corresponding feature vectors [7]. 

 

b. Query Segmentation and head word detection: 

When the queries are long, it is important to detect 

the major concept of the query. The query is broken 

into segments which are normally the noun phrases. 

For each noun phrase the most important word is 

detected which is the head word. Sometimes a word 

is split to know the content. The mutual information 

of two adjacent words is found and if it passes a 

threshold value, they are kept in the same segment. 

Finding the headword is by using a syntactical parser 

[7, 8]. 

 

c. Context sensitive word expansion: 

The keywords words are obtained by using 

probability measures and it decided which word 

variants would be most useful – generally they are 

the plural forms of the words. This is done using the 

simplest and most successful approach to language 

modeling, which is the one based on the n-gram 

model which uses the chain rule of probability. In 

this step all the important head word variants are 

obtained. The traditional way of using stemming for 

Web search, is referred as the naïve model. This is to 

treat every word variant equivalent for all possible 

words in the query. The query “book store” will be 

transformed into “(book OR books) (store OR 

stores)” when limiting stemming to pluralization 

handling only, where OR is an operator that denotes 

the equivalence of the left and right arguments [8]. 

 

d. Context sensitive document matching: 

The context is the left or the right non-stop segments 

of the original word. Considering the fact that queries 

and documents may not represent the intent in 

exactly the same way, this proximity constraint is to 

allow variant occurrences within a window of some 

fixed size [7]. The smaller the window size is, the 

more restrictive the matching. The advantage of this 

stemmer is it improves selective word expansion on 

the query side and conservative word occurrence 

matching on the document side. The disadvantage is 

the processing time and the complex nature of the 

stemmer. There can be errors in finding the noun 

phrases in the query and the nearest words. 

 

Term Frequency-Inverse Document Frequency  

Term Frequency–Inverse Document Frequency (tf-

idf) is a numerical statistic which reveals that a word 

is how important to a document in a collection. The 

Tf - IDF is often used as a weighting factor in 

information retrieval and text mining. The value of tf-

idf increases proportionally to the number of times a 

word appears in the document, but is counteracting 

by the frequency of the word in the corpus. This can 

help to control the fact that some words are generally 

more common than others. Tf–IDF can be 

successfully used for stop-words filtering in various 

subject fields including text summarization and 

classification. Tf–IDF is the product of two statistics 

which are termed frequency and inverse document 

frequency. To further distinguish them, the number of 

times each term occurs in each document is counted 

and sums them all together. Term Frequency (TF) is 

defined as the number of times a term occurs in a 

document [20, 21]. 

  

𝑇𝑓(𝑡, 𝑑) = .5 +
0.5∗𝑓 𝑡 ,𝑑 

𝑀𝑎𝑠𝑖𝑚𝑢𝑚  𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠  𝑜𝑓  𝑤𝑜𝑟𝑑𝑠
                     

Inverse Document Frequency- an Inverse Document 

Frequency (IDF) is a statistical weight used for 

measuring the importance of a term in a text 

document collection. IDF feature is incorporated 

which reduces the weight of terms that occur very 

frequently in the document set and increases the 

weight of terms that occur rarely. 

IDF  t, d 𝑙𝑜𝑔 =  
lDl

(𝑛𝑜. 𝑜𝑓 𝑑𝑜𝑐. , 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑛𝑠)
 

 

Then Term Frequency - Inverse document frequency 

[TF-IDF] is calculated for each word using the 

formula, 

Tfidf (t, f, d) = tf (t, d)*idf (t, d) 

In this equation (1) and (2) ft, d denotes the 

frequency of the occurrence of term t in document d.  

In equation (3) TF-IDF is calculated for each term in 

the document by using Term Frequency (Tft, d) and 

Inverse Document Frequency (idft, d). 
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4. Conclusion 

Text mining is the process of seeking or extracting 

the useful information from the textual data. It tries to 

find interesting patterns from large databases.  It uses 

different pre-processing techniques likes stop words 

elimination and stemming. This paper has given 

complete information about the text mining 

preprocessing techniques, i.e. stop words elimination 

and stemming algorithms. We hope this paper will 

help the text mining researcher‟s community and they 

get good knowledge about various preprocessing 

techniques.  
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