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Failure mode and effects analysis (FMEA) is a widely used engineering technique for designing, identify-
ing and eliminating known and/or potential failures, problems, errors and so on from system, design, pro-
cess, and/or service before they reach the customer (Stamatis, 1995). In a typical FMEA, for each failure
modes, three risk factors; severity (S), occurrence (O), and detectability (D) are evaluated and a risk pri-
ority number (RPN) is obtained by multiplying these factors. There are significant efforts which have been
made in FMEA literature to overcome the shortcomings of the crisp RPN calculation. In this study a fuzzy
approach, allowing experts to use linguistic variables for determining S, O, and D, is considered for FMEA
by applying fuzzy ‘technique for order preference by similarity to ideal solution’ (TOPSIS) integrated with
fuzzy ‘analytical hierarchy process’ (AHP). The hypothetical case study demonstrated the applicability of
the model in FMEA under fuzzy environment.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Failure mode and effects analysis (FMEA) is a widely used engi-
neering technique for designing, identifying and eliminating known
and/or potential failures, problems, errors and so on from system,
design, process, and/or service before they reach the customer
(Stamatis, 1995). FMEA, providing a framework for cause and effect
analysis of potential product failures (Chin, Chan, & Yang, 2008), has
a purpose of prioritizing the risk priority number (RPN) of the prod-
uct design or planning process to assign the limited resources to the
most serious risk item (Chang, Wei, & Lee, 1999).

FMEA, designed to provide information for risk management
decision-making (Pillay & Wang, 2003), was first developed as a
formal design methodology by NASA in 1963 for their obvious reli-
ability requirements and then, it was adopted and promoted by
Ford Motor in 1977 (Chin et al., 2008). Since then, it has become
a powerful tool extensively used for safety and reliability analysis
of products and processes in a wide range of industries especially,
aerospace, nuclear and automotive industries (Gilchrist, 1993;
Sharma, Kumar, & Kumar, 2005).

A typical FMEA is consisted of the following components; the
identification and listing of failure modes and the consequent
faults, assessment of the chances of the occurrence of faults, then
assessment of the chances of the detection of faults, assessment
of the severity of the consequences of the faults, calculation of a
measure of the risk, the ranking of the faults based on the risk,
ll rights reserved.
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taking action on the high-risk problems, and checking the effec-
tiveness of the action with the use of a revised risk measurement
(Ben-Daya & Raouf, 1996).

Each failure mode can be evaluated by three factors as severity,
likelihood of occurrence, and the difficulty of detection of the fail-
ure mode. In a typical FMEA evaluation, a number between 1 and
10 (with 1 being the best and 10 being the worst case) is given
for each of the three factors. By multiplying the values for severity
(S), occurrence (O), and detectability (D), a risk priority number
(RPN) is obtained, which is RPN = S� O� D (Chin et al., 2008). Then
the RPN value for each failure mode is ranked to find out the fail-
ures with higher risks.

The crisp values of RPNs have been considerably criticized for a
many reasons most of which are stated below (Ben-Daya & Raouf,
1996; Bowles, 2004; Braglia & Bevilacqua, 2000; Braglia, Frosolini,
& Montanari, 2003; Chang, Liu, & Wei, 2001; Gilchrist, 1993; Pillay
& Wang, 2003; Sankar & Prabhu, 2001; Wang, Chin, Poon, & Yang,
2009):

� The relative importance among the three risk factors occur-
rence, severity, and detection is not considered as they are
accepted equally important.
� Different combinations of O, S and D may produce exactly the

same value of RPN, although their hidden risk implications
may be totally different. For instance, two different failures with
the O, S and D values of 4, 3, 3 and 9, 1, 3, respectively, have the
same RPN value of 36.
� It is mostly difficult for O, S and D to be precisely evaluated.

However linguistic terms can be adopted to convey much
information in FMEA.
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� The use of multiplication method in the calculation of RPN is
questionable and strongly sensitive to variations in criticality
factor evaluations.

When the traditional FMEA and the fuzzy approach are com-
pared, the fuzzy approach has an advantage of allowing the con-
duction of risk evaluation and prioritization based on the
knowledge of the experts (Tay & Lim, 2006).

Xu, Tang, Xie, Ho, and Zhu (2002) state the reasons for consid-
ering the fuzzy logic approach as following:

� All FMEA-related information is taken in natural language
which is easy and plausible for fuzzy logic to deal with as it is
based on human language and can be built on top of the expe-
rience of experts.
� Fuzzy logic allows imprecise data usage so it enables the treat-

ment of many states.

Furthermore, fuzzy FMEA allows both quantitative data and va-
gue and qualitative information to be used and managed in a con-
sistent manner and makes it possible for the combination of
severity, occurrence and detectability in a more flexible structure
(Bowles & Pelaez, 1995; Braglia et al., 2003).

In this study firstly, a fuzzy approach, allowing experts to use
linguistic variables for determining S, O, and D, is considered for
FMEA by applying fuzzy TOPSIS integrated with fuzzy AHP. First
Chang’s (1996) fuzzy AHP is utilized to determine the weight vec-
tor of three risk factors; severity, occurrence and detectability.
Then by using the linguistic scores of risk factors for each failure
modes, and the weight vector of risk factors, Chen’s (2000) fuzzy
TOPSIS is utilized. According to the results most important failure
modes are obtained. This model allowing the use of different
importance weights for the risk factors (S, O, D) in fuzzy TOPSIS
for scoring and ranking of the potential failure modes, can be taken
as a contribution in the fuzzy FMEA literature.

The rest of the paper is organized as follows: In Section 2, Liter-
ature Reviews of fuzzy FMEA, fuzzy AHP and fuzzy TOPSIS are ex-
pressed. In Section 3, a fuzzy multi-criteria method, an integration
of fuzzy AHP and fuzzy TOPSIS, is proposed for fuzzy FMEA. In Sec-
tion 4, the proposed methodology is applied to an assembly pro-
cess with 8 potential failure modes at a manufacturing facility. A
sensitivity analysis is also realized. Finally, conclusions are given.

2. Literature review

2.1. Fuzzy FMEA

There are significant efforts have been made in FMEA literature
to overcome the shortcomings of the traditional RPN (Wang et al.,
2009). The studies about FMEA considering fuzzy approach use the
experts who describe the risk factors O, S, and D by using the fuzzy
linguistic terms. The linguistic variables were used for evaluating
three risk factors O, S, and D as an interpretation of the traditional
10-point scale (1–10) FMEA factor scores.

In the fuzzy FMEA literature, the studies have mostly concerned
with the fuzzy rule-base approach by using if-then rules (Bowles &
Pelaez, 1995; Chin et al., 2008; Guimarães & Lapa, 2004, 2007;
Pillay & Wang, 2003; Sharma et al., 2005; Tay & Lim, 2006; Xu
et al., 2002). After the assignments of the linguistic terms to the
factors, if-then rules were generated taking the linguistic variables
as inputs to evaluate the risks. The outputs of the fuzzy inference
system were variously named as risk (Chin et al., 2008; Guimarães
& Lapa, 2004), the critically failure mode (Xu et al., 2002), priority
for attention (Pillay & Wang, 2003), and fuzzy RPN (Sharma et al.,
2005; Xu et al., 2002) in the fuzzy FMEA studies which consider the
fuzzy rule-base approach.
Braglia and Bevilacqua (2000) drew attention to the doubts re-
mained due to the difficulties in defining many rules and member-
ship functions required by this methodology considering the
applicability of the real industrial cases. They proposed the use of
AHP for obtaining the rules for a particular fuzzy criticality assess-
ment model to overcome this problem. Besides, AHP is employed
in another study to cope with multiple criteria situations involving
intuitive, rational, qualitative and quantitative aspects for the eval-
uation of the final ranking for every failure cause and this new ap-
proach is called multi-attribute failure mode analysis (MAFMA)
(Braglia, 2000).

Braglia and Bevilacqua (2000) criticize that the failure modes
characterized by the fuzzy if–then rules could not be prioritized
or ranked and there is no way to incorporate the relative impor-
tance of risk factors into the fuzzy inference system by using fuzzy
if–then rules. Therefore they develop a new fuzzy logic approach
where fuzzy risk priority numbers (FRPNs) are defined as fuzzy
weighted geometric means of the fuzzy ratings for O, S and D
and can be computed using alpha-level sets and linear program-
ming models.

The fuzzy analytic hierarchy process (FAHP) approach was con-
sidered by Hua, Hsu, Kuo, and Wua (2009) for evaluating the rela-
tive weightings of the risk factors of FMEA to analyze of the risks of
green components in compliance with the European Union (EU)
the Restriction of Hazardous Substance (RoHS) directive in the
incoming quality control (IQC) stage. In the study, Severity factor
was explained by two criteria and with considering the occurrence
and the detection factors, the FAHP was utilized to determine the
weights of four criteria by two experts. The traditional FMEA was
modified to form green component risk priority number (GC-
RPN) for the calculation of the risks with regard to each category
of green components. GC-RPN was formulated by the sum of the
terms of products of the factor scores and weights.

Braglia et al. (2003) proposed a fuzzy TOPSIS approach for
Failure Mode, Effects and Criticality Analysis (FMECA). The fuzzy
version of TOPSIS was applied allowing the traditional FMECA fac-
tors O, S, and D and their equally important weights to be evaluated
using triangular fuzzy numbers.

2.2. Fuzzy AHP

AHP is one of the well-known multi-criteria decision making
techniques that was first proposed by Saaty (1980). The classical
AHP takes into consideration the definite judgments of decision
makers (Wang & Chen, 2007). Although the classical AHP includes
the opinions of experts and makes a multiple criteria evaluation, it
is not capable of reflecting human’s vague thoughts (Seçme, Bay-
rakdaroğlu, & Kahraman, 2009).

As the uncertainty of information and the vagueness of human
feeling and recognition, it is difficult to provide exact numerical
values for the criteria and to make evaluations which exactly con-
vey the feeling and recognition of objects for decision makers.
Therefore, most of the selection parameters cannot be given pre-
cisely. Thus experts may prefer intermediate judgments rather
than certain judgments. So the fuzzy set theory makes the compar-
ison process more flexible and capable to explain experts’ prefer-
ences (Kahraman, Cebeci, & Ulukan, 2003).

Different methods for the fuzzification of AHP have been pro-
posed in the literature. AHP is firstly fuzzified by Laarhoven and
Pedrycz (1983) and in this study, fuzzy ratios which were defined
by triangular membership functions were compared. Buckley
(1985) used the comparison ratios based on trapezoidal member-
ship functions. Chang (1996) introduces a new approach for han-
dling fuzzy AHP, with the use of triangular fuzzy numbers for
pair-wise comparison scale of fuzzy AHP, and the use of the extent
analysis method for the synthetic extent values of the pair-wise
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comparisons. Kahraman, Ulukan, and Tolga (1998) proposed a
fuzzy objective and subjective method based on fuzzy AHP. Kulak
and Kahraman (2005) made a selection among the transportation
companies by using fuzzy axiomatic design and fuzzy AHP. They
developed fuzzy multi-attribute axiomatic design approach and
compared it with fuzzy AHP.
2.3. Fuzzy TOPSIS

TOPSIS one of the classical multi-criteria decision making
methods was developed by Hwang and Yoon (1981). It is based
on the concept that the chosen alternative should have the
shortest distance from the positive ideal solution (PIS) and the
farthest from the negative ideal solution (NIS). TOPSIS also pro-
vides an easily understandable and programmable calculation
procedure. It has the ability of taking various criteria with differ-
ent units into account simultaneously (Ekmekçioglu, Kaya, &
Kahraman, 2010).

A number of fuzzy TOPSIS methods have been developed in re-
cent years. Chen and Hwang (1992) first applied fuzzy numbers to
establish fuzzy TOPSIS. Triantaphyllou and Lin (1996) developed a
fuzzy TOPSIS method in which relative closeness for each alterna-
tive is evaluated based on fuzzy arithmetic operations. Chen (2000)
extends the TOPSIS method to fuzzy group decision making situa-
tions by considering triangular fuzzy numbers and defining crisp
Euclidean distance between two fuzzy numbers. Chu (2002) and
Chu and Lin (2002) further improved the methodology proposed
by Chen (2000). Jahanshahloo, Hosseinzadeh, and Izadikhah
(2006) and Chu and Lin (2009) extended the fuzzy TOPSIS method
based on alpha level sets with interval arithmetic.

Fuzzy TOPSIS has been introduced for various multi-attribute
decision-making problems. Yong (2006) used fuzzy TOPSIS for
plant location selection and Chena et al. (2006) used fuzzy TOPSIS
for supplier selection. Kahraman, Çevik, Ates�, and Gülbay (2007)
utilized fuzzy TOPSIS for industrial robotic system selection.
Ekmekçioglu, Kaya, and Kahraman (2010) used a modified fuzzy
TOPSIS to select municipal solid waste disposal method and site.
Kutlu and Ekmekçioğlu (2010) used fuzzy TOPSIS integrated with
fuzzy AHP to propose a new FMEA ‘failure modes & effects analysis’
which overcomes the shortcomings of traditional FMEA. Kaya and
Kahraman (2011) proposed a modified fuzzy TOPSIS for selection
of the best energy technology alternative. Kim, Lee, Cho, and Kim
(2011) used fuzzy TOPSIS for modeling consumer’s product adop-
tion process.
3. Fuzzy multi-criteria analysis

3.1. Fuzzy logic

A fuzzy set is a class of objects with grades of membership. A
membership function is between zero and one (Zadeh, 1965). Fuz-
zy logic is derived from fuzzy set theory to deal with reasoning that
is approximate rather than precise. It allows the model to easily
incorporate various subject experts’ advice in developing critical
parameter estimates (Zimmermann, 2001). In other words, fuzzy
logic enables us to handle uncertainty.

There are some kinds of fuzzy numbers. Among the various
shapes of fuzzy number, triangular fuzzy number (TFN) is the most
popular one. It is represented with three points as follows:
A = (a1, a2, a3). The membership function is illustrated in Eq. (1).
Let A and B are defined as A = (a1, a2, a3), B = (b1, b2, b3). Then
C = (a1 + b1, a2 + b2, a3 + b3) is the addition of these two numbers.
Besides, D = (a1 � b1, a2 � b2, a3 � b3) is the subtraction of them.
Moreover, D = (a1 � b1, a2 � b2, a3 � b3) is the multiplication of them
(Klir & Yuan, 1995; Lai & Hwang, 1995; Zimmermann, 2001).
leAðxÞ ¼
0; x < a1

x�a1
a2�a1

� �
; a1 6 x 6 a2

a3�x
a3�a2

� �
; a2 6 x 6 a3

0; x > a3

8>>>>><>>>>>:

9>>>>>=>>>>>;
: ð1Þ
3.2. Fuzzy AHP

In the following, Chang’s extent analysis method is explained.
Let X = {x1, x2, . . ., xn} be an object set, and U = {u1, u2, . . ., un} be a

goal set. According to the method of extent analysis, each object is
taken and extent analysis for each goal is performed, respectively.
Therefore, m extent analysis values for each object can be obtained,
with the following signs: eM1

gi;
eM2

gi; . . . ; eMj
gi, where all the eMj

gi

(i = 1, 2, . . ., n and j = 1, 2, . . ., m) are TFNs.
The steps of extent analysis can be given as in the following:

Step 1: The value of fuzzy synthetic extent with respect to the ith
object is defined as

eSi ¼
Xm

j¼1

eMj
gi �

Xn

i¼1

Xm

j¼1

eMj
gi

" #�1

: ð2Þ

To obtain
Pm

j¼1Mj
gi perform the fuzzy addition operation of m extent

analysis values for a particular matrix such that

Xm

j¼1

eMj
gi ¼

Xm

j¼1

lj;
Xm

j¼1

mj;
Xm

j¼1

uj

" #�1

ð3Þ

and to obtain
Pn

i¼1

Pm
j¼1
eMj

gi the fuzzy addition operation eMj
gi

(j = 1, 2, . . ., m) values is performed such asXn

i¼1

Xm

j¼1

eMj
gi ¼

Xn

i¼1

Xn

i¼1

mi;
Xn

i¼1

ui

 !
ð4Þ

and then the inverse of the above vector is computed in such as

Xn

i¼1

Xm

j¼1

eMj
gi

" #�1

¼ 1Pn
i¼1ui

;
1Pn

i¼1mi
;

1Pl
i¼1ui

 !
: ð5Þ

Step 2: As eM2 and eM2 are two triangular fuzzy numbers, the
degree of possibility of eM2 6

eM1 is defined as

Vð eM2 P eM1Þ ¼ supyPx minleM1
ðxÞ;minleM2

ðyÞ
� �

ð6Þ

and can be equivalently expressed as follows:

Vð eM2 P eM1Þ ¼ lðdÞ ¼
1; if m2 P m1

0; if l2 P u2;
l2�u2

ðm2�u2Þ�ðm1�l1Þ
; otherwise;

8><>: ð7Þ

where d is the ordinate of the highest intersection point D between
leM2

and leM2
as shown in Fig. 1. To compare eM2 and eM1, we need

both values of Vð eM2 P eM2Þ and Vð eM1 P eM2Þ

d0ðAiÞ ¼ minVðeSi P eSkÞ: ð8Þ

Step 3: The degree of possibility for a convex fuzzy number to be
greater than k convex fuzzy numbers eMi can be defined by

Vð eM P eM1; eM2; . . . ; eMkÞ ¼ minVð eM P eMiÞ; ð9Þ

where i = 1, . . ., k.
Assume that

d0ðAiÞ ¼ minVðeSi P eSkÞ: ð10Þ

For k = 1, 2, . . .; k – i. Then the weight vector is given by



)(~ x
M

μ

1 

)
~~

( 12 MMV ≥

l2 m2  l1      d u2   m1                    u1 X

Fig. 1. The intersection between eM1 and eM2.

Table 2
Fuzzy evaluation scores for alternatives.

Linguistic terms Fuzzy score

Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)
Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)
Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)
Very good (VG) (9, 10, 10)
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W 0 ¼ ðd0ðA1Þ;d0ðA2Þ; . . . ;d0ðAnÞÞT ; ð11Þ

where Ai (i = 1, 2, . . ., n) are n elements.
Step 4: Via normalization, the normalized weight vectors are
W ¼ ðdðA1Þ; dðA2Þ; . . . ;dðAnÞÞT ; ð12Þ

where W is a non-fuzzy number.
Weight vector of risk factors can be obtained by either directly

assigning or indirectly using pair-wise comparisons. Here, it is sug-
gested that the decision makers use the linguistic variables in Table
1 to evaluate the weight vector risk factors.

After comparison is made, it is necessary to check the consis-
tency ratio of the comparison. To do so, the graded mean integra-
tion approach is utilized for defuzzifying the matrix. According to
the graded mean integration approach, a fuzzy numbereM ¼ ðm1;m2;m3Þ can be transformed into a crisp number by
employing the below Eq. (13):

Pð eMÞ ¼ M ¼ m1 þ 4m2 þm3

6
: ð13Þ

After the deffuzification of each value in the matrix, ‘consistency ra-
tio’ (CR) of the matrix can easily be calculated and checked whether
CR is smaller than .10 or not.

3.3. Fuzzy TOPSIS

In the following, Chen’s fuzzy TOPSIS method is explained.
Chen (2000) extends the TOPSIS method to fuzzy group decision

making situations by considering triangular fuzzy numbers and
defining crisp Euclidean distance between two fuzzy numbers. In
Chen’s fuzzy TOPSIS, linguistic preferences can easily be converted
to fuzzy numbers which are allowed to be used in calculations
(Ekmekçioğlu et al., 2010; Önüt & Soner, 2008; Kutlu &
Ekmekçioğlu, 2010).

It is suggested that the decision makers use linguistic variables
to evaluate the ratings of alternatives with respect to criteria. Table
2 gives the linguistic scale for evaluation of the alternatives.
Assuming that a decision group has K people, the ratings of alter-
natives with respect to each criterion can be calculated as
Table 1
Fuzzy evaluation scores for the weight vector.

Linguistic terms Fuzzy score

Absolutely strong (AS) (2, 5/2, 3)
Very strong (VS) (3/2, 2, 5/2)
Fairly strong (FS) (1, 3/2, 2)
Slightly strong (SS) (1, 1, 3/2)
Equal (E) (1, 1, 1)
Slightly weak (SW) (2/3, 1, 1)
Fairly weak (FW) (1/2, 2/3, 1)
Very weak (VW) (2/5, 1/2, 2/3)
Absolutely weak (AW) (1/3, 2/5, 1/2)
~xij ¼
1
K
½~x1

ijðþÞ~x2
ijðþÞ � � � ðþÞ~xK

ij �; ð14Þ

where ~xK
ij is the rating of the Kth decision maker for ith alternative

with respect to jth criterion (Chen, 2000).
Obtaining weights of the criteria and fuzzy ratings of alterna-

tives with respect to each criterion, the fuzzy multi-criteria
decision-making problem can be expressed in matrix format as

D ¼

~x11 ~x12 . . . ~x1n

..

. ..
.

. . . ..
.

~xm1 ~xm2 . . . ~xmn

2664
3775; ð15Þ

W ¼ ½w1;w2; . . . ;Wn�; j ¼ 1;2; . . . ;n; ð16Þ

where ~xij is the rating of the alternative Ai with respect to criterion j
(i.e. Cj) and wj denotes the importance weight of Cj. These linguistic
variables can be described by triangular fuzzy numbers:
~xij ¼ ðaij; bij; cijÞ. To avoid the complicated normalization formula
used in classical TOPSIS, the linear scale transformation is used here
to transform the various criteria scales into a comparable scale.
Therefore, we can obtain the normalized fuzzy decision matrix de-
noted by eReR ¼ ½~rij�m�n; ð17Þ

where B and C are the set of benefit criteria and cost criteria, respec-
tively, and

~r ¼
~aij

c�j
;
~bij

c�j
;
~cij

c�j

 !
; j 2 B; ð18Þ

~r ¼
a�j
cij
;
b�j
bij
;
c�j
aij

� �
; j 2 C; ð19Þ

c�j ¼max
i

cij if j 2 B; ð20Þ

a�j ¼min
i

aij if j 2 C: ð21Þ

The normalization method mentioned above is to preserve the
property that the ranges of normalized triangular fuzzy numbers
belong to [0; 1].

Considering the different importance of each criterion, we can
construct the weighted normalized fuzzy decision matrix as

eV ¼ ½~v ij�m�n; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n; ð22Þ

where

~v ij ¼ ~rijð�ÞdðCjÞ: ð23Þ

According to the weighted normalized fuzzy decision matrix, we
know that the elements ~v ij "i, j are normalized positive triangular
fuzzy numbers and their ranges belong to the closed interval
[0, 1]. Then, we can define the fuzzy positive-ideal solution (FPIS, A⁄)
and fuzzy negative-ideal solution ðFPIS;A�Þ as



Fig. 2. Flowchart of the fuzzy FMEA model.
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A� ¼ ð~v�1; ~v�2; . . . ; ~v�nÞ; ð24Þ

A� ¼ ð~v�1 ; ~v�2 ; . . . ; ~v�n Þ; ð25Þ

where

~v�j ¼ ð1;1;1Þ and ~v�j ¼ ð0;0;0Þ; j ¼ 1;2; . . . ; n: ð26Þ

The distance of each alternative from A⁄ and A� can be currently cal-
culated as

d�i ¼
Xn

j¼1

dð~v ij; ~v�j Þ; i ¼ 1;2; . . . ;m; ð27Þ

d�i ¼
Xn

j¼1

dð~v ij; ~v�j Þ; i ¼ 1;2; . . . ;m; ð28Þ

where d(., .) is the distance measurement between two fuzzy num-
bers calculating with the following formula:

dð~q; ~sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
½ðq1 � s1Þ2 þ ðq2 � s2Þ2 þ ðq3 � s3Þ2�

r
ð29Þ

where ~q ¼ ðq1;q2;q3Þ and ~s ¼ ðs1; s2; s3Þ are two triangular fuzzy
numbers.A closeness coefficient is defined to determine the ranking
order of all alternatives once the ~d�j and ~d�j of each alternative Ai

(i = 1, 2, . . ., m) are calculated. The closeness coefficient of each
alternative is calculated as

CCi ¼
~d�j

~d�j þ ~d�j
; i ¼ 1;2; . . . ;m: ð30Þ

Obviously, an alternative Ai is closer to the (FPIS, A⁄) and farther
from ðFPIS;A�Þ as CCi approaches to 1. Therefore, according to the
closeness coefficient, we can determine the ranking order of all
alternatives and select the best one from among a set of feasible
alternatives.

3.4. Proposed methodology

Fuzzy logic is the tool for transforming the vagueness of human
feeling and recognition and its decision-making ability into a
mathematical formula. It also provides meaningful representation
of measurement for uncertainties and vague concepts expressed
in natural language. So a fuzzy multi-criteria decision making
methods is preferred instead of crisp decision making methods
for overcoming the FMEA procedure.

For determining the importance of failure modes a modified
fuzzy approach proposed by Ekmekçioğlu et al. (2010) is used in
this section. Firstly, a group of decision-makers identifies the fail-
ure modes. Second, a pair-wise comparison matrix for risk factors
is constructed, and Chang’s fuzzy AHP is utilized to determine the
weight vector of these risk factors. Later, experts’ linguistic evalu-
ations of each failure mode with respect to risk factors are aggre-
gated to get a mean value. Then by using the linguistic scores of
risk factors for each failure modes, fuzzy decision matrix is
constructed for the implementation of TOPSIS. After that, by using
the weight vector of risk factors, and the fuzzy decision matrix
weighted normalized fuzzy decision matrix is constructed. Subse-
quently, FPIS and FNIS and the distance of each failure mode from
FPIS and FNIS are calculated, respectively. At last step of Chen’s
fuzzy TOPSIS closeness coefficients of processes are obtained.
According to the closeness coefficients, the ranking order of all fail-
ure modes is determined.

Fig. 2 represents proposed fuzzy FMEA model.
To sum up the most important failure modes are determined

through succeeding the following steps:
Step 1. A group of decision-makers identifies the failure modes.
Step 2. Chang’s fuzzy AHP approach is used to obtain the weights

of the risk factors.

– Appropriate linguistic variables for risk factors of each

failure mode are determined.
– A pair-wise comparison matrix for severity, occurrence,

and detectability is constructed, and experts’ linguistic
evaluations are aggregated to get a mean value for each
pair-wise comparison.

– Consistency of pair-wise comparison matrix for S, O,
and D is checked after the defuzzification of each value
in the matrix according to graded mean integration
approach.
Step 3. Chen’s fuzzy TOPSIS is utilized to obtain the closeness
coefficients of processes.

– Experts’ linguistic evaluations of each failure mode

with respect to risk factors are aggregated to get a
mean value.

– Fuzzy decision matrix and the normalized fuzzy deci-
sion matrix are constructed for the implementation of
TOPSIS.

– Weighted normalized fuzzy decision matrix is
constructed.

– FPIS and FNIS are determined.
– The distance of each failure mode from FPIS and FNIS

are calculated, respectively.

Step 4. According to the closeness coefficient, the ranking order of

all failure modes is determined.

4. An illustrative example

The proposed methodology is applied to manufacturing facility
of a SME performing in an automotive industry. Major potential
failure modes (PFMs) are identified by a group of experts in an
assembly process at the manufacturing facility as non-conforming
material (A), wrong die (B), wrong program (C), excessive cycle
time (D), wrong process (E), damaged goods (F), wrong part (G),
and incorrect forms (H).

After the determination of the PFMs, by utilizing FAHP method,
evaluations of three experts in linguistic variables are used to
determine the importance of risk factors (S, O, and D) by pair-wise
comparison as shown in Table 3. For instance, when comparing the
risk factor severity and occurrence, the responses of three experts
are fairly strong (FS), fairly strong (FS), and very strong (VS),
respectively. As a result the weight vector for the risk factors is
obtained as (.468 .201 .331). Subsequently evaluations of the ex-
perts in linguistic variables for the risk factors with respect to each
failure modes are obtained as expressed in Table 4. The experts



Table 3
Evaluations of experts in linguistic variables and weights of the risk factors.

Severity (S) Occurrence (O) Detection (D) Weight vector

Severity E, E, E FS, FS, VS SS, SS, SS .468
Occurrence – E, E, E SS, FW, E .201
Detection – – E, E, E .331

CR for the defuzzified version of this matrix 0.0552 < 0.10.

Table 4
Evaluations of experts in linguistic variables for risk factors with respect to each
PFMs.

Potential failure modes S O D

(A) Non-conforming material F, F, MP F, MG, MG G, MG, G
(B) Wrong die P, MP, MP VG, G, VG MP, MP, P
(C) Wrong program MP, P, MP VG, G, G VP, MP, P
(D) Excessive cycle time MP, F, MP F, MG, MG G, MG, G
(E) Wrong process F, F, MP MG, MG, G G, VG, G
(F) Damaged goods MG, MG, F MG, G, MG MP, MP, F
(G) Wrong part P, MP, VP VG, VG, VG VP, MP, P
(H) Incorrect forms VP, VP, P VP, VP, VP VP, VP, VP

Table 5
Fuzzy FMEA analysis using Fuzzy TOPSIS integrated with FAHP.

PFM Fuzzy TOPSIS Scores

Severity Occurrence Detection
wS wO wD

.468 .201 .331

(A) (2.33, 4.33, 6.33) (4.33, 6.33, 8.33) (6.33, 8.33, 9.66) .219
(B) (.67, 2.33, 4.33) (8.33, 9.67, 10) (.67, 2.33, 4.33) .146
(C) (.67, 2.33, 4.33) (7.67, 9.33, 10) (.33, 1, 2.33) .129
(D) (1.67, 3.67, 5.67) (4.33, 6.33, 8.33) (6.33, 8.33, 9.66) .207
(E) (2.33, 4.33, 6.33) (5.67, 7.67, 9.33) (7.67, 9.33, 10) .236
(F) (4.33, 6.33, 8.33) (5.67, 7.67, 9.33) (1.67, 3.67, 5.66) .216
(G) (.33, 1.67, 3.67) (9, 10, 10) (.33, 1.67, 3.66) .132
(H) (0, 0.33, 1.67) (0, 0, 1) (0, 0, 1) .028

Table 7
Weights of the risk factors with respect to the considered cases.

Risk factors Case 0 Case 1 Case 2 Case 3 Case 4

O .468 .6 .5 .4 .4
S .201 .2 .25 .3 .2
D .331 .2 .25 .3 .4

Table 8
Ranking results of Failure Modes with respect to the considered cases.

PF Case 0 Case 1 Case 2 Case 3 Case 4

A 2 3 3 2 2
B 5 5 5 5 5
C 7 6 7 7 7
D 4 4 4 4 3
E 1 2 1 1 1
F 3 1 2 3 4
G 6 7 6 6 6
H 8 8 8 8 8
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Fig. 3. Sensitivity analysis for fuzzy FMEA.
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evaluated the potential failure mode non-conforming material as
fair (F), fair (F), and medium poor (MP) respectively for severity
(S), fair (F), medium good (MG), and medium good (MG) respec-
tively for occurrence (O), and good (G), medium good (MG) and
good (G) respectively for detection (D). In the next step, by using
weight vector of the risk factors obtained through FAHP, and the
fuzzy evaluations of each risk factor with respect to PFMs, fuzzy
TOPSIS is utilized as illustrated in Table 5. The closeness coefficient
values found in the method are used as scores. Finally, as shown in
Table 6, the scores are ranked and results show that the most
important failure mode is ‘‘wrong process’’ (E).

A sensitivity analysis by changing the weight of risk factors is
calculated according to information given in Table 7. For example
in Case 0 shows the original weight values of the risk factors while
the other cases show different weight values for possible
situations. The results for ranking the PFMs for different cases
are represented in Table 8 and Fig. 3.

Fig. 3 and Table 8 indicates that in four of five cases the most
important failure mode is Wrong Process. In Case 1, as the weight
of severity is the highest, Wrong Process failure mode is the second
Table 6
Ranking of failure modes.

PFM (A) (B) (C) (D) (E) (F) (G) (H)

Scores .219 .146 .129 .207 .236 .216 .132 .028
Ranking 2 5 7 4 1 3 6 8
most important failure mode. In Case 0, Case 4 and Case 5 Non-Con-
forming Material is the second most important failure mode. It is
also ranked the third in other cases. In all five cases, Wrong Die is
in ranked the fifth and Incorrect Forms is ranked the eighth.
5. Conclusion

FMEA, designed to provide information for risk management
decision-making, is a widely used engineering technique in indus-
tries. In FMEA potential failure modes are determined and can be
evaluated by risk factors named severity, occurrence, and detec-
tion. In a typical FMEA, the risk priority number of each failure
mode is obtained by the multiplication of crisp values of the risk
factors. However, in the literature the crisp values of RPNs have
been considerably criticized for a many reasons such as ignoring
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relative importance among the risk factors, imprecisely evaluation,
questionable multiplication procedure and obtaining RPN values
not big enough with two factors with very low risk value but a fac-
tor highly risky.

Due to the criticisms for RPN calculation in literature, a fuzzy ap-
proach is considered for FMEA analysis by its superiority over the
traditional approach. In this study, fuzzy TOPSIS based FAHP is uti-
lized to get the scores of PFMs, which are ranked to prioritize the
failure modes. The results are used to find out the most important
and risky PFM that would be handled at first glance. In the literature
most of the studies consider fuzzy rule based systems for fuzzy
FMEA whereas this study applies a model of fuzzy TOPSIS integrated
with FAHP. In addition to allowing experts to evaluate the risk
factors of each potential failure mode in linguistic variables, the
advantage of using this model considers the importance of the risk
factors. As a managerial implication the proposed model can be
applied to any case for providing information for risk management
decision-making in industrial and service organizations.

For further research, the results of our study can be compared
with that of other fuzzy multi-criteria techniques like fuzzy
ELECTRE, fuzzy PROMETHEE, or fuzzy VIKOR.

References

Ben-Daya, M., & Raouf, A. (1996). A revised failure mode and effects analysis model.
International Journal of Quality and Reliability Management, 13(1), 43–47.

Bowles, J. B. (2004). An assessment of PRN prioritization in a failure modes effects
and criticality analysis. Journal of the IEST, 47, 51–56.

Bowles, J. B., & Pelaez, C. E. (1995). Fuzzy logic prioritization of failures in a system
failure mode, effects and criticality analysis. Reliability Engineering and System
Safety, 50, 203–213.

Braglia, M. (2000). MAFMA: multi-attribute failure mode analysis. International
Journal of Quality and Reliability Management, 17(9), 1017–1033.

Braglia, M., & Bevilacqua, M. (2000). Fuzzy modeling and analytic hierarchy
processing as a means to quantify risk levels associated with failure modes in
production systems. Technology, Law and Insurance, 5(3–4), 125–134.

Braglia, M., Frosolini, M., & Montanari, R. (2003). Fuzzy TOPSIS approach for failure
mode, effects and criticality analysis. Quality and Reliability Engineering
International, 19, 425–443.

Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17, 233–247.
Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP.

European Journal of Operational Research, 95(3), 649–655.
Chang, C. L., Liu, P. H., & Wei, C. C. (2001). Failure mode and effects analysis using

grey theory. Integrated Manufacturing Systems, 12(3), 211–216.
Chang, C. L., Wei, C. C., & Lee, Y. H. (1999). Failure mode and effects analysis using

fuzzy method and grey theory. Kybernetes, 28, 1072–1080.
Chen, C. (2000). Extensions of the TOPSIS for group decision-making under fuzzy

environment. Fuzzy Sets and Systems, 114, 1–9.
Chen, S. J., & Hwang, C. L. (1992). Fuzzy multi attribute decision making (lecture notes

in economics and mathematical system series) (Vol. 375). New York: Springer-
Verlag.

Chena, C.-T., Lin, C.-T., & Huangb, S.-F. (2006). A fuzzy approach for supplier
evaluation and selection in supply chain management. International Journal of
Production Economics, 102(2), 289–301.

Chin, K. S., Chan, A., & Yang, J. B. (2008). Development of a fuzzy FMEA based
product design system. International Journal of Advanced Manufacturing
Technology, 36, 633–649.

Chu, T. (2002). Selecting plant location via a fuzzy TOPSIS approach. International
Journal of Advanced Manufacturing Technology, 20, 859–864.

Chu, T., & Lin, Y. (2002). Improved extensions of the TOPSIS for group decision
making under fuzzy environment. Journal of Information and Optimization
Sciences, 23, 273–286.

Chu, T. C., & Lin, Y. C. (2009). An interval arithmetic based fuzzy TOPSIS model.
Expert Systems with Applications, 36, 10870–10876.
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