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A B S T R A C T

Crop protection is the science and practice of managing plant diseases, weeds and other pests. Weed manage-
ment and control are important given that crop yield losses caused by pests and weeds are high. However,
farmers face increased complexity of weed control due to evolved resistance to herbicides. This paper first
presents a brief review of some significant research efforts in crop protection using Big data with the focus on
weed control and management followed by some potential applications. Some machine learning techniques for
Big data analytics are also reviewed. The outlook for Big data and machine learning in crop protection is very
promising. The potential of using Markov random fields (MRF) which takes into account the spatial component
among neighboring sites for herbicide resistance modeling of ryegrass is then explored. To the best of our
knowledge, no similar work of modeling herbicide resistance using the MRF has been reported. Experiments and
data analytics have been performed on data collected from farms in Australia. Results have revealed the good
performance of our approach.

1. Introduction

The data-driven economy with its emphasis on developing in-
telligent sensing, instrumentation and machines is expected to play a
transformative role in agriculture and smart farming systems. Farming
systems are affected by various factors like environmental conditions,
soil characteristics, water availability and harvesting practices. Other
important issues which have to be mitigated for include managing plant
diseases, weeds and other pests. Traditionally, these factors and issues
have been managed by the farmers own expertise and experience. The
emergence of new trends like the Internet-of-Things (Gubbi et al., 2013;
Da Xu et al., 2014) enable farmers to take a data-driven approach to
collect vast amounts of information from instrumented sensors about
the status of their farms (soil, water, crops, etc.) to improve farm yield
and mitigate risks from weeds, pests and diseases. In addition to data
collected from traditional sensors, more advanced sensing techniques
which are being increasingly deployed for smart farming systems in-
clude proximal, airborne and satellite-based sensors.

The growing popularity of sensing techniques include RGB imaging,
thermal, near-infrared (NIR), hyperspectral and multispectral imaging
which can be ground-based or mounted on airborne drones to capture
images of the farm. These imaging sensors contribute to the large
amounts of the various types of data which have to be analyzed to
derive value from the collective farm information. Efficient storage and

analytics solutions need to be developed to handle the data generated
by these near real-time sensing and instrumentation platforms. The
enormous volume, variety, and velocity of data generated from sensors
and real-time platforms in smart farming systems lead to a problem
termed as ‘Big data’ (Wolfert, 2017; Chen and Zhang, 2014). To address
the issue of Big data generated from large-scale networked sensing
systems, the authors (Ang and Seng, 2016) use the term ‘Big sensor
data’ and give discussions for potential applications in smart cities (Ang
et al., 2017). We anticipate that Big sensor data systems will play an
increasingly important role in modern agricultural applications.

One of the fastest growing areas under the discipline of ‘Artificial
Intelligence’ (AI) is machine learning. The field of machine learning is
becoming increasing popular and offers the solution to address the
challenges of Big data. A general definition of machine learning refers
to a group of modeling techniques or algorithms that can learn from
data and make determinations without human intervention. Machine
learning techniques are typically useful in situations where large
amounts of data are available and relate to the output quantities of
interest. For Big data problems, machine learning provides a scalable
and modular strategy for data analysis.

Crop protection is the science and practice of managing plant dis-
eases, weeds and other pests (Oerke, 2012; Schut, 2014). This paper
addresses the issue of Big data and machine learning for crop protec-
tion. In this paper, some research efforts in crop protection or weed
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control using Big data and machine learning are first reviewed. Various
machine learning approaches including discriminative/generative and
supervised/unsupervised are also reviewed. This is followed by ex-
ploring the potential of a specific machine learning technique for her-
bicide resistance modeling using Markov random fields (MRF) models.
The MRF has been frequently used in image, texture and pattern ana-
lysis applications. Some examples include Geman and Geman (1984),
Johansson (2001), Geman and Graffigne (1987) and Li (2001). In image
analysis, the lattices are often regular (e.g. typically modeling pixel
coordinates in an image).

There have been some attempts in modeling environmental and
agricultural datasets using the auto-logistic models (Zhu et al., 2005;
Gumpertz et al., 2000). For environmental datasets, in most if not all
situations, the lattices considered are irregular (e.g., shires, counties,
states). The irregularity of the data lattices increases the challenges for
modeling environmental and agricultural datasets compared with
image analysis applications. Our approach aims to model the herbicide
resistance of annual ryegrass on a set of explanatory variables while
taking into account the spatial autocorrelation among neighboring
shires. To the best of our knowledge, no similar work of modeling
herbicide resistance using the MRF in machine learning has been re-
ported so far. The autobinomial model (Besag, 1974, 1975) is used to
model MRFs where the response variable consists of count data. This
model with irregular lattice has been rarely applied to applications in
agriculture. Experiments and data analytics are conducted to confirm
the potential of the proposed MRF approach for modeling herbicide
resistance from data collected from farms in Australian shires.

The remainder of the paper is organized as follows: Section 2 pre-
sents a review of Big data applications, data analytics and machine
learning techniques. The aim of this section is to introduce the reader to
representative studies and applications in Big data and machine
learning in crop protection, and also to discuss a taxonomy of machine
learning approaches for Big data which can be applied. Section 3 con-
tinues the discussion using a particular technique (the MRF) for ma-
chine learning modeling which takes into account the spatial compo-
nent and irregular lattice in the data set. Section 4 illustrates the
approach with a case study for modeling herbicide resistance of rye-
grass using the MRF. Results and discussions on empirical data col-
lected from farms in Australia are presented in Section 5. Finally, some
concluding remarks are given in Section 6.

2. Review of Big data and machine learning approaches in crop
protection

This section gives an overview of technologies and potential appli-
cations in crop protection using Big data and machine learning ap-
proaches. The section discusses four applications in crop protection: (i)
Prediction and modeling of herbicide resistance; (ii) Detection and
management of invasive species and weeds; (iii) Decision support sys-
tems for crop protection; and (iv) Robotics and autonomous weed
control systems. Some major components in Big data such as data ac-
quisition, storage and analytics are also briefly discussed. This is fol-
lowed by a review of some popular machine learning techniques in-
cluding discriminative/generative and supervised/unsupervised
learning approaches. Fig. 1 shows an overview of the crop protection
applications and its links with Big data and machine learning which
also gives a summary outline of this section.

2.1. Big data & machine learning approaches in crop protection

Table 1 shows a summary for representative studies and applica-
tions in Big data and machine learning for crop protection. The appli-
cations have been briefly summarized into four categories (herbicide
resistance modeling, detection/management of invasive species/weeds,
decision support systems (DSS) for crop protection and robotics/au-
tonomous weed control.

A recent review by Heap (2014) showed that the extent of herbicide
resistance in agricultural weeds is increasing due to widespread and
persistent use of herbicides in agriculture. In Australia significant re-
search is undertaken to quantify the extent of herbicide resistance,
especially in annual ryegrass (Lolium rigidum) (Boutsalis et al., 2012;
Broster et al., 2011, 2012; Owen et al., 2014). Several researchers have
proposed intelligent-based approaches and techniques to address the
issue of herbicide modeling and prediction. An early study by Diaz et al.
(2005) was to model and predict the heterogeneous distribution of
wild-oat (Avena sterilis L.) density in terms of environmental variables.
The authors used a rule-based model machine learning technique that
performs a genetic search to discover the best rule set according to the
classification instances of an experimental database. The best rule set
using their approach was able to explain about 88% of the weed
variability. The work by Evans et al. (2015), modeled the glyphosate
resistance for the Amaranthus tuberculatus weed using classification and
regression trees (CART) to identify the important relationships among
66 environmental, soil, landscape, weed community and management
variables. The authors showed that Herbicide mixing was strongly
linked with reduced selection for glyphosate resistance.

Machine learning approaches have also been applied towards the
problem of detecting invasive species and weeds. The work by
Lawrence et al. (2006) used random forest classifiers to map and detect
invasive plants (leafy spurge and spotted knapweed) from aerial-based
hyperspectral imagery. The aim of random forest techniques is to build
multiple classification trees by repeatedly taking random subsets of the
data to determine the splits in the classification trees. Using their ap-
proach, the authors reported an overall accuracy from out-of-bag data
of 84% for the spotted knapweed and 86% for the leafy spurge. Schmidt
and Drake (2011) used machine learning techniques to investigate the
biological traits on why some plant genera are more invasive. The au-
thors used boosted regression trees to develop classification models for
each class of invasive plants. The advantage of boosting regression tress
compared with conventional tree-based methods is that the boosting
technique improves the analysis of large data sets containing many
independent variables by combining large numbers of simple models
adaptively to optimize the prediction accuracy. The authors showed
that their approach could explain 24% and 29% of the variation in

Fig. 1. Overview of potential crop protection applications and its links with Big
data and machine learning approaches.
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invasiveness for genera in terms of biotic traits. A recent approach by
Alexandridis et al. (2017) used four novelty detection classifiers to
identify S. marianum between other vegetation in a field from multi-
spectral imagery collected from a mounted UAV. The four classifiers
used were One Class Support Vector Machine (OC-SVM), One Class Self-
Organizing Maps, (OC-SOM), Autoencoders and One Class Principal
Component Analysis (OC-PCA). The authors reported high accuracy
rates of 96.05%, 94.65%, 90% and 94.30% for the OC-SVM, OC-SOM,
OC-PCA and autoencoder classifiers respectively.

A third potential area for applying machine learning and Big data is
in decision support systems (DSS) for crop protection. Earlier ap-
proaches for DSS for crop protection were described by Knight (1997)
using simpler models (e.g. regression). Modern DSS systems often em-
ploy advanced machine learning and Big data techniques to be able to
offer more sophisticated features for crop protection. We briefly discuss
four such DSS – NemaDecide (Been et al., 2005), RIM (Lacoste and
Powles, 2015), BlightPro (Small et al., 2015) and CPO-Weeds
(Sønderskov et al., 2016). NemaDecide is a DSS to support strategic
decisions for the management of potato cyst nematodes. The system
incorporates the mathematical models of nematological theories de-
veloped over a time span of more than fifty years. The models take into
account the plant growth and tolerance, population dynamics, plant
resistance and nematode virulence, and the spatial distribution patterns
and sampling methods. RIM (‘Ryegrass Integrated Management’) is a
model-based DSS for testing the biological and economic performance
of strategies to control ryegrass Lolium rigidum in cropping systems. RIM
includes a population dynamic model and a rule-based model. Aspects
of the ryegrass lifecycle (germination, plant and seed survival, intra and
interspecific competition, seed production, seedbank persistence) are
used in the population dynamic model and the rule-based model links
the different components depending on the specified management
practices. BlightPro is a DSS for potato and tomato late blight man-
agement that enables prediction of disease dynamics based on weather
conditions, crop information and management practices. The BlightPro
DSS provides two forecasting systems for the disease dynamics: (i)
Blitecast to predict the initial occurrence of late blight in northern
temperate climates; and (ii) Simcast which is a forecasting system that
takes into account the host resistance with the weather on late blight
progress and fungicide weathering. Another example of a DSS for crop
protection is CPO-Weeds which is a knowledge-driven DSS developed in
Denmark for weed control including all major crops and available
herbicides. The CPO-Weeds DSS gives herbicide dose recommendations

based on the information contained in a large database of the existing
knowledge of herbicide efficacies.

We conclude this brief review on Big data and machine learning
applications for crop protection by pointing the reader to the increasing
role of robotics and autonomous weed control systems being developed.
Specifically, the review paper by Slaughter et al. (2008) gives a good
overview of this area. Examples of more recent work for autonomous
weed control systems can be found in the experimental prototypes
developed at some Australian universities. The AgBot (Berry and Dixon,
2015) developed at Queensland University of Technology is a golf-
buggy sized robot to help farmers with seeding, fertilizer application
and weed control. The RIPPA (Robot for Intelligent Perception and
Precision Application) (Hollick, 2016) developed at Sydney University
is an autonomous vehicle which has the ability to collect data using
sensors that map the crop area and the detection of weeds.

2.2. Taxonomy of machine learning approaches for Big data

As shown in Fig. 1, there are two general classifications for machine
learning approaches which can be applied towards Big data applica-
tions for crop protection. The approaches can be classified into dis-
criminative or generative and supervised or unsupervised learning ap-
proaches. This section gives a brief review of the different types of
approaches and discusses some popular techniques and algorithms
which are associated with the various learning approaches. The main
difference between discriminative learning models and generative
learning models is that discriminative models are not able to generate
new synthetic data whereas generative models would be able to do so
based on the probabilistic distribution of the model. A disadvantage of
discriminative classifiers is that the relationships to be modeled be-
tween variables are not explicit and explainable (i.e. a blackbox view).
However, discriminative models usually give better performance than
generative models for classification tasks when a large amount of data
is available for training. The current trend of deep learning is a dis-
criminative model. The difference between supervised learning models
and unsupervised learning models is that supervised models require
class or target labels to be used during the training process which is not
required for unsupervised models. Some examples of generative ma-
chine learning models are naïve Bayes, hidden Markov models (HMMs),
Bayesian networks and Markov random fields (MRF) and some ex-
amples of discriminative models are logistic regression, support vector
machines (SVMs), multilayer perceptrons and other traditional neural

Table 1
Big data and machine learning applications in crop protection.

Application Authors Big data & machine learning approach

Modeling & prediction of herbicide
resistance

Diaz et al. (2005) Modeling and prediction of wild-oat (Avena sterilis L.) density for environmental variables using
rule-based with genetic search

Evans et al. (2015) Modeling of glyphosate resistance for Amaranthus tuberculatus using classification and regression
trees (CART) for 66 variables

Detection & management of invasive
species & weeds

Lawrence et al. (2006) Detection of invasive plants (leafy spurge and spotted knapweed) with hyperspectral imagery and
random forest classifiers

Schmidt and Drake (2011) Boosted regression trees to explain 24% and 29% of the variation in invasiveness for genera in
terms of biotic traits

Alexandridis et al. (2017) Four novelty detection classifiers (OC-SVM, OC-SOM, Autoencoder, OC-PCA) to identify S.
marianum between other vegetation in a field from multispectral UAV imagery

DSS for crop protection Been et al. (2005) NemaDecide – DSS for management of potato cyst nematodes using mathematical models of
nematological theories

Lacoste and Powles (2015) RIM – Model-based DSS for testing biological and economic performance of strategies to control
ryegrass

Small et al. (2015) BlightPro – DSS for prediction of disease dynamics based on weather, crop, management
information. Two systems are implemented (Blitecast amd Simcast)

Sønderskov et al. (2016) CPO-Weeds – Knowledge-driven DSS developed in Denmark for weed control including all major
crops and available herbicides

Robotics & autonomous weed control Berry and Dixon, 2015, Hollick,
2016

AgBot – Golf-buggy sized robot developed at QUT, RIPPA – autonomous vehicle developed at
Sydney University
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networks, and conditional random fields (CRF). Although there are
some exceptions, generative models are usually associated with un-
supervised learning and discriminative models are usually associated
with supervised learning. The naïve Bayes classifier is an example of a
generative and supervised learning model. The well-known k-means
algorithm for data clustering is an example of a discriminative and
unsupervised learning model. The remainder of this section briefly re-
views the generative and discriminative approaches using two popular
machine learning approaches for agriculture and crop protection: (i)
probabilistic graphical models (PGMs); and (ii) support vector ma-
chines (SVMs) and traditional neural networks. We also briefly discuss
some agricultural applications which have used these models. This then
leads on to the next two sections for further discussions and the detailed
mathematical problem formulation using our proposed MRF approach
to take into account the spatial relationships for modeling the herbicide
resistance of ryegrass in Australian shires.

Probabilistic graphical models (PGMs) are illustrative of the gen-
erative learning approach in machine learning. In the field of computer
science, graph structures are often used to model pairwise relations
among objects. In this context, a graph is made up of vertices (nodes)
which are connected by edges (arcs). Two popular approaches for PGMs
are Bayesian networks which uses a directed acyclic graphical model
and Markov networks (or Markov random fields, MRF) which uses an
undirected graph model. Bayesian networks can be considered as a
statistical model that represents a set of random variables and their
conditional dependencies over a directed acyclic graph. The support
vector machine (SVM) and traditional artificial neural network classi-
fiers are illustrative of the discriminative learning approach in machine
learning. SVMs use linear models to implement nonlinear class
boundaries by first transforming the input into a new space using kernel
functions. Two common functions which are often employed for these
purposes are the radial basis function (RBF) and sigmoid kernels. As
commented in Witten et al. (2016), a SVM using the RBF kernel cor-
responds to the RBF network and a SVM using the sigmoid kernel
corresponds to the traditional multilayer perceptron (MLP) neural
network. Table 2 shows some sample applications of using generative
and discriminative learning models in agriculture.

3. Markov random field models

This section discusses the mathematical formulation of Markov
random fields (MRF) which will be used for the herbicide resistance
modeling in Section 4. As agricultural data are often non-Gaussian and
spatially correlated, the specification of the joint probability distribu-
tion is often a challenging task. The MRF model only requires specifi-
cation of the conditional distribution at the local levels, which often
admits a simple form and thus increases the feasibility of analysis.
Furthermore, the MRF is able to handle spatial data with irregular
lattice spacing.

Denote by sY ( ) the random variable associated with site ∈ ⊂s S d,
where =d 2 typically. Suppose there are n sites, a site sj is said to be a
neighbor of another site si, where ≠i j, if they are “close” enough, and

we define Ni as the set ≠j s is a neighbour ofs j i{ : , }j i , the set containing
all neighbors of si. If ∈j Ni, then ∈i Nj. If all the n sites ⋯s s s, , , n1 2 are
regularly spaced such as pixels in an image, the neighbor system is
usually defined using the nearest horizontal and vertical sites. If the
sites are irregularly spaced, the neighbor system is usually defined ac-
cording to the distance between two sites. In the theory of Markov
random fields, it is assumed that the joint probability density function
of ⋯Y s Y s Y s( ), ( ), , ( )n1 2 can be specified by the conditional probability
density functions. In particular, the conditional probability density
function of Y s( )i given all other ≠Y s j i( ),j , depends only on the sites
which are neighbors of si. That is,

≠ = ∈P Y s Y s j i P Y s Y s j N( ( )| ( ), ) ( ( )| ( ), )i j i j i (1)

The validity of such a scheme is shown using the Hammersley-
Clifford theorem (Besag, 1974). It is also well known that a MRF can be
equivalently characterized by a Gibbs distribution (Li, 2001).

From Eq. (1), it is clear that the conditional probability functions
depend only on local information, which effectively reduces the model
complexity. The pseudo-likelihood approach described below further
enhances computational efficiency and is applicable even for large
datasets (Bevilacqua et al., 2012).

Depending on the sample space of Y , various auto-models, including
the auto-logistic, autobinomial, auto-Poisson, and auto-Gaussian
models, have been proposed. For example, Zhu et al. (2005) applied the
auto-logistic model on a set of binary data representing the outbreaks of
southern pine beetles. To model a sum of binary outcomes, the binomial
distribution is often chosen. To incorporate the spatial information, the
autobinomial model, which will be reviewed below, is a natural way to
proceed. It turns out that the autobinomial model is analogous to the
ordinary logistic regression model, which is familiar to most practi-
tioners.

3.1. Autobinomial model

Suppose there are mi “experiments” at site si. For each experiment,
the probability of “success” is pi, which is possibly dependent on a set of
qcovariates and neighbouring values. If Y represents the number of
“successes” so that ∈ ⋯Y m{0, 1, 2, , }i , we would naturally assume
Y s( )i follows a conditional binomial distribution such that

⎜ ⎟= = ⎛
⎝

⎞
⎠

− −P Y s y m
y

p p( ( ) ) (1 ) .i i
i

i
i
y

i
m yi i i

(2)

In (2), pi takes the form

=
+ ∑ + ∑

+ + ∑ + ∑
= =

= =
p

α β x γ y

α β x γ y

exp( )

1 exp( )i
i
q

i i j
n

ij j

i
q

i i j
n

ij j

1 1

1 1 (3)

where x represents the values of the covariates, β the corresponding
coefficients and γij measures the strength of spatial interaction. It is
further assumed that =γ γij ji and =γ 0ij except when ∈j Ni. When the
sites are irregularly spaced, the spatial dependence usually gets weaker
when the distance between sites i and j, dij, gets larger. Hence,

Table 2
Generative and discriminative models in agricultural applications.

Learning model Authors Agricultural application

Markov random field (MRF) Shaikh et al., 2016 Content-based grading of fresh fruits
Yue et al., 2016 Segmentation of rice planthopper pests based on imaging technology

Bayesian network Bi and Chen, 2010 Modeling crop disease for corn borer in maize production
Gandhi et al., 2016 Prediction of rice crop yields
Grotkiewicz, 2017 Forecasting future models of farms and development of economic and agricultural indicators

SVM Filippi et al., 2009 Semi-autonomous estimation of vegetation endmembers from hyperspectral images
Ustuner et al., 2015 Landuse classification using high-resolution rapideye images

SVM & MLP Peña et al., 2011 Task of classifying nine major summer crops in Central California in an object-based framework from remote-sensing images
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following Cressie (1993), it is assumed that

= ⎧
⎨⎩

< ≤
>

−

γ
γd d d

d d
, 0 ;

0, .ij
ij ij max

ij max

1

(4)

In other words, ∈j Ni only if the distance between the two sites is
less than a threshold d .max

The autobinomial model reduces to an auto-logistic model if =m 1i
for all i. If all =γ 0ij , it reduces to the usual logistic regression model.
Hence, the autobinomial model can be considered as a logistic regres-
sion model with the spatial effects taken into account.

3.2. Parameters estimation

Parameters can be estimated via maximizing the log pseudo-like-
lihood function, which is the natural logarithm of the product of all
conditional likelihood functions. Let Q be the vector of parameters,

= ⋯⊤ ⊤Q α β β γ( , , , , )q1 . The maximum pseudo-likelihood estimate

(MPLE), Q , is the vector Q which maximizes the function

∑ ⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

+ + − − ⎤

⎦
⎥

=

m
y

y p m y pln ln ( )ln(1 )
i

n
i

i
i i i i i

1 (5)

Such a maximization can be carried out easily using common sta-
tistical software, although the standard errors should be ignored. It is
because the standard errors were computed with the assumption that
the data are independent, which is obviously not the case here.

Another commonly used estimation method is the coding method
introduced by Besag (1974). This method is however more suitable
when the sites are regularly spaced. For irregularly spaced sites which
occur more frequently in environmental and agricultural applications,
MPL appears to be the most natural estimation method. The MPL es-
timators have been proven to be consistent and approach to the true
values as sample size increases (Geman and Geman, 1984; Huang and
Ogata, 2002).

Point estimates are often not sufficient. In practice, the standard
errors are also required so that statistical inferences are possible.
Nonetheless, this issue is not frequently discussed in the literature. In
applications of auto-logistic models for binary responses, Zhu et al.
(2005) and Gumpertz et al. (1997) obtain the standard errors using
parametric bootstrap. However, the procedure is not as straightforward
in autobinomial models. Instead, we propose to use delete-one jackknife
resampling (Friedl and Stampfer, 2002), which recreates sub-samples

by deleting one observation at a time. In particular, we first obtain the
estimate Q based on the full sample. Then, in each of the n steps, we
remove the ith observation from the dataset and obtain an estimate −Q i.
The standard error is given by the formula

 ∑= ⎡

⎣
⎢

− − ⎤

⎦
⎥

=
−se Q n

n
Q Q( ) 1 ( ) ,

i

n

i
1

2
1/2

(6)

where

̂∑= −

=
−Q n Q¯

i

n

i
1

1

4. Methods and performance modeling of herbicide resistance
using Markov random fields: a case study

Herbicide resistance is a serious agricultural issue that threatens the
sustainability of world food production. This section presents a case
study for a machine learning approach to model the herbicide re-
sistance of annual ryegrass on a set of explanatory variable while taking
into account the spatial autocorrelation using the autobinomial model
discussed in Section 3.

Data: The data consist of two parts: (1) data collected through the
herbicide resistance testing service at Charles Sturt University, New
South Wales, Australia from 2001 to 2015, and (2) agricultural survey
data based on each shire obtained from the Australian Bureau of
Statistics (Australian Bureau of Statistics, 2015). Dataset (1) consists of
annual ryegrass samples received for herbicide resistance testing from
farms across southern Australia. The locations of the samples were
determined according to the postcodes, which represents the shires. The
original testing service includes testing for various groups of resistance.
In this paper, we focus on Group A “dim” (cyclohexandione) resistance.
Further details of the testing service can be found in Broster and Pratley
(2006). Originally the dataset contains 173 shires. To avoid bias, we
have removed shires which produced less than 3000 ha of winter crops
and had less than 4 samples tested. The final dataset contains 121 shires
from four states (New South Wales, Victoria, South Australia and
Western Australia). Fig. 2 shows the locations where the samples were
received from. An observation shows that a positive spatial correlation
is apparent as dots of similar sizes tend to cluster around each other.
Dataset (2) comprised winter crops grown, amount of cultivation prior
to sowing, stubble management and predominant soil pH for each shire.
The two datasets were combined and we attempt to evaluate the as-
sociation between the incidence of herbicide resistances across
southern Australia and the farming practices using the autobinomial
model.

Variables: The number of herbicide resistant samples from each
shire s is considered as the response variable, Y s( ). Here,

∈ ⋯Y s m( ) {0, 1, , }i i where mi denotes the total number of sample re-
ceived. Associated with each shire, a number of variables related to
farming practices were obtained from ABS. These include the soil pH,
winter crops grown, amount of cultivation and stubble management.
Since the exact characteristics of the farms where the samples came
from were unknown, we made the assumption that the farms match
with the predominant characteristics of the corresponding shires.
Hence, instead of using the numerical values of the variables, these
variables were categorized and eight indicator variables, X1 to X8, were
introduced for model fitting (as shown in Table 3).

In each shire i, the model used the assumption that the number of
resistant samplesY s( )i followed a binomial distribution with ‘number of
trials’ mi, the number of samples tested, and the ‘probability of success’
piFrom Eqs. (3) and (4), the log-odds under the autobinomial model can
be written as

Fig. 2. Locations where the samples were received. The sizes of the dots are
proportional to the empirical proportions of resistant samples.
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Here, we consider shires with distance within 750 km (roughly one-
quarter of the maximum distance between shires in the dataset) as
neighbors. In other words, =d 750max .

Analysis: The estimation of the model parameters was done using
the maximum pseudo-likelihood approach and the standard errors of
the parameters were estimated using delete-one jackknife resampling as
described in Section 3. The covariates in the final model were selected
using backward selection. Specifically, all covariates were included in
the model at the beginning. At each iteration, if there were covariates
with p-values greater than 0.2, the covariate with the greatest p-value
was removed. The process is repeated until all p-values were less than
0.2. The cut-off point 0.2 was chosen to avoid eliminating some im-
portant covariates. Such a cut-off point was reported to be suitable (e.g.,
Mickey and Greenland, 1989; Maldonado and Greenland, 1993). In this
case, covariates were removed if the change in residual deviance was
less than 1.64 (the cut-off point corresponds to a p-value of 0.2 under
chi-squared distribution with one degree of freedom). If the spatial ef-
fect was removed from the model, the ordinary logistic regression
model could be applied instead. The estimation was carried out using
the glm command in R (R Core Team, 2017).

Performance Evaluation: To assess the potential benefit of in-
corporating the spatial information, the ordinary logistic regression
model (that is, =γ 0 in Eq. (7)) was also fitted. From each of the fitted
autobinomial model and the fitted ordinary logistic regression model,
the predicted proportions of resistant samples can be obtained. Denote
by pi

ethe empirical proportion of resistant samples in shire i and pi the
predicted proportion under either model, the performance of the model
could be assessed using the mean absolute deviation (MAD):


=

∑ −=MAD
p p| |

121
,i i

e
i1

121

(8)

or the mean squared error (MSE):


=

∑ −=MSE
p p( )

121
.i i

e
i1

121 2

(9)

Note that for both measures, a lower value indicates better perfor-
mance.

5. Results and discussions

This section presents the results for the experiment in the previous
section. Table 4 shows the maximum pseudo-likelihood estimates and
the associated p-values at each step in the backward selection proce-
dure. Note that with how the indicator variables were introduced, a
‘baseline’ shire in the model would be a shire which is located in
Western Australia, with the soils predominately alkaline, with crops
other than wheat predominately grown, predominately had no culti-
vation, and stubbles were predominately managed other than left intact

or incorporated. Through taking the exponential function, the effects of
the variables can be assessed through the change in odds ratio, as in an
ordinary logistic regression model. The backward selection stopped
after the third step, where all p-values were less than 0.2. Variables X3
and X4 were removed, indicating that the odds of developing herbicide
resistance for samples from Victoria and South Australia do not differ
significantly from those samples from Western Australia. However, the
odds of developing resistance in NSW is 0.23 times that in WA. Com-
pared with a predominantly alkaline shire, samples from a pre-
dominantly acidic shire has 1.52 times the odds of developing Group
A’dim’ herbicide resistance. Winter crops were also found to be sig-
nificantly associated with incidences of Group A’dim’ herbicide re-
sistance. In particular, the odds of developing resistance for samples
from shires predominately growing wheat are 1.77 times that from
shires predominately growing other crops.

For farming practices, the odds of developing Group A’dim’ re-
sistance in shires that are predominately having at least one cultivation
is 0.63 times that in shire that predominately have no cultivation. The
odds of developing resistance in shires where the stubbles were pre-
dominately left intact are 0.26 times that in shires where the stubbles
were managed using methods other than left intact or incorporation. It
should be noted that the spatial dependence parameter γ was found to
be significantly different from zero. A positive value means that it is
likely to observe higher number of incidence in a shire if there are
higher incidences of resistance in neighboring shires. The MADs for the

Table 3
Description of variables.

Characteristic Variable Description

Soil pH X1 Coded 1 if the predominant soil pH is acidic; 0 if the pH is alkaline

State of Shire X2 Coded 1 if the shire is in NSW; 0 otherwise
X3 Coded 1 if the shire is in VIC; 0 otherwise
X4 Coded 1 if the shire is in SA; 0 otherwise

Winter Crop X5 Coded 1 if the predominant crop is wheat; 0 otherwise

Amount of Cultivation X6 Coded 1 if the predominant number of cultivation prior to sowing is at least one; 0 if none

Stubble Management X7 Coded 1 if the predominant stubble management method is “left intact”; 0 otherwise
X8 Coded 1 if the predominant stubble management method is “incorporated”; 0 otherwise

Table 4
The MPLE of the coefficients and the p-values (in parentheses) at each in-
dividual step in backward selection for the fitted autobinomial model. The last
column shows the result under the ordinary logistic regression model.

Variable Autobinomial Logistic

Step 1 Step 2 Step 3

Intercept −1.06
(0.16)

−1.04
(0.15)

−1.10
(0.12)

−0.73 (0.01)

X1 0.45
(0.02)

0.45
(0.02)

0.42
(0.02)

0.48 (< .001)

X2 −1.41
(0.03)

−1.44
(0.01)

−1.49
(0.01)

−1.19 (< .001)

X3 0.03
(0.92)

– – –

X4 −0.25
(0.29)

−0.26
(0.26)

– −0.40 (0.002)

X5 0.61
(0.04)

0.61
(0.04)

0.57
(0.04)

0.64 (< .001)

X6 −0.38
(0.03)

−0.37
(0.03)

−0.46
(0.01)

−0.42 (0.003)

X7 −1.32
(0.03)

−1.34
(0.02)

−1.34
(0.02)

−1.42 (< .001)

X8 −0.64
(0.05)

−0.64
(0.05)

−0.54
(0.09)

−0.82 (< .001)

Spatial 0.14
(0.17)

0.14
(0.17)

0.18
(0.03)

–
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autobinomial model and the ordinary logistic regression models were
0.0986 and 0.0992 respectively while the MSEs for both models were
0.018. Thus, the autobinomial model showed an equally good perfor-
mance based on MSE and a slight improvement in terms of the MAD.
This demonstrated the potential advantage of including the spatial in-
formation in modeling herbicide resistance.

A critical component of any MRF model is the specification of the
neighborhood. In our application, two sites are considered to be
neighbors if the distance between them is less than a threshold
d .max Fig. 3 shows how the MAD and MSE of the autobinomial model
change when the maximum distance is altered. Both measures drops
initially when the maximum distance increases. It indicates that, when
spatial information are taken into account, the model performs better.
However, when the maximum distance keeps on increasing and more
sites are included as neighbors, the model performance worsens. It
happens naturally as a result of including more irrelevant information.
For example, the incidences occurred in New South Wales should have
minimal effects on the incidences in Western Australia. The choice of
the threshold should therefore be large enough to cover the necessary
spatial interaction, but small enough to avoid overfitting.

6. Conclusions and future work

The outlook for Big data and machine learning in crop protection is
very promising. Machine learning provides a powerful framework to
assimilate data. The appropriate choice and usage of machine learning
is important to obtain the maximum possible benefits of these sophis-
ticated approaches. This paper has provided an overview of the re-
search efforts in crop protection or weed control using Big data. Various
machine learning techniques including supervised and unsupervised
approaches have also been reviewed. A case study has been illustrated
for herbicide resistance modeling using a Markov random field model.
The incidence of herbicide resistance of annual ryegrass on a set of
explanatory variables while taking into account for the spatial com-
ponent has been proposed and modeled. Experiments and data analytics
have been conducted to confirm the potential of the MRF approach for
modeling herbicide resistance. The results demonstrated that the pro-
posed autobinomial model allows for easy interpretation, which is si-
milar to that of the widely used logistic regression models. Further
research will be conducted on the optimal choice of the threshold dis-
tance. Charles Sturt University has operated a commercial herbicide
resistance testing services and accumulated data over 25 years. Further
data analytics will be performed using more innovative machine
learning techniques in the future to gain further insights into the useful
information.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.compag.2018.06.008.
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