
Information Sciences 385–386 (2017) 266–283

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Performance evaluation of deep feature learning for RGB-D

image/video classification

Ling Shao

a , b , ∗, Ziyun Cai c , Li Liu

b , Ke Lu

d , e

a College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
b School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
c Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
d University of Chinese Academy of Sciences, Beijing 10 0 049, China
e Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, China

a r t i c l e i n f o

Article history:

Received 24 August 2016

Revised 15 December 2016

Accepted 2 January 2017

Available online 3 January 2017

Keywords:

Deep neural networks

RGB-D data

Feature learning

Performance evaluation

a b s t r a c t

Deep Neural Networks for image/video classification have obtained much success in var-

ious computer vision applications. Existing deep learning algorithms are widely used on

RGB images or video data. Meanwhile, with the development of low-cost RGB-D sensors

(such as Microsoft Kinect and Xtion Pro-Live), high-quality RGB-D data can be easily ac-

quired and used to enhance computer vision algorithms [14]. It would be interesting to

investigate how deep learning can be employed for extracting and fusing features from

RGB-D data. In this paper, after briefly reviewing the basic concepts of RGB-D informa-

tion and four prevalent deep learning models (i.e., Deep Belief Networks (DBNs), Stacked

Denoising Auto-Encoders (SDAE), Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) Neural Networks), we conduct extensive experiments on five popular

RGB-D datasets including three image datasets and two video datasets. We then present a

detailed analysis about the comparison between the learned feature representations from

the four deep learning models. In addition, a few suggestions on how to adjust hyper-

parameters for learning deep neural networks are made in this paper. According to the

extensive experimental results, we believe that this evaluation will provide insights and a

deeper understanding of different deep learning algorithms for RGB-D feature extraction

and fusion.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Learning good feature representations from input data for high-level tasks receives much attention in computer vision,

robotics and medical imaging [19,39] . Image/video classification is a classic and challenging high-level task, which has many

practical applications, such as robotic vision [1] , video surveillance [42] and image retrieval [18] . The objective is to predict

the labels of new coming images/videos. Though RGB image/video classification has been studied for many years, it still

faces a lot of challenges, such as complicated background, illuminance change and occlusion. With the invention of the low-

cost Microsoft Kinect sensor, it opens a new dimension (i.e., depth data) to overcome the above challenges. Compared to
∗ Corresponding author at: College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044,

China and School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK.

E-mail address: ling.shao@ieee.org (L. Shao).

http://dx.doi.org/10.1016/j.ins.2017.01.013

0020-0255/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2017.01.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2017.01.013&domain=pdf
mailto:ling.shao@ieee.org
http://dx.doi.org/10.1016/j.ins.2017.01.013

L. Shao et al. / Information Sciences 385–386 (2017) 266–283 267

RGB images, depth images are robust to the variations in color, illumination, rotation angle and scale. It has been proved

that combining RGB and depth information in image/video classification tasks can significantly improve the classification

accuracy [14] . Therefore, an increasing number of RGB-D datasets have been created as benchmarks [10] . Moreover, Deep

Neural Networks for high-level tasks obtain great success in recent years. Different from hand-crafted feature representations

such as SIFT and HOG, deep learned features are automatically learned from the images or videos. These neural network

models improve the state-of-the-art performance on many important datasets (e.g., the ImageNet dataset), and some of

them even overcome human performance [43] . Combining the advantages of RGB-D images and Deep Neural Networks,

many researchers are making great efforts to design more sophisticated algorithms. However, no single existing approach can

successfully handle all scenarios. Therefore, it is important to comprehensively evaluate the deep feature learning algorithms

for image/video classification on popular RGB-D datasets. We believe that this evaluation will provide insights and a deeper

understanding of different deep learning algorithms for RGB-D feature extraction and fusion.

1.1. Related work to RGB-D information

In the past decades, since RGB images usually provide the limited appearance information of the objects in different

scenes, it is extremely difficult to solve certain challenges such as the partition of the foreground and background which

have the similar colors and textures. Besides that, the object appearance described by RGB images is sensitive to common

variations, such as illuminance change. This drawback significantly impedes the usage of RGB based vision algorithms in real-

world situations. Complementary to the RGB images, depth information for each pixel can help to better perceive the scene.

RGB-D images/videos provide richer information, leading to more accurate and robust performance on vision applications.

The depth images/videos are generated by a depth sensor. Compared to early expensive and inconvenient range sensors

(such as Konica Minolta Vivid 910), the low-cost 3D Microsoft Kinect sensor makes the acquisition of RGB-D data cheaper

and easier. Therefore, the research of computer vision algorithms based on RGB-D data has attracted a lot of attention

in the last few years [48] . Bo et al. [7] presented a hierarchical matching pursuit (HMP) based on sparse coding to learn

new feature representations from RGD-D images in an unsupervised way. Tang et al. [40] designed a new feature called

histogram of oriented normal vectors (HONV) to capture local 3-D geometric characteristics for object recognition on depth

images. In [6] , Blum et al. presented an algorithm that can automatically learn feature responses from the image, and the

new feature descriptor encodes all available color and depth data into a concise representation. Spinello et al. introduced an

RGB-D based people detection approach which combines a local depth-change detector employing HOD and RGB data HOG

to detect the people from the RGB-D data in [38] . In [12] , Endres et al. introduced an approach which describes a volumetric

voxel representation through optimizing the 3D pose graph using the g 2 o framework which can be directly used for path

planning, robot localization and navigation.

1.2. Related work to deep learning methods

According to our evaluation, we select four representative deep learning methods including Deep Belief Networks (DBNs),

Stacked Denoising Auto-Encoders (SDAE), Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) Neu-

ral Networks for our experiments. These methods have been widely applied in numerous contests in pattern recognition

and machine learning. DBN is fine-tuned by backpropagation (BP) without any training pattern deformations which receives

much success with 1.2% error rate on the MNIST handwritten digits [16] . Meanwhile, it achieved good results on phoneme

recognition, with an error rate of 26.7% on the TIMIT core test set. SDAE was first introduced in [41] as an extension of

Stacked auto-encoder (SAE) [28] . BP-trained CNNs achieved a new MNIST record of 0.39%. In 2012, GPU-implemented CNNs

achieved the best results on the ImageNet classification benchmark [26] . LSTM won the ICDAR handwriting competition in

2009 and achieved a record 17.7% phoneme error rate on the TIMIT natural speech dataset in 2013. More relevant work and

history on these four deep learning methods can be found in [34] .

Currently, aiming to obtain more robust features from RGB and depth images/videos, various algorithms based on Deep

Neural Networks have been proposed. R. Socher et al. presented convolutional and recursive neural networks (CNN-RNN)

[37] to obtain higher order features. In CNN-RNN, CNN layers firstly learn low-level translationally invariant features, and

then these features are given as inputs into multiple, fixed-tree RNNs. Bai et al. proposed subset based sparse auto-encoder

and recursive neural networks (Sub-SAE-RNNs) [2] which first train the RGB-Subset-Sparse auto-encoder and the Depth-

Subset-Sparse auto-encoder to extract features from RGB images and depth images separately for each subset. These learned

features are then transmitted to RNNs to reduce the dimensionality and learn robust hierarchical feature representations.

In order to combine hand-crafted features and machine learned features, Jin et al. used the Convolution Neural Networks

(CNNs) to extract the machine learned representation and Locality-constrained Linear Coding (LLC) based spatial pyramid

matching for hand-crafted features [23] . This new feature representation method can obtain both the advantages of hand-

crafted features and machine learned features. From these above successful methods, we can observe that they are all the

extensions of our selected methods (CNNs, DBNs, SDAE or LSTM). Therefore, it is important to explore the performance of

our selected methods on different kinds of RGB-D datasets.

268 L. Shao et al. / Information Sciences 385–386 (2017) 266–283

1.3. Deep learning methods for RGB-D data analysis

Since deep learning methods have shown to be useful for standard RGB vision tasks like object detection, image classifi-

cation and semantic segmentation, more works on RGB-D perception naturally consider neural networks for learning repre-

sentations from depth information. In general, the RGB-D vision problems that can be addressed or enhanced by means of

the deep learning methods are summarized from four aspects: object detection and tracking, object and scene recognition,

human activity analysis and indoor 3-D mapping. In this paper, our experiments focus on object and scene recognition, and

human activity analysis.

1.3.1. Object detection and tracking

The depth information of an object is immune to object appearance changes, environmental illumination and subtle

movements of the background. With the invention of the low-cost Kinect depth camera, researchers immediately realized

that features based on depth information can significantly improve detecting and tracking objects in the real world where

all kinds of variations occur. Depth-RCNN [13] is the first object detector using deep convolutional nets on RGB-D data,

which is an extension of the RCNN framework. The depth map is encoded as three extra channels (with Geocentric Encod-

ing: Disparity, Height, and Angle) appended to the color images. Furthermore, Depth-RCNN was extended to generate 3D

bounding boxes through aligning 3D CAD models to the recognition results. Tracking via deep learning methods in RGB-D

data is also an important topic. In [47] , Xue et al. proposed to train a deep convolutional neural network, which improves

tracking performance, to classify people in RGB-D videos.

1.3.2. Object and scene recognition

The conventional RGB-based deep learned features may suffer from the distortions of an object. RGB information is less

capable of handling these environmental variations. Fortunately, the combination of RGB and depth information can poten-

tially enhance the robustness of the deep learned features. Zaki et al. [49] presented an RGB-D object recognition framework

which employed a CNN pre-trained on RGB data as feature extractors for both color and depth channels. Then they proposed

a rich coarse-to-fine feature representation scheme, called Hypercube Pyramid, which can capture discriminatory informa-

tion at different levels of detail. Zhu et al. [50] introduced a novel discriminative multi-modal fusion framework for RGB-D

scene recognition which simultaneously considered the inter- and intra-modality correlation for all samples and meanwhile

regularizing the learned features to be discriminative and compact. Then the results from the multimodal layer can be back-

propagated to the lower CNN layers.

1.3.3. Human activity analysis

Apart from outputting both RGB and depth information, another contribution of Kinect is a fast human-skeletal track-

ing algorithm. This tracking algorithm can provide the exact location of each joint of the human body over time, which

makes the representation of complex human activities easier. Wu et al. [45] proposed a novel method called Deep Dynamic

Neural Networks (DDNN) for multimodal gesture recognition, which learns high-level spatiotemporal representations using

deep neural networks suited to the input modality: a Gaussian–Bernoulli Deep Belief Network (DBN) to handle skeletal dy-

namics, and a 3D Convolutional Neural Network (3DCNN) to manage and fuse batches of depth and RGB images. Li et al.

[30] proposed a feature learning network which is based on sparse auto-encoder (SAE) and principal component analysis

for recognizing human actions.

1.3.4. Indoor 3-D mapping

The emergence of Kinect boosts the research for indoor 3-D mapping through deep learning methods due to its capability

of providing depth information directly. Zhang et al. [24] proposed an approach to embed 3D context into the topology of

a neural network trained for the performance of holistic scene understanding. After a 3D scene is depicted by a depth

image, the network can align the observed scene with a predefined 3D scene template and then reason about the existence

and location of each object within the scene template. To recover full 3D shapes from view-based depth images, Wu et al.

[46] proposed to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid through

a Convolutional Deep Belief Network.

Aiming to make a comprehensive performance evaluation, we collect five representati ve datasets including two RGB-D

object datasets [9,27] , an RGB-D scene dataset [35] , an RGB-D gesture dataset [31] and an RGB-D activity dataset [44] which

can be divided into four categories: object classification, scene classification, gesture classification and action classification.

This is the first work to comprehensively focus on the performance of deep learning methods on popular RGB-D datasets.

In our experiments, in order to make the comparison of CNNs, DBNs, SDAE and LSTM under a fair environment, the pre-

trained CNNs model through abundant RGB data and the RGB-D coding methods are not included. It is because that not

all of these four deep learning methods can use other RGB data for pre-training and the particular RGB-D coding methods

may not be suitable for all of the four kinds of deep learned features. Therefore, the design of our experiments is in a

traditional way for providing insights and a deeper understanding of different deep learning algorithms for RGB-D feature

extraction and fusion, which is introduced in detail in Section 4 . In addition, besides results of the classification accuracies,

our evaluation also provides a detailed analysis including confusion matrices and error analysis. Some tricks about adjusting

hyper-parameters that we observed during our experiments are also given in this evaluation.

L. Shao et al. / Information Sciences 385–386 (2017) 266–283 269

Fig. 1. The schematic representation of DBNs. It is just an example of DBNs structure. In practice, the number of units on each hidden layer is flexible.

The rest of this paper is organized as follows. In Section 2 , we briefly review the deep learning models which we use

for evaluation in our experiments. In Section 3 , we present the data pre-processing techniques on deep learned features.

Section 4 describes experimental analysis, results and some tricks on our selected RGB-D datasets. Finally, we draw the

conclusion in Section 5 .

2. Deep learning models

In recent years, many successful deep learning methods [15,41] as efficient feature learning tools have been applied to

numerous areas. The aim of deep nets is to learn high-level features at each layer from the features learned at the pre-

vious layers. Some methods (such as DBNs [15] and SDAE [41]) have something in common: they have two steps in the

training procedure - one is unsupervised pre-training and the other is fine-tuning. In the first step, through an unsuper-

vised algorithm, the weights of the network are able to be better than random initialization. This phase can avoid local

minima when doing supervised gradient descent. Therefore, we can consider that unsupervised pre-training is a regularizer.

In the fine-tuning step, the criterion (the prediction error which uses the labels in a supervised task) is minimized. These

two approaches for learning deep networks are shown to be essential to train deep networks. Other methods like CNNs

[26] contain more connections than weights. The model itself realizes a form of regularization. The aim of this kind of neu-

ral networks is to learn filters, in a data-driven fashion, as a tool to extract features describing inputs. This is not only used

in 2D convolutions but also can be extended into 3D-CNNs [22] .

In this section, we will briefly introduce four deep learning models which are used in our experiments, DBNs, SDAE,

CNNs and LSTM.

2.1. Deep Belief Networks

Deep Belief Networks (DBNs) stack many layers of unsupervised Restricted Boltzmann Machines (RBMs) in a greedy

manner which was first introduced by Hinton et al. [15] . An RBM consists of visible layers and hidden layers. Each neuron

on the layers is fully connected to all the neurons on the next layer. But there are no connections in the same layer. The

learned weights are used to initialize a multi-layer neural network and then adjusted to the current task through supervised

information for classification. A schematic representation of DBNs can be found in Fig. 1 .

In practice, the joint distribution p(v , h ; θ) over the visible units v and hidden units h can be expressed as:

p(v , h ; θ) =

exp (−E(v , h ; θ))

Z
, (1)

where the model parameters θ = w , a , b and Z =

∑

v
∑

h exp (−E(v , h ; θ)) is the normalization factor. The energy E(v , h ; θ)

of the joint configuration (v,h) is defined as:

E(v , h ; θ) = −
V ∑

i =1

H ∑

j=1

w i j v i h j −
V ∑

i =1

b i v i −
H ∑

j=1

a j h j , (2)

where V and H are the numbers of the visible and hidden units. w ij is the symmetric interaction between visible unit v i and

hidden unit h j . b i and a j are the bias terms.

The marginal probability of the model to a visible vector v is expressed as:

p(v ; θ) =

∑

h exp (−E(v , h ; θ))
. (3)
Z

270 L. Shao et al. / Information Sciences 385–386 (2017) 266–283

Fig. 2. A diagram of Stacked Denoising Auto-Encoders which includes an unsupervised pre-training step and a supervised fine-tuning step. Through per-

forming gradient descent, the parameters are fine-tuned to minimize the error with the supervised target.

Therefore, according to the gradient of the joint likelihood function of data and labels, we can get the update rule of the

v –h weights as

�w i j =

〈
v i h j

〉
data

−
〈
v i h j

〉
model

. (4)

The greatest advantage of DBNs is the capability of “learning features” in a “layer-by-layer” manner. The higher-level fea-

tures are learned from the previous layers. These features are believed to be more complicated and can better reflect the

information which is contained in the structures of input data. Another advantage of DBNs is that it learns the generative

model without imposing subjective selection of filters. Factored RBM is able to learn the filters while learning the feature ac-

tivities in an unsupervised learning manner. It solves the concern of the legality of the selected filters. Meanwhile, it shows

the biological implementation of visual cortex, namely, the receptive fields for cells in the primary visual cortex. However, a

well-performing DBN requires a lot of empirically decided hyper-parameter settings, e.g., learning rate, momentum, weight

cost number of epochs and number of layers. Inadequate selection of hyper-parameters will result in over-fitting and blow

up DBNs. The property of DBNs that is sensitive to the empirically selected parameters has also been proved in our exper-

iments. An improper set of hyper-parameters results in a huge difference from the best performance. To some extent, this

disadvantage compromises the potential of DBNs.

2.2. Stacked Denoising Auto-Encoders

The Stacked Denoising Auto-Encoders (SDAE) [41] is an extension of the Stacked auto-encoder [28] . This model works

in much the same way with DBNs. It also uses the greedy principle but stacks denoising auto-encoders to initialize a deep

network. An auto-encoder consists of an encoder h (·) and a decoder g (·). Therefore, the reconstruction of the input x can be

expressed as Re (x) = g(h (x)) . Through minimizing the average reconstruction error loss (x, Re (x)), the reconstruction accuracy

is able to be improved. This unsupervised pre-training is done on one layer at one time.

Same as DBNs, after all layers have been pre-trained, the parameters which can describe levels of representation about

x are used as initialization to the deep neural network optimized with a supervised training criterion. In the fine-tuning

stage, an output logistic regression layer is added to the top of the unsupervised pre-trained machine. Then, the classifier

is fine-tuned through the design data set D x = { d x 1 , · · · , d x n } and the corresponding set of label codes L y = { l y 1 , · · · , l y n }
to minimize the entropy loss function between the correct labels and the classifier’s predictions. A schematic diagram of

Stacked Denoising Auto-Encoders is shown in Fig. 2 .

For binary x , the cross-entropy loss of the input vector x ∈ { 0 , 1 } d and the reconstructed d-dimensional vector ˆ x is ex-

pressed as:

CEL (x ‖ ̂ x) =

∑

i

CEL (x i ‖ ̂

 x i) = −
∑

i

(x i log ̂ x i + (1 − x i) log(1 − ˆ x i)) , (5)

where ˆ x = sigmoid(c + w

T h (c(x))) , c is the bias, and w is the transpose of the feed-forward weights. Additionally, another

option is to use a Gaussian model.

SDAE makes use of different kinds of encoders to transform the input data, which can preserve a maximization of the

mutual information between the original and the encoded information. Meanwhile, it utilizes a noise criterion for mini-

mizing the transformation error. We mentioned that DBNs and SDAE have something in common: they have two steps in

L. Shao et al. / Information Sciences 385–386 (2017) 266–283 271

Fig. 3. The classical schematic representation of CNNs which includes an input layer, convolutional layers, max-pooling layers and an output layer. The

fully connected part is also presented in the figure.

the training procedure—one is unsupervised pre-training and the other is fine-tuning. The advantage of using auto-encoders

instead of RBMs as the unsupervised building block of a deep architecture is that as long as the training criterion is contin-

uous in the parameters, almost any parametrization of the layers is possible [3] . However, in SDAE, training with gradient

descent is slow and hard to parallelize. The optimization of SDAE is inherently non-convex and dependent on its initializa-

tion. Besides, since SDAE does not correspond to a generative model, unlike DBNs which is with generative models, samples

cannot be drawn to check qualitatively what has been learned.

2.3. Convolutional Neural Networks

Convolutional Neural Networks [29] obtain much success in many visual processing tasks in recent years. This deep

learning model is motivated by Hubel and Wiesel’s work [20] on the cat’s visual cortex. This visual cortex includes some

cells which are sensitive to small sub-regions of the visual field. It can be called a receptive field. In practice, these cells can

be considered as filters on the input space in the CNNs model. It has been proved that it is well-suited to extract the local

correlation in natural images/videos.

Convolutional Neural Network consists of one image processing layer, one or more convolutional layers and fully con-

nected layers and one classification layer. A classical schematic representation of CNNs is shown in Fig. 3 . The image pro-

cessing layer is a designed pre-processing layer which can keep being fixed in the training step. We introduce the pre-

processing layer in Section 3 in detail. The convolutional layer applies a set of kernels of size n × n × c that are able to

process small local parts of the input. For most of the 2D-CNNs experiments, the input color images are often processed

into gray images to enhance the efficiency and accuracy, therefore, the kernel size is often expressed as n × n . Pooling is

another important concept. It is a form of non-linear down-sampling where each map is sub-sampled with mean or max

pooling over m × m contiguous regions (usually, m is from 2 to 5). It can improve translation invariance and tolerance to

small differences of positions about object parts, at the same time, lead to faster convergence. The classification layer is fully

connected which combines the outputs from the topmost convolutional layer into a feature vector, with one output unit per

class label. Additionally, weight sharing is a significant principle since it is able to reduce the number of trainable param-

eters. More details concerning CNNs can be found in [8] . For a multi-label classification problem with F training examples

and M classes, the squared-error is expressed as:

E F =

1

2

F ∑

f=1

M ∑

m

(t f m

− y f m

) 2 , (6)

where t
f

m

is the value of the m th dimension about f th pattern’s corresponding label, and y
f
m

is the m th output layer unit

related to f th input pattern. In our experiments, for better results, we use 2D-CNNs for image datasets and 3D-CNNs for

video datasets. Due to the space limitation, we do not give a detailed review of 3D-CNNs. More details can be found in [22] .

One major advantage of CNNs is the use of shared weights in convolutional layers. The same filter is used for each

pixel in the layer, which leads to the reduction of memory footprint and the improvement of result performance. For image

classification applications, CNNs use relatively little pre-processing, which means that the network in CNNs is responsible

to learn the filters. Without dependence on prior knowledge and human effort for designing features is another major

advantage of CNNs. Besides, compared to traditional neural networks, CNN is more robust toward variation of input features.

The neurons in the hidden layers are connected to the neurons that are in the same spatial area instead of being connected

to all of the nodes in the previous layer. Furthermore, the resolution of the image data is reduced when calculating to higher

layers in the network. However, besides a complex implementation, CNNs have another significant disadvantage that they

require very large training data and consume an often impractical amount of time to learn the parameters of the network,

which always take several days or weeks. Though the framework for accelerating training and classification of CNNs on

272 L. Shao et al. / Information Sciences 385–386 (2017) 266–283

Fig. 4. The standard LSTM architecture. The memory block assemblies contain separate layers of memory cells, input gates, forget gates and output gates,

in addition to the input layers and output layers. Blue solid arrows show full all-to-all connectivity between units in a layer. Blue dashed arrows mean

connectivity only between the units in the two layers that have the same index. The light gray bars denote gating relationships. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

Graphic Processing Units (GPUs) has been implemented and performs nearly hundreds of times faster than on the CPU, it is

still not enough for real-world applications.

2.4. Long short-term memory neural networks

Long short-term memory (LSTM) is an extension of recurrent neural network (RNN) architecture which was first pro-

posed in [17] for addressing the vanishing and exploding gradient problems of conventional RNNs. Different from traditional

RNNs, when there exist long time lags of unknown size among important events, an LSTM network can classify, predict and

process time series from experience. LSTM provides remedies for the RNN’s weakness of exponential error decay through

adding constant error carousel (CEC) which allows for constant error signal propagation along with the time. Besides, taking

advantages of multiplicative gates can control the access to the CEC.

An LSTM architecture consists of an input layer, an output layer and a layer of memory block cell assemblies. A classical

schematic representation of standard LSTM architecture is shown in Fig. 4 . Fig. 4 shows that the memory block assemblies

are composed of multiple separate layers: the input gate layer (ι), the forget gate layer (φ), the memory cell layer (c), and the

output gate layer (ω). The input layer projects all of the connections to each of these layers. The memory cell layer projects

all of the connections to the output layer (θ). Moreover, each memory cell c j projects a single ungated peephole connection

to each of its associated gates. The memory cell and the gates receive a connection from every neuron in the input layer.

Through gated control, the network can effectively maintain and make use of past observations. An LSTM network computes

a mapping from an input sequence x = (x 1 , · · · , x T) to an output sequence y = (y 1 , · · · , y T) through computing the network

unit activations through the following equations iteratively from t = 1 to T [32] :

i t = σ (W ix x t + W im

m t−1 + W ic c t−1 + b i) , (7)

f t = σ (W f x x t + W m f m t−1 + W c f c t−1 + b f) , (8)

c t = f t � c t−1 + i t � g(W cx x t + W cm

m t−1 + b c) , (9)

o t = σ (W ox x t + W om

m t−1 + W oc c t + b o) , (10)

m t = o t � h (c t) , (11)

y t = W ym

m t + b y , (12)

where the W terms denote weight matrices, the b terms denote bias vectors, σ is the logistic sigmoid function, and i, f, c

and o represent the input gate, forget gate, cell activation vectors and output gate respectively, all of which are the same

size as the cell output activation vector m . � is the element-wise product of the vectors. g and h are the cell input and cell

output activation functions, generally tanh .

L. Shao et al. / Information Sciences 385–386 (2017) 266–283 273

LSTM can solve the vanishing gradient point problem in RNN. Meanwhile, LSTM has the capability of bridging long time

lags between inputs, which can remember inputs up to 10 0 0 time steps in the past. This advantage makes LSTM learn

long sequences with long time lags. Besides, it appears that there is no need for parameter fine tuning in LSTM [17] . LSTM

can work well over a broad range of parameters such as learning rate, input gate bias and output gate bias. However, in

LSTM, the explicit memory adds more weights to each node, and all of these weighs have to be trained. This increases the

dimensionality of the task and potentially makes it harder to find an optimal solution.

Note that different from DBNs, SDAE and CNNs, LSTM is a sequence learning method which is hardly applied to image

classification and object detection. Therefore, in our experiments, we only show the performance about LSTM on a gesture

recognition dataset (SKIG dataset) and an action recognition dataset (MSRDailyActivity3D dataset).

3. Data preprocessing on deep learned features

Data preprocessing is an important part of the procedure of learning deep features. In practice, through a reasonable

choice of preprocessing steps, it will result in a better performance according to the related task. Common preprocessing

methods include normalization and PCA/ZCA whitening. Generally, one without much working experience about the deep

learning algorithms will find it hard to adjust the parameters for raw data. When the data is processed in a small regular

range, tuning parameters will become easier [11] . However, in the whole process of our experiments, we find that not every

dataset is suitable to be either normalized or whitened. Therefore, we will have a test on the dataset and then choose the

preprocessing steps according to the situations. Additionally, before we test the algorithms on the datasets, we will first

observe properties of the data itself to gain more information which will help us to save more time.

3.1. Normalization

General normalization approaches include simple rescaling, per-example mean subtraction and feature standardization.

The choice of these methods mainly depends on the data. In our experiments, since feature standardization is able to set

every dimension of raw data to have zero-mean and unit-variance, at the same time, deep features will work with the

linear SVM classifier, we choose feature standardization to normalize our data. Therefore, our data is normalized through

first subtracting the mean of each dimension from each dimension and then dividing it by its standard deviation.

3.2. PCA/ZCA whitening

Following the step of feature standardization, we apply PCA/ZCA whitening to the entire dataset [21] . This is commonly

used in deep learning tasks (e.g., [25]). Whitening cannot only make the deep learning algorithm work better but also speed

up the convergence of the algorithm. However, in our experiments, for SDAE and DBNs, the results after whitening did not

show an obvious improvement. To make the experiments under a fair environment, as long as whitening does not lead to

a worse result, we choose to do ZCA whitening to the normalized data. Since we transfer RGB images to gray-scale images

to make the data have the stationary property in our experiments and the data has been scaled into a reasonable range,

the value of epsilon in ZCA whitening is set large (0.1) for low-pass filtering. More details about PCA/ZCA whitening can be

found in [21] .

4. Experiments on deep learning models

In this section, we evaluate four deep feature learning algorithms (DBNs, CNNs, SDAE and LSTM) on three popular im-

age recognition datasets and two video recognition datasets including 2D&3D object dataset [9] , RGB-D object dataset [27] ,

NYU Depth v1 indoor scene segmentation dataset [35] , Sheffield Kinect Gesture dataset (SKIG) [31] and MSRDailyActivity3D

dataset [44] . Example images from these datasets are given in Fig. 5 . Note that in our experiments, we only show the per-

formance about LSTM on SKIG dataset and MSRDailyActivity3D dataset. In all of these five datasets, we follow the standard

setting procedures according to the authors of their respective datasets. Over all of the datasets, we process raw RGB im-

ages into gray-scale images and choose the first channel of the depth images as training and test data. According to DBNs,

CNNs, SDAE and LSTM, after weights are learned in the deep neural networks, we are able to extract the image or video

features from the preprocessed images/videos. Then a linear SVM classifier is trained and tested on the related test sets. To

make the results comprehensive, we compare the final results computed on deep features from RGB data only, deep features

from depth data only, RGB-D features concatenation and deep features from RGB-D fusion. In RGB-D features concatenation

experiments, we concatenate the feature vectors which are extracted from RGB data and depth data respectively into new

vectors. Different from concatenation experiments, according to RGB-D fusion experiments, we firstly concatenate RGB im-

ages/frames and relative depth images/frames together, and then extract features from deep learning models. Illustration

about these two experimental procedures is shown in Fig. 6 . Detailed experimental settings, some important parameters,

tricks and experiences about adjusting hyper-parameters are shown in the following subsections. All experiments are per-

formed using Matlab 2013b and C++ on a server configured with a 16-core processor and 500G of RAM running the Linux

OS.

274 L. Shao et al. / Information Sciences 385–386 (2017) 266–283

Fig. 5. Some example images in our selected datasets. From left to right in order, (a) 2D&3D Object dataset, (b) object RGB-D dataset, (c) NYU Depth v1

dataset, (d) Sheffield Kinect Gesture dataset and (e) MSRDailyActivity3D dataset.

Fig. 6. Illustration about two experimental procedures used in our evaluation work.

Table 1

The final comparison results between neural-network classifier and SVM on the 2D&3D object dataset. The second, fourth and seventh

columns are the results of RGB test images, depth test images and RGB-D fusion test images on the neural-network classifier separately.

The third, fifth, sixth and eighth columns are the results of RGB test images, depth test images, concatenated RGB-D image features

and RGB-D fusion test images on SVM separately.

Method RGB RGB (SVM) Depth Depth (SVM) RGB-D Concatenation (SVM) RGB-D fusion RGB-D fusion (SVM)

DBNs 72 .1 74 .5 75 .7 78 .6 82 .3 78 .3 79 .1

CNNs 77 .3 79 .1 81 .0 83 .5 83 .6 82 .7 84 .6

SDAE 73 .0 74 .5 74 .2 75 .6 79 .3 77 .6 78 .4

4.1. 2D&3D object dataset

We evaluate deep feature learning for object category recognition on the 2D&3D object dataset [9] . This dataset includes

18 different categories (i.e., binders, books and scissors) with each of them containing 3–14 objects resulting in 162 objects.

The views of each object are recorded every 10 ° along the vertical axis. Therefore, there are totally 162 × 36 = 5832 RGB

images and 162 × 36 = 5832 depth images respectively. For the consistency with the setup in [9] , since the low number of

examples of classes perforator and phone, our experiments do not include them. Meanwhile, knives, forks and spoons are

combined into one category ‘silverware’. We choose 6 objects per category for training, and the left are used for testing. If

the number of objects in a category is less than 6 (e.g., scissors), 2 objects are added into the test. Since images are cropped

in different sizes, we resize each image into 56 × 56 pixels. We give the final comparison results between neural-network

classifier and SVM in Table 1 .

The hyper-parameters of the DBNs, SDAE and CNNs models are described in Tables 2–4 . Fig. 7 shows confusion matrixes

about our three deep learning models across 14 classes on the 2D&3D dataset.

L. Shao et al. / Information Sciences 385–386 (2017) 266–283 275

Table 2

Hyper-parameters about DBNs experiments on the 2D&3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 3 3 2

Units for each layer 100/100/100 100/100/100 100/100

Unsupervised learning rate 0 .1 0 .1 0 .1

Supervised learning rate 0 .009 0 .009 0 .008

Number of unsupervised epochs 13 13 13

Number of supervised epochs 17 30 24

Table 3

Hyper-parameters about SDAE experiments on the 2D&3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 2 2 2

Units for each layer 100/100 100/100 10 0/20 0

Unsupervised learning rate 0 .1 0 .1 0 .1

Supervised learning rate 0 .1 0 .1 0 .1

Number of unsupervised epochs 10 10 15

Number of supervised epochs 10 10 30

Table 4

Hyper-parameters about CNNs experiments on the 2D&3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of convolution layers 2 2 2

Number of sub-sampling layers 2 2 2

Kernel size 5 5 5

Learning rate 0 .1 0 .06 0 .1

Number of epochs 30 60 30

Fig. 7. Confusion matrixes about three deep learning models on the 2D&3D dataset. The labels on the vertical axis express the true classes and the labels

on the horizontal axis denote the predicted classes.

From the comparison results of our experiments about three selected deep learning models on 2D&3D dataset in Table 1 ,

it can be seen that the accuracy of RGB, depth and RGB-D fusion results through SVM outperforms that through the neural-

network classifier. In each deep learning method, accuracies of RGB-D concatenation through SVM and RGB-D fusion features

through SVM are higher than deep features from RGB data only and deep features from depth data only. In these three

methods (DBNs, CNNs and SDAE), CNNs obtain the highest performance (84.6%). From the comparison of three confusion

matrixes in Fig. 7 , we can see that our three deep learning models all have the lowest error rates in bottles, cans, coffee

pots and cups. Binders, books, pens and scissors have higher error rates. The main reason is that binders and books are

similar in shape and color. Pens, scissors and silverware are similar in shape. It is worth to note that the error rates of

binders and books in SDAE and DBNs are much lower than that of binders and books in CNNs, and the error rates of pens

and scissors in SDAE and DBNs are much higher than that of pens and scissors in CNNs. The error rates of other categories

are approximately similar. This interesting phenomenon may be due to the principle of the three different deep learning

methods. In addition, it proves that in general SDAE and DBNs are more in common than CNNs.

4.2. Object RGB-D dataset

We test these deep learning algorithms on the second dataset called RGB-D object dataset. This dataset contains 41,877

images which are organized into 51 categories about 300 everyday objects such as apples, mushrooms and notebooks. All

276 L. Shao et al. / Information Sciences 385–386 (2017) 266–283

Table 5

The final comparison results between neural-network classifier and SVM on object RGB-D dataset. The second, fourth and seventh

columns are the results of RGB test images, depth test images and RGB-D fusion test images on the neural-network classifier separately.

The third, fifth, sixth and eighth columns are the results of RGB test images, depth test images, concatenated RGB-D image features

and RGB-D fusion test images on SVM separately.

Method RGB RGB (SVM) Depth Depth (SVM) RGB-D concatenation (SVM) RGB-D fusion RGB-D fusion (SVM)

DBNs 80 .9 81 .6 75 .1 78 .6 84 .3 82 .4 83 .7

CNNs 82 .4 82 .5 75 .5 78 .9 83 .4 83 .2 84 .8

SDAE 81 .4 82 .0 71 .9 73 .7 82 .3 82 .6 84 .2

Table 6

Hyper-parameters about DBNs experiments on object RGB-D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 3 3 3

Units for each layer 110/100/20 110/100/20 110/100/20

Unsupervised learning rate 0 .1 0 .1 0 .1

Supervised learning rate 0 .009 0 .009 0 .009

Number of unsupervised epochs 13 13 13

Number of supervised epochs 8 10 22

Table 7

Hyper-parameters about SDAE experiments on object RGB-D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 2 2 2

Units for each layer 100/100 130/100 110/200

Unsupervised learning rate 0 .1 0 .1 0 .1

Supervised learning rate 0 .1 0 .08 0 .05

Number of unsupervised epochs 10 15 15

Number of supervised epochs 15 30 30

Table 8

Hyper-parameters about CNNs experiments on object RGB-D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of convolution layers 2 2 2

Number of sub-sampling layers 2 2 2

Kernel size 5 5 5

Learning rate 0 .1 0 .06 0 .03

Number of epochs 30 60 80

of the objects are segmented from the background through combining color and depth cues. Following the setup in [27] ,

we choose to run category recognition experiments by randomly selecting one object from the categories for testing. Each

image in object RGB-D dataset is resized into 56 × 56 pixels for consistency with the 2D&3D dataset. Table 5 summarizes

the comparison between neural-network classifier and SVM.

The hyper-parameters of three deep learning models DBNs, SDAE and CNNs are shown in Tables 6–8 .

As we can see from Table 5 , CNNs outperform DBNs and SDAE by 0.5% and 0.3%. Due to the limitation of space, we only

give the confusion matrix of the best performance (CNNs RGB-D fusion) in our experiments. Fig. 8 shows the confusion

matrix about CNNs across 51 classes over object RGB-D dataset.

4.3. NYU Depth v1

Besides image object classification, we also evaluate these three deep feature learning models on indoor scene classi-

fication. NYU Depth v1 dataset consists of 7 different kinds of scene classes totally containing 2347 labeled frames. Since

the standard classification protocol removes scene ‘cafe’ from the dataset, we use the remaining 6 different scenes. It is

worth noting that since there are so many objects in one scene and the correlation between images in one scene is low, it

makes NYU Depth v1 a very challenging dataset. The baseline when only using RGB images is 55% [35] . Table 9 shows the

performance comparison between neural-network classifier and SVM on this dataset.

The hyper-parameters of DBNs, SDAE and CNNs can be found in Tables 10–12 . Fig. 9 shows confusion matrixes about our

three deep learning models across 6 classes over NYU Depth v1 dataset.

As we have mentioned above, NYU depth v1 dataset is very challenging. Therefore, in our three deep learning methods,

CNNs achieve the best performance which is only 71.8%. Different from 2D&3D object dataset and object RGB-D dataset,

RGB-D fusion through SVM always obtains the higher recognition accuracy (70.5% DBNs, 71.8% CNNs and 71.1% SDAE)

L. Shao et al. / Information Sciences 385–386 (2017) 266–283 277

Fig. 8. Confusion matrix about CNNs on object RGB-D dataset. The labels on the vertical axis express the true classes and the labels on the horizontal axis

denote the predicted classes.

Table 9

The performance comparison results between neural-network classifier and SVM on NYU Depth v1 dataset. The second, fourth and

seventh columns are the results of RGB test images, depth test images and RGB-D fusion test images on the neural-network classifier

separately. The third, fifth, sixth and eighth columns are the results of RGB test images, depth test images, concatenated RGB-D image

features and RGB-D fusion test images on SVM separately.

Method RGB RGB (SVM) Depth Depth (SVM) RGB-D Concatenation (SVM) RGB-D fusion RGB-D fusion (SVM)

DBNs 62 .4 66 .7 57 .3 60 .8 68 .3 65 .5 70 .5

CNNs 68 .4 69 .5 56 .5 56 .9 70 .4 70 .1 71 .8

SDAE 65 .2 68 .4 51 .5 55 .0 70 .3 69 .6 71 .1

Table 10

Hyper-parameters about DBNs experiments on NYU Depth v1 dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 3 3 3

Units for each layer 120/100/80 120/100/80 110/100/100

Unsupervised learning rate 0 .06 0 .04 0 .1

Supervised learning rate 0 .006 0 .008 0 .008

Number of unsupervised epochs 3 3 3

Number of supervised epochs 35 45 22

Table 11

Hyper-parameters about SDAE experiments on NYU Depth v1 dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 3 3 3

Units for each layer 120/100/80 120/100/60 130/200/120

Unsupervised learning rate 0 .01 0 .01 0 .01

Supervised learning rate 0 .1 0 .1 0 .1

Number of unsupervised epochs 15 15 15

Number of supervised epochs 30 35 50

278 L. Shao et al. / Information Sciences 385–386 (2017) 266–283

Table 12

Hyper-parameters about CNNs experiments on NYU Depth v1 dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of convolution layers 2 2 2

Number of sub-sampling layers 2 2 2

Kernel size 8 8 8

Learning rate 0 .008 0 .008 0 .004

Number of epochs 50 45 80

Fig. 9. Confusion matrixes about three deep learning models on NYU Depth v1 dataset. The labels on the vertical axis express the true classes and the

labels on the horizontal axis denote the predicted classes.

Table 13

The performance comparison results between neural-network classifier and SVM on SKIG dataset. The second, fourth and seventh

columns are the results of RGB test videos, depth test videos and RGB-D fusion test videos on the neural-network classifier separately.

The third, fifth, sixth and eighth columns are the results of RGB test videos, depth test videos, concatenated RGB-D vedio features and

RGB-D fusion test videos on SVM separately.

Method RGB RGB (SVM) Depth Depth (SVM) RGB-D Concatenation (SVM) RGB-D fusion RGB-D fusion (SVM)

DBNs 78 .3 83 .1 68 .9 73 .8 84 .7 81 .5 85 .9

3D-CNNs 87 .2 91 .3 77 .5 82 .2 92 .6 88 .1 93 .3

SDAE 78 .9 79 .1 74 .4 78 .9 81 .1 78 .3 83 .3

LSTM 82 .6 83 .1 75 .7 77 .5 87 .2 86 .7 91 .3

Table 14

Hyper-parameters about DBNs experiments on SKIG dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 3 3 3

Units for each layer 120/100/100 120/100/100 110/100/100

Unsupervised learning rate 0 .1 0 .1 0 .1

Supervised learning rate 0 .01 0 .009 0 .006

Number of unsupervised epochs 3 3 3

Number of supervised epochs 30 40 55

compared to RGB-D concatenation (SVM) and RGB-D fusion. It may be because the scene images from NYU depth v1 dataset

contain many irregular objects which seem much more complicated than the object images from the previous two datasets.

From the confusion matrixes about these three deep learning methods, to a great extent, it can be seen that the distribution

of error rates is similar.

4.4. Sheffield Kinect Gesture (SKIG) dataset

We also evaluate these four deep learning algorithms on video classification datasets. SKIG is a hand gesture dataset

which contains 10 categories of hand gestures with 2160 hand gesture video sequences from six people, including 1080 RGB

sequences and 1080 depth sequences respectively. In our experiments, since it has been proved that 5–7 frames (0.3–0.5 s of

video) are enough to have the similar performance with the one obtainable with the entire video sequence [33] . Therefore,

each video sequence is resized into 64 × 48 × 13. Following the experimental setting in [31] , we choose four objects as the

training set and test on the remaining data. Table 13 shows the performance comparison between neural-network classifier

and SVM on SKIG dataset. Additionally, since 3D-CNNs gain much success in video data classification, we use 3D-CNNs

instead of 2D-CNNs in our experiments. We also compare LSTM Neural Networks experimentally in this subsection.

The hyper-parameters of DBNs, SDAE, 3D-CNNs and LSTM can be found in Tables 14–17 .

L. Shao et al. / Information Sciences 385–386 (2017) 266–283 279

Table 15

Hyper-parameters about SDAE experiments on SKIG dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 2 2 2

Units for each layer 100/80 100/85 100/100

Unsupervised learning rate 0 .01 0 .01 0 .01

Supervised learning rate 0 .01 0 .015 0 .01

Number of unsupervised epochs 12 15 30

Number of supervised epochs 1200 500 500

Table 16

Hyper-parameters about 3D-CNNs experiments on SKIG dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of convolution layers 2 2 2

Number of sub-sampling layers 2 2 2

First Kernel size 7 × 7 × 7 7 × 7 × 7 7 × 7 × 7

Second Kernel size 7 × 7 × 5 7 × 7 × 5 7 × 7 × 5

Initial Learning rate 0 .0 0 05 0 .0 0 05 0 .0 0 04

Number of epochs 40 45 60

Table 17

Hyper-parameters about LSTM experiments on SKIG dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Memory blocks 50 50 60

Output neurons 10 10 10

Learning rate 0 .0 0 01 0 .0 0 01 0 .0 0 01

Number of epochs 20 0 0 20 0 0 2500

Fig. 10. Confusion matrixes about four deep learning models on SKIG dataset. The labels on the vertical axis express the true classes and the labels on the

horizontal axis denote the predicted classes. From left to right in order, SDAE, 3D-CNN, DBN and LSTM.

To get better results in the 3D-CNNs model, we decay the learning rate a half in each epoch.

Fig. 10 shows confusion matrixes about our four deep learning models across 10 classes on the SKIG dataset.

From the comparison of these four deep learning models in Table 13 , we can see that 3D-CNNs achieve the best perfor-

mance among four—93.3%. It may be because that 3D-CNNs consider the more temporal correlation between video frames

[22] . Sequence learning method LSTM with raw pixel features achieves 91.3% on the SKIG dataset, which is better than the

performances of DBN and SDAE. It is reasonable because LSTM can learn from experience to classify, process and predict

time series. Overall, we obtain high accuracies in this dataset. The main reason is that the ten categories in SKIG dataset can

be classified easily. Each category is much different from other categories, and every test video in one category is similar to

other test videos in the same category. Therefore, in terms of SKIG dataset, inter-class distance is big and intra-class distance

is small. The analysis above suggests that deep learning will produce a good performance with less training samples if the

experimental dataset is not challenging.

4.5. MSRDailyActivity3D dataset

The last dataset which we test on is MSRDailyActivity3D dataset [44] . It is a daily activity dataset which contains 16

activity types (e.g., drink, eat, play game). There are 10 subjects with each of them performs each activity twice, once in

standing position, and once in sitting position. We do the same preprocessing procedure like SKIG and resize each sequence

to 64 × 48 × 13. Then subject 1 to subject 5 of “sitting on sofa” and subject 1 to subject 5 of “standing” in this dataset are

used as training set and the rest are used for evaluation. Table 18 shows the accuracies of four deep learning methods.

The hyper-parameters of DBNs, SDAE, 3D-CNNs and LSTM are shown in Tables 19–22 .

280 L. Shao et al. / Information Sciences 385–386 (2017) 266–283

Table 18

The performance comparison results between neural-network classifier and SVM on MSRDailyActivity3D dataset. The second, fourth and

seventh columns are the results of RGB test videos, depth test videos and RGB-D fusion test videos on the neural-network classifier

separately. The third, fifth, sixth and eighth columns are the results of RGB test videos, depth test videos, concatenated RGB-D video

features and RGB-D fusion test videos on SVM separately.

Method RGB RGB (SVM) Depth Depth (SVM) RGB-D Concatenation (SVM) RGB-D fusion RGB-D fusion (SVM)

DBNs 51 .9 62 .5 50 .6 53 .1 66 .3 65 .0 68 .1

3D-CNNs 50 .5 65 .6 47 .3 58 .2 61 .3 61 .3 68 .9

SDAE 57 .5 59 .4 46 .3 48 .1 64 .4 62 .5 66 .3

LSTM 49 .4 64 .4 46 .3 57 .5 63 .1 60 .0 68 .1

Table 19

Hyper-parameters about DBNs experiments on MSRDailyActivity3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 3 3 3

Units for each layer 120/100/100 120/100/100 110/100/100

Unsupervised learning rate 0 .1 0 .1 0 .1

Supervised learning rate 0 .004 0 .008 0 .005

Number of unsupervised epochs 4 4 4

Number of supervised epochs 55 46 60

Table 20

Hyper-parameters about SDAE experiments on MSRDailyActivity3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of hidden layers 2 2 2

Units for each layer 110/80 110/85 100/100

Unsupervised learning rate 0 .01 0 .01 0 .01

Supervised learning rate 0 .01 0 .015 0 .01

Number of unsupervised epochs 15 20 33

Number of supervised epochs 10 0 0 800 800

Table 21

Hyper-parameters about 3D-CNNs experiments on MSRDailyActivity3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Number of convolution layers 2 2 2

Number of sub-sampling layers 2 2 2

First Kernel size 7 × 7 × 7 7 × 7 × 7 7 × 7 × 7

Second Kernel size 7 × 7 × 5 7 × 7 × 5 7 × 7 × 5

Initial Learning rate 0 .0 0 03 0 .0 0 05 0 .0 0 04

Number of epochs 50 45 60

Table 22

Hyper-parameters about LSTM experiments on MSRDailyActivity3D dataset.

Selected hyper-parameters RGB Depth RGB-D fusion

Memory blocks 60 60 70

Output neurons 16 16 16

Learning rate 0 .0 0 01 0 .0 0 01 0 .0 0 01

Number of epochs 20 0 0 20 0 0 2500

To get better results in the 3D-CNNs model, we use the same trick as in the experiments of SKIG Dataset by decaying

the learning rate a half in every epoch.

In our deep learning experiments on MSRDailyActivity3D dataset, 3D-CNNs achieve a higher accuracy (68.9%) than DBNs

(68.1%), SDAE (66.3%) and LSTM (68.1%). However, compared to the performances of SKIG dataset, we only obtain lower

accuracies. There are two main reasons. First, it is a very challenging video dataset. According to this dataset, inter-class

distance is small and intra-class distance is big. Second, there are no enough training samples for deep learning models.

Therefore, it can be seen that it will show a bad performance with less training samples if the experimental dataset is very

challenging. Fig. 11 shows confusion matrixes about our four deep learning models across 16 classes over MSRDailyActiv-

ity3D dataset.

L. Shao et al. / Information Sciences 385–386 (2017) 266–283 281

Fig. 11. Confusion matrixes about four deep learning models on MSRDailyActivity3D dataset. The labels on the vertical axis express the true classes and

the labels on the horizontal axis denote the predicted classes. From left to right in order, DBN, 3D-CNN, SDAE and LSTM.

4.6. Tricks for adjusting hyper-parameters

Deep neural network learning involves many hyper-parameters to be tuned such as the learning rate, the momentum,

the kernel size, the number of layers and the number of epochs. In the process of adjusting hyper-parameters, inappropriate

parameters may result in overfitting or convergence to a locally optimal solution, so it requires a strong practical experience.

Therefore, many researchers who did not utilize neural networks in the past have the impression of this tuning as a “black

art”. It is true that experiences can help a lot, but the research on hyper-parameter optimization moves toward a more

fully automated fashion. The widely used strategies on hyper-parameter optimization are grid search and manual search.

Bergstra and Bengio [4] first proposed the very simple alternative called “random sampling” to standard methods which

works very well. Meanwhile, it is easy to implement. Bergstra et al. then presented automatic sequential optimization which

outperforms both manual and random search in [5] . This work is successfully extended in [36] which considers the hyper-

parameters optimization problem through the framework of Bayesian optimization. In this paper, we give some tricks about

how to choose hyper-parameters in our experiments. It can help other researchers use deep neural networks.

During our experiments, we find that DBNs are more difficult than CNNs and SDAE in hyper-parameter optimization.

With inappropriate parameters, DBNs easily converge to locally optimal solutions. According to DBNs, CNNs, SDAE and LSTM,

the reconstruction error always increases remarkably if the learning rate is too large. Therefore, we follow the simplest

solution and try several small log-spaced values (10 −1 , 10 −2 , . . .) . Then we narrow the region and choose the value where

we obtain the lowest error. During the training, the learning rate is reduced half in each epoch prior to termination. The

choice of the number of hidden layers and units for each layer is very much dataset-dependent. From most tasks that we

worked on, it can be found that when the image size is small and training samples are not a lot, it does not need a large

number of hidden units and very deep hidden layers in DBNs and SDAE. Therefore, we define the initial number of hidden

layers as 2 and the initial units for each layer as 100. Then we keep fine-tuning the number of hidden layers and the units

manually till finding the ideal results. For CNNs, the kernel size of small image datasets is usually in the 5 × 5 range, while

natural image datasets which are with hundreds of pixels in each dimension are better to use larger kernel sizes such as

10 × 10 or 15 × 15. In all of our experiments, we set momentum which is used for increasing the speed of learning as 0.9.

The number of unsupervised epochs and number of supervised epochs is usually initialized as 10 and increased with the

step 5 (10 , 15 , 20 , . . .) .

4.7. Overall performance analysis

Based on the experimental results reported and analyzed above, we also conduct a detailed analysis of all the bench-

marking deep learning models and RGB-D datasets. From the comparison of selected deep learning models (DBNs, SDAE,

LSTM and 2D, 3D-CNNs), 2D-CNNs for RGB-D images and 3D-CNNs for RGB-D videos always outperform DBNs, SDAE and

L STM in classification tasks. L STM shows advantages compared to DBNs and SDAE in RGB-D video classification tasks. The

results of RGB-D concatenation (SVM) and RGB-D fusion (SVM) are better than other methods. For a fair comparison, we

take almost the same time to adjust hyper-parameters. From the final performances of Tables 1 , 5 and 9 , we can find that

the more challengeable the dataset is, the lower the accuracy. In our RGB-D video experiments, the results in Table 13 reveal

that it will also show a great performance without lots of training samples when the experimental datasets are simple.

5. Conclusion

In this paper, we performed large-scale experiments to comprehensively evaluate the performance of deep feature learn-

ing models for RGB-D image/video classification. Based on the benchmark experiments, we gave the overall performance

analysis about our results and introduced some tricks about adjusting hyper-parameters. We noted that RGB-D fusion meth-

ods using CNNs with numerous training samples always outperform our other selected methods (DBNs, SDAE and LSTM).

Since LSTM can learn from experience to classify, process and predict time series, it achieved better performances than DBN

and SDAE in video classification tasks. Moreover, this large-scale performance evaluation work could facilitate a better un-

derstanding of the deep learning models on RGB-D datasets. In the future, we will focus on collecting large-scale RGB-D

datasets for better gauging new algorithms and finding convenient ways to adjust hyper-parameters.

282 L. Shao et al. / Information Sciences 385–386 (2017) 266–283

Acknowledgments

This work was supported in part by National Natural Science Foundation of China under grant 6152810 and grant

U1301251 , and in part by the Beijing Natural Science Foundation under grant 4141003 .

References

[1] P. Allen , Robotic Object Recognition Using Vision and Touch, 34, 2012 .
[2] J. Bai , Y. Wu , J. Zhang , F. Chen , Subset based deep learning for RGB-D object recognition, Neurocomputing 165 (2015) 280–292 .

[3] Y. Bengio , Learning deep architectures for ai, Found. Trends® Mach. Learn. 2 (1) (2009) 1–127 .
[4] J. Bergstra , Y. Bengio , Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (1) (2012) 281–305 .

[5] J.S. Bergstra , R. Bardenet , Y. Bengio , B. Kégl , Algorithms for hyper-parameter optimization, in: Advances in Neural Information Processing Systems,
2011, pp. 2546–2554 .

[6] M. Blum , J.T. Springenberg , J. Wülfing , M. Riedmiller , A learned feature descriptor for object recognition in RGB-D data, in: IEEE International Confer-

ence on Robotics and Automation, 2012, pp. 1298–1303 .
[7] L. Bo , X. Ren , D. Fox , Unsupervised feature learning for RGB-D based object recognition, in: Experimental Robotics, 2013, pp. 387–402 .

[8] J. Bouvrie , Notes on Convolutional Neural Networks, 2006 .
[9] B. Browatzki , J. Fischer , B. Graf , H. Bulthoff, C. Wallraven , Going into depth: Evaluating 2D and 3D cues for object classification on a new, large-scale

object dataset, in: International Conference on Computer Vision Workshops, 2011, pp. 1189–1195 .
[10] Z. Cai, J. Han, L. Liu, L. Shao, RGB-D datasets using Microsoft Kinect or similar sensors: a survey, Multimed. Tools Appl (2016) 1–43, doi: 10.1007/

s11042- 016- 3374- 6 .

[11] A . Coates , A .Y. Ng , H. Lee , An analysis of single-layer networks in unsupervised feature learning, in: International Conference on Artificial Intelligence
and Statistics, 2011, pp. 215–223 .

[12] F. Endres , J. Hess , N. Engelhard , J. Sturm , D. Cremers , W. Burgard , An evaluation of the RGB-D slam system, in: IEEE International Conference on
Robotics and Automation, 2012, pp. 1691–1696 .

[13] S. Gupta , P. Arbeláez , R. Girshick , J. Malik , Aligning 3D models to RGB-D images of cluttered scenes, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 4731–4740 .

[14] J. Han , L. Shao , D. Xu , J. Shotton , Enhanced computer vision with Microsoft Kinect sensor: a review, IEEE Trans. Cybern. 43 (5) (2013) 1318–1334 .

[15] G.E. Hinton , S. Osindero , Y.-W. Teh , A fast learning algorithm for deep belief nets, Neural Comput. 18 (7) (2006) 1527–1554 .
[16] G.E. Hinton , R.R. Salakhutdinov , Reducing the dimensionality of data with neural networks, Science 313 (5786) (2006) 504–507 .

[17] S. Hochreiter , J. Schmidhuber , Long short-term memory, Neural Comput. 9 (8) (1997) 1735–1780 .
[18] R. Hong , Z. Hu , R. Wang , M. Wang , D. Tao , Multi-view object retrieval via multi-scale topic models, IEEE Trans. Image Process. 25 (12) (2016) .

[19] R. Hong , L. Zhang , C. Zhang , R. Zimmermann , Flickr circles: aesthetic tendency discovery by multi-view regularized topic modeling, IEEE Trans. Mul-
timed. 18 (8) (2016) 1555–1567 .

[20] D.H. Hubel , T.N. Wiesel , Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (Lond.) 195 (1) (1968) 215–243 .

[21] A. Hyvärinen , E. Oja , Independent component analysis: algorithms and applications, Neural Networks 13 (4) (20 0 0) 411–430 .
[22] S. Ji , W. Xu , M. Yang , K. Yu , 3D convolutional neural networks for human action recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1) (2013)

221–231 .
[23] L. Jin , S. Gao , Z. Li , J. Tang , Hand-crafted features or machine learnt features? Together they improve RGB-D object recognition, in: International

Symposium on Multimedia, 2014, pp. 311–319 .
[24] Y.Z.M.B.P. Kohli, S. Izadi, J. Xiao, Deepcontext: context-encoding neural pathways for 3D holistic scene understanding, arXiv preprint arXiv:1603.04922

(2016).
[25] A. Krizhevsky , G.E. Hinton , et al. , Factored 3-way restricted Boltzmann machines for modeling natural images, in: International Conference on Artificial

Intelligence and Statistics, 2010, pp. 621–628 .

[26] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105 .

[27] K. Lai , L. Bo , X. Ren , D. Fox , A large-scale hierarchical multi-view RGB-D object dataset, in: International Conference on Robotics and Automation, 2011,
pp. 1817–1824 .

[28] H. Larochelle , D. Erhan , A. Courville , J. Bergstra , Y. Bengio , An empirical evaluation of deep architectures on problems with many factors of variation,
in: International Conference on Machine Learning, 2007, pp. 473–480 .

[29] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 .

[30] S.-Z. Li , B. Yu , W. Wu , S.-Z. Su , R.-R. Ji , Feature learning based on SAE–PCA network for human gesture recognition in RGBD images, Neurocomputing
151 (2015) 565–573 .

[31] L. Liu , L. Shao , Learning discriminative representations from RGB-D video data, in: International Joint Conference on Artificial Intelligence, 2013,
pp. 1493–1500 .

[32] H. Sak, A. Senior, F. Beaufays, Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition, arXiv
preprint arXiv:1402.1128 (2014).

[33] K. Schindler , L. Van Gool , Action snippets: how many frames does human action recognition require? in: IEEE Conference on Computer Vision and

Pattern Recognition, 2008, pp. 1–8 .
[34] J. Schmidhuber , Deep learning in neural networks: an overview, Neural Networks 61 (2015) 85–117 .

[35] N. Silberman , R. Fergus , Indoor scene segmentation using a structured light sensor, in: International Conference on Computer Vision Workshops, 2011,
pp. 601–608 .

[36] J. Snoek , H. Larochelle , R.P. Adams , Practical Bayesian optimization of machine learning algorithms, in: Advances in Neural Information Processing
Systems, 2012, pp. 2951–2959 .

[37] R. Socher , B. Huval , B. Bath , C.D. Manning , A.Y. Ng , Convolutional-recursive deep learning for 3D object classification, in: Advances in Neural Informa-

tion Processing Systems, 2012, pp. 665–673 .
[38] L. Spinello , C. Stachniss , W. Burgard , Scene in the loop: towards adaptation-by-tracking in RGB-D data, in: Proc. Workshop RGB-D, Adv. Reason. Depth

Cameras, 2012 .
[39] R. Szeliski , Computer vision: algorithms and applications, 2010 .

[40] S. Tang , X. Wang , X. Lv , T.X. Han , J. Keller , Z. He , M. Skubic , S. Lao , Histogram of oriented normal vectors for object recognition with a depth sensor,
in: Asian Conference on Computer Vision, 2013, pp. 525–538 .

[41] P. Vincent , H. Larochelle , Y. Bengio , P.-A. Manzagol , Extracting and composing robust features with denoising autoencoders, in: International Conference

on Machine Learning, 2008, pp. 1096–1103 .
[42] S. Vishwakarma , A. Agrawal , A survey on activity recognition and behavior understanding in video surveillance, Vis. Comput. 29 (10) (2013) 983–1009 .

[43] L. Wan , M. Zeiler , S. Zhang , Y.L. Cun , R. Fergus , Regularization of neural networks using dropconnect, in: International Conference on Machine Learning,
2013, pp. 1058–1066 .

[44] J. Wang , Z. Liu , Y. Wu , J. Yuan , Mining actionlet ensemble for action recognition with depth cameras, in: IEEE Conference on Computer Vision and
Pattern Recognition, 2012, pp. 1290–1297 .

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100005089
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0001
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0001
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0002
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0002
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0002
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0002
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0002
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0003
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0003
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0004
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0004
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0004
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0005
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0005
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0005
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0005
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0005
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0006
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0006
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0006
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0006
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0006
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0007
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0007
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0007
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0007
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0008
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0008
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0009
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0009
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0009
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0009
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0009
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0009
http://dx.doi.org/10.1007/s11042-016-3374-6
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0011
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0011
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0011
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0011
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0012
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0012
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0012
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0012
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0012
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0012
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0012
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0013
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0013
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0013
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0013
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0013
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0014
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0014
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0014
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0014
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0014
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0015
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0015
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0015
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0015
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0016
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0016
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0016
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0017
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0017
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0017
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0018
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0018
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0018
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0018
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0018
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0018
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0019
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0020
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0020
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0020
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0021
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0021
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0021
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0022
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0022
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0022
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0022
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0022
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0023
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0023
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0023
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0023
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0023
http://arXiv:1603.04922
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0025
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0025
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0025
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0025
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0026
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0026
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0026
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0026
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0027
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0027
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0027
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0027
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0027
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0028
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0028
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0028
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0028
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0028
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0028
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0029
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0029
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0029
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0029
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0029
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0030
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0030
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0030
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0030
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0030
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0030
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0031
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0031
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0031
http://arXiv:1402.1128
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0033
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0033
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0033
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0034
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0034
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0035
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0035
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0035
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0036
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0036
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0036
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0036
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0037
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0037
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0037
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0037
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0037
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0037
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0038
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0038
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0038
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0038
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0039
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0039
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0040
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0040
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0040
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0040
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0040
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0040
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0040
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0040
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0040
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0041
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0041
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0041
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0041
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0041
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0042
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0042
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0042
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0043
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0043
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0043
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0043
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0043
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0043
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0044
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0044
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0044
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0044
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0044

L. Shao et al. / Information Sciences 385–386 (2017) 266–283 283

[45] D. Wu , L. Pigou , P.-J. Kindermans , L. Nam , L. Shao , J. Dambre , J.-M. Odobez , Deep dynamic neural networks for multimodal gesture segmentation and
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 38 (8) (2016) 1583–1597 .

[46] Z. Wu , S. Song , A. Khosla , F. Yu , L. Zhang , X. Tang , J. Xiao , 3D shapenets: a deep representation for volumetric shapes, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 1912–1920 .

[47] H. Xue , Y. Liu , D. Cai , X. He , Tracking people in RGBD videos using deep learning and motion clues, Neurocomputing 204 (2016) 70–76 .
[48] M. Yu , L. Liu , L. Shao , Structure-preserving binary representations for RGB-D action recognition, IEEE Trans. Pattern Anal. Mach. Intell. 38 (8) (2016)

1651–1664 .

[49] H.F. Zaki , F. Shafait , A. Mian , Convolutional hypercube pyramid for accurate RGB-D object category and instance recognition, in: IEEE International
Conference on Robotics and Automation, 2016, pp. 1685–1692 .

[50] H. Zhu , J.-B. Weibel , S. Lu , Discriminative multi-modal feature fusion for RGBD indoor scene recognition, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2969–2976 .

http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0045
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0045
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0045
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0045
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0045
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0045
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0045
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0045
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0046
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0046
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0046
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0046
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0046
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0046
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0046
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0046
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0047
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0047
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0047
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0047
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0047
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0048
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0048
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0048
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0048
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0049
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0049
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0049
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0049
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0050
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0050
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0050
http://refhub.elsevier.com/S0020-0255(17)30019-1/sbref0050

	Performance evaluation of deep feature learning for RGB-D image/video classification
	1 Introduction
	1.1 Related work to RGB-D information
	1.2 Related work to deep learning methods
	1.3 Deep learning methods for RGB-D data analysis
	1.3.1 Object detection and tracking
	1.3.2 Object and scene recognition
	1.3.3 Human activity analysis
	1.3.4 Indoor 3-D mapping

	2 Deep learning models
	2.1 Deep Belief Networks
	2.2 Stacked Denoising Auto-Encoders
	2.3 Convolutional Neural Networks
	2.4 Long short-term memory neural networks

	3 Data preprocessing on deep learned features
	3.1 Normalization
	3.2 PCA/ZCA whitening

	4 Experiments on deep learning models
	4.1 2D&3D object dataset
	4.2 Object RGB-D dataset
	4.3 NYU Depth v1
	4.4 Sheffield Kinect Gesture (SKIG) dataset
	4.5 MSRDailyActivity3D dataset
	4.6 Tricks for adjusting hyper-parameters
	4.7 Overall performance analysis

	5 Conclusion
	 Acknowledgments
	 References

