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ABSTRACT

In this paper, a study of the effect of a group of transformer measurements on Health
Index (HI) calculation is presented. Different methodologies for selecting the most
efficient group of diagnostic measurements used in classifying transformer HI are
investigated. A Binary Cat Swarm Optimization (BCSO) technique is undertaken
based on Support Vector Machines (SVM). The technique depends on selecting the
optimal parameters for SVM. The effect of selecting HI classes as well as class’s
boundaries is also studied. The measurements of fourteen diagnostic transformer tests,
including the furan analysis, dissolved gas analysis, and further oil analysis for 724
distribution transformers are studied, and the corresponding HI is calculated
according to industrial standards. The model renders the best-selected group of
measurements that assist in the formulation of the health index with minimum error
and high confidence.

Index Terms - Asset management, condition monitoring, oil insulation, insulation
testing, support vector machines, optimization.

1 INTRODUCTION

TRANSFORMERS are one of the most important asset
in the power utility because of their relatively higher initial

Traditionally HI is determined through a combination of the
utmost count of available measurement parameters. These
measurements give a detailed information about each part of
the transformer and therefore it depicts the current status of the

price and their proximity to customers. Failure of these assets
can often be disastrous and results in direct and/or indirect
financial and technical burden on the industrial, commercial,
and residential sectors.

Transformer condition monitoring improves the system
reliability; knowledge about the general condition of the
system transformers helps in calculating transformer risk of
failure. HI is generally used to summarize in numerical form
the transformers’ reliability for the purpose of evaluating,
ranking and comparing different transformers. Long-term
degradation of a transformer cannot be easily determined by
routine inspection. HI is a good tool to monitor transformer
degradation. HI assessment relies on collecting different
measurement parameters about the transformer, including the
dielectric and thermal conditions, the mechanical condition as
well as the electrical condition [1-2].
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transformer conditions.

In general, HI is calculated using traditional schemes such
as Ranking Method (weighting factors) [2-3]. The uncertainty
for determining the weight for each test is considered as the
main drawback of this method.

The use of intelligent computational methods overcomes the
problem of weights. Such methods include the Fuzzy Logic [1,
4], Neural Networks [5], Multivariate Analysis [6-7], Entropy
Weight Health Index Method [8-9], Equipment Health Rating
Program (EHR) [10] or DiagConsole software [11] methods.
To date, the problem of unavailable transformer measurements
is not resolved by utilizing intelligent methods.

HI calculation is based on on-line as well as off-line
transformer’s measurement date. The accuracy of the HI
calculation depends on the availability of the updated
measurement data. Since some of the transformers’
measurements are very expensive they are not done
frequently, which affect the accuracy of the HI using the
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above methods. Selecting the most effective transformers’
measurements amongst the online and offline measurements
that lead to an acceptable HI result is a challenge. Some
attempts were reported in the literature for determining the
most significant subsets of oil measurements. In [12] Common
factor analysis and Minimum-Redundancy-Maximum-
Relevance (mRMR) feature selection techniques are adopted
to select the subset of the most significant oil measurements;
thus assisting the SVM algorithm in the HI classification
process. Results show an improvement in HI classification
accuracy, by the reduction of SVM input features count from
twelve to seven. Yet, the process was based on the specific
contributions of each measurement based on mutual
information. The mutual information values and the effect of
the selection of the HI group boundaries on the chosen
measurements were not addressed in the paper.

In this research, a new approach for the selection criteria of
the best measurements is presented with the utilization of a
readily automobile method. The new approach is based on the
selection of the best group of measurements that calculate the
most informative HI. A specific measurement is chosen
amongst the group based on the mutual information between
various measurements and not solely based on the mutual
information between the HI and this specific measurement. In
addition; the change of transformer’s HI group boundaries that
form a foundation for the selection criteria of HI parameters is
investigated.

The aim of this research is to automate the transformer
condition assessment process; thus making it an easily
implementable method. The capability of each individual
measurement to classify HI is examined. An efficient
supervised classification model is developed using Binary Cat
Swarm Optimization technique (BCSO) in combination with
Support Vector Machine learning (SVM). The automobile
technique should be capable of filtering the different
transformer field diagnosis measurements and selecting the
optimal least count of available online measurements. The
selected measurements represent an efficient description of the
transformer condition; therefore, are capable of classifying
successfully HI into three or five specified groups with high
confidence. The effect of the change in the boundaries of the
HI groups is investigated and presented.

In this paper, we utilize actual field measurements for 724
working distribution transformers within the distribution
network of an industrial facility. The undertaken diagnostic
measurements are hydrogen content (H,), carbon monoxide
(CO), carbon dioxide (CO,), methane (CH,), acetylene (C,H,),
ethane (C,Hg), ethylene (C,Hy), color, the water content
(H,0), oil breakdown voltage (BDV), acidity, interfacial
tension (IFT) dissipation factor (DF) and furans content
(FFA); where the health index (HI) is graded from zero for a
brand new transformer to unity for a transformer at the end of
its lifetime and should be replaced immediately. The technique
is tested on a different group of data provided for
measurements from a different set of transformers [13].

The paper is divided into six sections. In section II, the
undertaken binary CSO technique is presented. Section III
demonstrates the data pre-processing procedure. In section IV,
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the application of BCSO based SVM and the undertaken case
studies are explained. Section V provides the discussion and
Section VI concludes the paper.

2 BINARY CAT SWARM OPTIMIZATION
(BCSO)

Cat Swarm Optimization technique (CSO) is utilized to
select the best group of transformer measurements. CSO was
utilized to enhance the reliability of distribution system. The
performance of the CSO was compared before with those
obtained by genetic algorithm (GA) and particle swarm
optimization (PSO). Results indicate that CSO is a better
candidate for finding the global best solutions in comparison
to GA and PSO, but it takes more time to complete the same
number of iterations than GA and PSO algorithms [14].

Figure 1 shows the flow chart of CSO process [15-16]. CSO
algorithm models the major two behaviors of cats into two sub
models nominated by seeking mode and tracing mode. Similar
to population based optimization techniques, the search space
will be presented by the user as a pre-defined number of cats.
Each cat has its own position depending on the search space
dimensions. Velocities for each dimension, a fitness value, and
a flag to identify whether the cat is in the seeking mode or the
tracing mode are specified. CSO algorithm keeps the best
solution of all cats until it reaches the end of iterations or the
fitness limit; hence, the final solution would be the best

Initialize positions, velocities ]‘
and flag for each cat

i

Evaluate the fimess of each cat
according to fimess function and
keep the position of cat which
have the best fitness

Apply Cat , into seeking
mode process

' @ ¥
[ Re-pick cats from seeking ]

and tracing modes

+

Evaluate the fimess of each cat
according to fitness function and
update the position of cat which

have the best fimess

Apply Cat . into tracing
mode process

No

Terminate?

Yes
End

Figure 1. Flow chart of BCSO process.
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position of one of the cats. A detailed information about
discrete seeking and tracing modes can be found in [13, 17]. In
this work, we utilize the Binary Cat Swarm as an optimizer
due to the robustness and the reliable results obtained in [18].
BCSO is automated to select the best group of transformer
measurements as well as optimizing the SVM parameters.
Section IV explains in detail the adopted technique.

3 DATAPRE-PROCESSING

SVM input data is presented by the fourteen transformer
measurements mentioned above, while output data is
presented by the transformer HI. HI is calculated using
industrial standards as in [1, 4, 19]. The calculation dissolved
gas factor (DGAF), oil quality factor (OQF) will be according
to equations (1-2):

7 7
DGAF = Zsi *Wi/Zwi (1)
i=1 i=1
6 6
OQF=ZS]-*VVJ-/ZVV]- )
j=1 =1

where; S; and S; are the scores decided by test results. W; and
W; represent the weighting factor of each test measurement.

The paper insulation factor (PIF) is calculated based on the
amount of FFA in oil [1]. HI is calculated by combining
DGAF, OQF and PIF according to equation (3):

3 3
i=1 i=1

where; F; represents DGAF, OQF and PIF quality factors and
K represents weighting for each quality factors.

The undertaken data base includes 724 transformer samples,
those are divided into 3 unique databases by ratios of 60%,
20% and 20% respectively. Those are used for training,
validation and testing of the SVM model respectively. Data
normalization is applied by dividing all samples by their
corresponding service limit identified by IEEE, IEC and
ASTM [20-23].

Categorizing transformers according to the available HI
values is the following essential step. In earlier research efforts
[3, 10, 19, 24-27], transformer HI divides the transformer
condition to 3, 4 or 5 classes. Table 1 shows the classes and its
corresponding boundaries as has been widely used.

Table 1. Transformer HI Categorization - Case (I)

Class Boundaries HI state Samples
count
A 0.00 <HI<0.15 Very Good 409
B 0.15<HI<0.30 Good 140
C 0.30<HI<0.50 Satisfactory 102
D 0.50 <HI<0.70 Bad 56
E 0.70<HI<1.00 Very Bad 17

It is preferable to combine two or more classes together to
obtain a generalized model. It is noted that class E boundaries
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should not be changed because in practice transformer requires
immediate action if its HI reaches class E.

Table 2. Transformer HI Categorization - Case (II)

Class Boundaries HI state Samples
count
A 0.00<HI<0.30 Good 549
B 0.30 <HI<0.70 Moderate 158
C 0.70 <HI < 1.00 Bad 17

Table 3. Transformer HI Categorization - Case (I1I)

Class Boundaries HI state Samples
count
A 0.00<HI<0.35 Good 569
B 0.35<HI<0.70 Moderate 138
C 0.70 <HI < 1.00 Bad 17

Table 4. Transformer HI Categorization - Case (IV)

Class Boundaries HI state Samples
count
A 0.00 <HI<0.40 Good 605
B 0.40 <HI<0.70 Moderate 102
C 0.70 <HI < 1.00 Bad 17

Thus, a combination of class A with B and class C with D is
suggested; thus ending with 3 main classes with the specified
boundaries shown in Table 2. An investigation of the effect of
changing the boundaries of HI classes A and B on the model
performance was of interest. Tables 3 and 4 show the modified
boundaries for the HI categorization. This has been utilized
and compared to the former boundaries of HI in the following
sections of the paper.

4 MODEL SIMULATION & RESULTS

Support Vector Machines (SVMs) are a set of
related supervised learning methods that analyze data and
recognize patterns [28]. SVM parameters as cost (c¢) and
Gaussian (y) coefficients must be selected appropriately. In
this study grid search is utilized to select cost and gamma
values.

4.1. HI CLASSIFICATION USING INDIVIDUAL
FEATURES

In this section, we examine the classification capability of
each separate transformer measurement, each measurement
will be fed to the SVM solely to classify the HI for each
categorization cases I, II, IIl and IV. The utilized fitness
function will be:

FS 1 = (Training error % + Validation error %) / 100 4)
where;

Training error %
__Total no. of missclassified training samples * 100

5
Total no. of training samples database ®)
Validation error %
_ Total no. of missclassified validation samples * 100 ©)

Total no. of validation samples database

it trans2Y
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Table 5 shows the best classification results for the
utilization of each measurement in classifying HI for cases I,
I1, 1T and IV.

Table 5. Correct Classified Samples Count for Individual Measurements
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classification results calculated by the SVM technique; Table
6 shows the confusion matrix for FFA results using case II
boundaries.

Table 6. FFA Confusion Matrix for Case II
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No. Measurement Case [ Case I1 Case II1 Case IV
1 H, 414 553 572 607
2 co 437 552 573 606
3 CO, 515 600 607 629
4 CH, 451 552 572 607
5 C,H, 462 588 605 639
6 C,H, 473 573 590 624
7 C,Hg 465 553 571 607
8 Color 508 675 661 637
9 H,0 435 576 590 615
10 BDV 420 562 577 611
11 Acidity 521 668 661 649
12 D.F 473 640 640 623
13 IFT 507 665 664 643
14 FFA 559 703 689 673

Class A B C
A 540 9 0
B 7 150 | 1
C 0 4 13

As seen in Table 5, SVM classifier cannot obtain reliable
results for the HI classification while utilizing each
measurement solely, except for FFA measurement. The impact
of change in class’s boundaries for cases I, I, III and IV is
clear; hence, the classification capability for all measurements
varies in each case. Case I results in the lowest count of
correct classified samples, while Cases II results in the highest
count for color, acidity, DF, IFT and FFA measurements. Case
IV results in the highest count for the remaining
measurements. FFA measurement results in the highest
classification count using case II categorized boundaries;
hence, 21 out of 724 samples are misclassified. Confusion
matrix is presented to compare the actual and predicted

Transformer Samples

Normalization
' b
[ Testing Samples ] [ Valid. Samples [ Train Samples }
' ' '
[ Selected tests Subset from Transformer Sampl ]’- S?s:f:d
v ' v
Test Samples BCSO
with Selected

Process

Train Samples
with Selected

Valid Samples
with Selected
tests Subset tests Subset

tests Subset

SVM Classifier
Model Creation

Fitness Value Evaluation

erminal
Condition
Yes

[ Save Model with Optimized C, y and tests subset J

'

Figure 2. Flow chart of BCSO based SVM method.

In section 4.1; A study of the classification of transformer’s
HI using each individual measurement is presented. One
measurement can provide a general overview on transformer
health, like FFA measurement which results in the highest HI
classification count but it fails in assessing 4 bad transformers.
In practice we cannot depend on a single measurement for
accurate and reliable HI judgment. The calculation of HI should
include different measurements to complete the required
information about the transformer health state. Therefore, a
group of measurements is selected and studied utilizing an
optimization technique in the upcoming section of this paper.

4.2. BCSO BASED SVM APPLICATION

BCSO-based feature selection and the parameter
optimization for SVM are presented in [29-30]. In this section,
an optimization model utilizing BCSO Technique based SVM
is applied.

The model will be capable of selecting the optimal SVM
parameters instead of using grid search, and this will improve
the capability of SVM classification. The technique is also
adopted to select the least count of transformer measurements
that together form the best group for calculating the HI.

Figure 2 shows the flow chart of the proposed method.
BCSO is adopted to select the values of c, y and selects the
indices of the best group of measurements. Training,
validation and testing databases is filtered according to the
selected measurement indices and then SVM model will be
adopted using only the new training and validation databases
with the proposed fitness function in equation (4 and 7). The
process will be repeated until it reaches the predefined
iteration count or fitness limit. Finally, testing database is
utilized to assess the accuracy and generalization of the model.

Search space dimensions will be 60 bits, the first 14 bits
represent measurements, 1 bit represents selected
measurement and zero bit represents unselected measurement.
The remaining 50 bits will be split into two halves. Each 25
bits will be converted to a decimal number to represent cost
and Gaussian coefficient values. A weighted sum fitness
function is utilized and it is represented by the equation:

FS 2 = (Training error % + Validation error %) / 100
+ Selected measurements count /200; @)
The first part of fitness function is used to minimize the
training and validation classification error. The second part is
used to minimize the count of the selected measurements and is
divided by 200 to give larger weight for the best classification
accuracy search; thus weights are selected by trial and error
method. The proposed model is simulated 25 times for each
case study and best results is presented in next tables.
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Case I:

Tables 7 and 8 show the best selected groups with the
corresponding confusion matrices.

Table 7. Case I: BCSO Based SVM Best Selected Measurement Groups with
the Corresponding Correct Classified Samples Count

Count of Correct

3401

CaselV:

Tables 13 and 14 show the best selected groups with the
corresponding confusion matrices.

Table 13. Case IV: BCSO Based SVM Best Selected Measurement Groups
with the Corresponding Correct Classified Samples Count

Count of Correct
Group Selected Selected Classified Group Selected :
No. Measurements No Selected Measurements Classified
Measurements Samples - Measurements u Samples
1 8 2,3,5,7,9,11, 13, 14 695 1 5 2,5,6,13, 14 720
2 7 2,3,5,7,9,13, 14 696 5 2,5,7,13, 14 721
Table 8. Confusion Matrices for Case I Groups . .
Table 14. Confusion Matrices for Case IV Groups
Class | A B C|D]|E
A 207 5 0 0 0 Group 1 Group 2
o 1 B 0 | 126 | 4 0 0 Class A B C A B C
oup C 1 3 95 1 0 A 604 1 0 605 0 0
D 0 0 5> 511 3 B 0 101 1 0 101 1
E 0 0 0 1 16 C 0 2 15 0 2 15
Clzss 426 ]33 g 13 ]3 Figure 3 shows the comparison of the count of each
B s T 2T oo measurement during the 25 simulated trials. This is displayed
Group 2 C 2 2 To5 T 110 for cases I, II, IIT and I'V.
D 0 0 1 |52 3
E 0 0 0 1 16
5 DISCUSSION
Case II: In a former section of this paper, the capability of each

Tables 9 and 10 show the best selected groups with the
corresponding confusion matrices.

Table 9. Case II: BCSO Based SVM Best Selected Measurement Groups with
the Corresponding Correct Classified Samples Count

transformer measurement in classifying transformer HI with
different classes’ boundary is tested. As seen in Table 5
hydrogen results in the lowest count of correct classified
samples followed by BDV, H,0, CO and CH,. In the order of
increased number of counts, those are followed by IFT,
acidity, color and FFA which results in the highest count. FFA

G Count of Selected Selected Correct : gy L
roup ount ot sefecte clecte Classified prove robustness in classifying the majority of transformers
No. Measurements Measurements . o e . .
Samples when it has been utilized solely utilizing case II boundaries.
1 ‘3‘ 2’27’79’1 14 ;S Confusion matrix in Table 6 shows that the performance of
3 1 27 12 14 715 FFA in the classification of ‘good’ and ‘moderate’
— transformers is reliable. On the other hand, it fails to identify 4
Table 10. Confusion Matrices for Case I Groups ‘bad’ transformers out of 17.
Group 1 Group 2 Group 3 SVM performance is enhanced by applying BCSO as a
Class | A | B | C AL B LC A LB LC feature selection technique in an optimization model utilized
A 541 8 0 542 7 0 545 4 0 . . .. .
B > 1156 1 0 2 1155 1 2 11541 0 in section 4.2. The model is simulated for each case 25 times
C 0 1T |16 0 1 | 16 0 1 16 and the results show that:
Measurements that solely can result in a high count (Table
Case IIT:

Tables 11 and 12 show those groups with the corresponding
confusion matrices.

Table 11. Case III: BCSO Based SVM Best Selected Measurement Groups
with the Corresponding Correct Classified Samples Count

5), may not participate in an optimally chosen group of
features. For example, Acidity results in 668 counts out of 724
when it used solely, whereas; the applied model considers
acidity as a noisy feature that may confuse the classifier so it is
filtered in group 2 in Table 7. It is also eliminated in group 2
in Table 11 without affecting the classifier performance.

Count of Correct . . .. .
GI:IOHP Selected " Selected t Classified Measurements }nduc1ng low count may participate in
0- Measurements casurements Samples optimal groups to improve the model performance as CO and
1 6 4,5,8,11,13, 14 713 C,H,. Table 5 shows that both measurements have low count;
2 5 4,5,8,13,14 713

Table 12. Confusion Matrices for Case III Groups

it renders 573 and 605 out of 724 respectively while utilizing
Case III boundaries. The proposed model selects both CO and

Group 1 Grow 2 C,H, in the optimal groups of Tables 7. and 13 to improve the

Class | A B 1 C A B 1 C performance of the classifier. This means that both

A 569 0 0 569 0 0 measurements have complementary information that is useful

B 5 | 131 ] 2 5 [ 131 ] 2 when combined with other measurements in assessing
C 2 2 |13 2 2 |13 transformer HI.
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Case I represent the biggest challenge for the proposed
model; hence we need to classify the transformer HI into five
groups. Table 7 shows that the model selected H,O, IFT and
FFA to represent oil characteristics. CO, CO,, C,H, and C,Hg
are selected to represent DGA. The model generates
considerable results, but actually, it induces the lowest counts
in comparison with the other cases; hence 28 out of 724
samples are misclassified. From the confidence point of view,
the model has succeeded to classify ‘very bad’ transformers.
Nevertheless, the confusion matrices in Table 8 render high
confidence results; only one 'very bad' transformer is
misclassified as 'bad' in all selected groups.

Case II boundaries provide high impact on the model
performance. It achieves an increase in the number of counts
from 696 in case I to 715 samples as shown in Table 9. The
count of the selected measurements group is decreased from 7
in case I to only 4 measurements in groups 1 and 3, and to 3
measurements in group 2 as shown in Table 9. Confusion
matrices in Table 10 show only high confidence in assessing
‘moderate’ and ‘good’ transformers. In this case, the model
generates reliable results utilizing a group of the least count of
utilized measurements

Case III boundaries do not show improvement in
classification results or the count of selected measurements
over case II. The count of selected measurements is increased
to 5 and 6 as seen in Table 11. Confusion matrices in a Table
12 show that the confidence of results became worse and
model misclassified 4 'bad' transformers, 2 as 'moderate' and
the other 2 transformers as ‘good’. This cannot be practically
dependable.

Case IV boundaries result in the best classification results in
comparison with cases I, II and III. It achieves the tradeoff
between the best 3lassification results and the least count of
selected measurements within the group. Only 3 samples out
of 724 are misclassified as in Table 13. Confusion matrices in
Table 14 show reliable results, 2 ‘bad’ transformers classified
as ‘moderate’ and one ‘moderate’ transformer classified as

25
20
15
10
5
0
H2 cO CcO2 C2H2  C2H4 C(C2H6
H Case | 0 24 25 2 24 2 25
i Case Il 0 5 5 0 0 4 5
M Case Il 0 18 0 10 4 15 0
M Case IV 9 25 0 2 25 2 18
HCase | M Casell

,.[.IIJ bos
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‘bad’ using group 2 with only five measurements within the
group.

Figure 3. shows the importance of each transformer oil
measurement in each case. It is clear that the importance of the
selected measurements varies in each case except for FFA
measurement which is participating in all of the selected
groups. It proves the reliability and importance of this
measurement in identifying transformer health state. Case I
dominant measurements are CO, CO,, C,H,, C,Hs, FFA
followed by IFT and H,O. In case II dominant measurements
are FFA and H,0, those changes to color, FFA followed by
CO, C,H, and CHy in case III. In case IV the group is changed
to CO, C,H,, FFA followed by IFT, C,Hg and H,.

Measurements of CO, C,H,, C,Hys and FFA have highest
participation counts in the most selected measurement groups
in comparison with the remaining measurements. This means
that those are the most informative measurements for the
calculation of the HI.

Former study in [12] selected 7 transformer measurements
namely (CO,, CHy, C,H,, C,H,, C,Hg, acidity and FFA) out of
12 available measurements. In this study a smaller subset of
measurements is selected amongst larger set of database. In
the current study the classification accuracy is improved to
99.58% (721/724) as in Table 13. The study also displays a
detailed description of how the selection of the HI classes
boundaries affect the chosen measurements.

6 CONCLUSIONS

In this paper, we present a new classification model
utilizing BCSO based SVM. The aim of this study is to
introduce new selection criteria for the most comprehensive
group of oil transformer measurements and identifying the
transformer condition with high confidence. Fourteen
transformer measurements, including oil analysis and DGA
are used for the study. Results show that SVM with combined
features of CO, C,H,, C,Hg, IFT and FFA measurements are

‘==t

Color Acid DF
0 9 0 4 3 10 25
0 11 1 0 1 25
25 6 0 1 0 25
2 0 0 0 0 23 25
M Case |l WCase IV

Figure 3. Comparison Count Chart of Each Transformer Measurement in Section 4.2.
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the best group to identify transformer HI state efficiently
within 3 classes ‘good’, ‘moderate’ or ‘bad’. This work
concludes that the chosen group of measurements should not
necessarily include the measurements with the highest
information content. The group of chosen measurements
complements each other to form the best combination for
transformer HI assessment. Finally, the tradeoff between
classification accuracy, confidence and selected measurements
is constrained with the selection of HI classes and their
boundaries.
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