
Smart Computing Review, vol. 4, no. 5, October 2014 

DOI: 10.6029/smartcr.2014.05.001 

335 

Smart Computing Review 

Multi-Objective Particle 
Swarm Optimization: An 

Introduction 
Vipin Kumar and Sonajharia Minz 

School of Computer and Systems Sciences, Jawaharlal Nehru University / New Delhi, INDIA / {rt.vipink, 

sona.minz}@gmail.com 

* Corresponding Author: Vipin Kumar 

Received July 20, 2014; Revised September 10, 2014; Accepted September 13, 2014; Published October 31, 
2014 

 

Abstract: In the real world, reconciling a choice between multiple conflicting objectives is a 

common problem. Solutions to a multi-objective problem are those that have the best possible 

negotiation given the objectives. An evolutionary algorithm called Particle swarm optimization is 

used to find a solution from the solution space. It is a population-based optimization technique that 

is effective, efficient, and easy to implement. Changes in the particle swarm optimization technique 

are required in order to get solutions to a multi-objective optimization problem. Therefore, this 

paper provides the proper concept of particle swarm optimization and the multi-objective 

optimization problem in order to build a basic background with which to conduct multi-objective 

particle swarm optimization. Then, we discuss multi-objective particle swarm optimization 

concepts. Multi-objective particle swarm optimization techniques and some of the most important 

future research directions are also included. 

 

Keywords: Multi-objective particle swarm optimization, multi-objective optimization problem, 

particle swarm optimization, pareto-optimality 

 

Introduction 

 
n the real world, an optimization problem may have more than one objective. The objectives of the problem 

normally conflict. Therefore, the best compromises between the given objectives generate a set of solutions to the 

given problem. Particle Swarm Optimization (PSO) [1] is a heuristic-based optimization technique. It is used to consider 

the social behavior of flocking of birds and fish schooling. PSO is an efficient and simple population-based technique. 

Therefore, it can be naturally extended to deal with the Multi-Objective Optimization Problem (MOOP). 

For MOOP, PSO can be modified in two ways. First, each objective function is treated separately, and second, all 

objective functions are evaluated for each particle. Generally, a non-dominant solution (best position) is used to guide the 

particles, called a leader. In each iteration, non-dominant solutions are stored to detect Pareto-optimal solutions that are 
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then stored in memory called an external archive. The following fundamental key issues are considered for the design of 

Multi-Objective Particle Swarm Optimization (MOPSO) such as: 

 How to evaluate the objective functions 

 How to select the leaders from the archive 

 How to promote diversity in the external archive 

 How to maintain the archive 

 The neighborhood topology used for information exchange 

The above issues are discussed in detail in later sections. In this paper, the authors build the basic concepts of PSO and 

MOOP, and then design the MOPSO. In Section 2, the PSO is described with basic concepts, particle swarm topologies, 

and parameter selection for the particle swarm. In the Section 3, we describe the concept of dominance, Pareto-optimality, 

and the procedure to identify a non-dominant set. Section 4 describes the MOPSO concept and its approaches. Finally, 

Section 5 and 6 have future research directions and our conclusions, respectively. 

Particle Swarm Optimization 

PSO is the expansion of animal social behavior that follows a population-based meta-heuristic strategy for optimization. It 

incorporates the acceleration by distance and velocity matching by nearest matching. In the mid- 1990s, it was introduced 

by J. Kennedy and R. C. Eberhart [1]. Originally, it was utilized to balance the weights in neural networks [2]. The PSO 

cornerstones can be described as follows: 

1. Social [3]: Human intelligence learns from social interaction. It learns from experiences, which allows it to adapt to 

the environment and determine optimal behaviors and attitudes. Other fundamental concepts of the social 

cornerstone indicate that due to mutual learning, individuals become similar, which is called Culture [4]. 

2. Principles of Swarm Intelligence [1, 3, 5, 56 ]: Five fundamental principles can be considered as follows [4]: 

1. Proximity: The population should have time computation and simple space. 

2. Diversity:  The population should have diversity to avoid excessively narrow channels. 

3. Stability: An environmental change should not affect the population. 

4. Quality: The population should consider quality factors in the environment. 

5. Adaptability: The population should be able to change when the computational prize is worth it. 

There are many key aspects that have led to PSO becoming so popular: 

1. Relatively simple and easy to implement 

2. Require fewer parameters to adjust and robust control parameters 

3. Effective memory capability to store individual’s and neighborhood’s best values 

4. Less sensitive to the objective and the parameters 

5. Efficient to maintain swarm diversity [7] 

6. Very effective in a variety of applications 

7. High-quality stable solution with low computational cost [3, 11 ] 

A glossary of common terminology and their definitions follows, for clarity: 

 Swarm: Population size (number of particles). 

 Particle: An individual member of the swarm, which is a potential solution to the problem. 

 pbest (personal best): The personal best position achieved by a particle so far. 

 lbest (local best): Position of the best particle member within the neighborhood. 

 gbest (global best): Position of the best particle member from the entire swarm. 
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 Leader: A particle that guides the other particles of the swarm toward the best regions in the search space. 

 Velocity (vector): The direction in which a particle must move in order to improve its position. 

 Inertia Weight: The impact of the previous velocity on the current velocity of the particle, denoted by 𝑤. 

 Learning Factor: The attraction of a particle towards either its previous or its neighbor’s values. PSO adopts two 

learning factors, cognitive learning factor (𝑐1) and social learning factor (𝑐2). Cognitive leaning factor represents 

the attraction toward the particle’s own success, and social learning factor represents the attraction toward 

neighbors. Both factors are constants usually considered in the experiments. 

 Neighborhood Topology: The set of particles involved to determine the lbest value of the given particles. 

In PSO, the manipulation of a swarm is different from the evolutionary algorithms, because it promotes a cooperative 

model rather than a competitive model. An adaptable velocity vector is used by PSO, which changes particle position at 

each iteration of the algorithm. It exploits information springing from own previous experiences to move toward the 

promising regions of the search space [9]. To remember previous experience, it has a separate area of memory to store the 

best position visited in the search space. PSO is described more formally in the context of single-objective optimization as 

given below. 

Let  𝑓: 𝑆 → ℝ  be the objective function, where  𝑆  is the 𝑑-dimension search space and  𝑛  is the number of particles, 

and where    𝑆 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} . Therefore, the 𝑖𝑡ℎ  particle of the swarm can be represented as 𝑋𝑖 =
(𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3, … , 𝑥𝑖,𝑑) ∈ 𝑆  and the best previous position ever visited by 𝑋𝑖 , the search, is as   𝑝𝑏𝑒𝑠𝑡𝑖 =

(𝑝𝑏𝑒𝑠𝑡𝑖,1, 𝑝𝑏𝑒𝑠𝑡𝑖,2, 𝑝𝑏𝑒𝑠𝑡𝑖,3, … , 𝑝𝑏𝑒𝑠𝑡𝑖,𝑑) ∈ 𝑆. The velocity of the 𝑖𝑡ℎ  particle is   𝑉𝑖 = (𝑣𝑖,1, 𝑣𝑖,2, 𝑣𝑖,3, … , 𝑣𝑖,𝑑). Therefore, 

the particle movement is computed for the (𝑡 + 1)𝑡ℎ iteration as follows: 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)                                                          (1) 

𝑉𝑖(𝑡 + 1) = 𝑉𝑖(𝑡) + 𝑐1𝑟𝑖,1(𝑡) × (𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2𝑟𝑖,2(𝑡) × (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡))                    (2) 

 

where   𝑖 = 1,2,3 … , 𝑛 . The 𝑖𝑡ℎ  particle position and velocity at the 𝑡𝑡ℎ  iteration is denoted as 𝑋𝑖(𝑡)  and 𝑉𝑖(𝑡) , 

respectively. At the 𝑡𝑡ℎ iteration, the best position founded by the entire swarm and the particle itself so far, respectively, 

are denoted as 𝑔𝑏𝑒𝑠𝑡(𝑡) and  𝑝𝑏𝑒𝑠𝑡𝑖(𝑡). 𝑐1  and 𝑐2  are the two positive constant acceleration coefficients, which denote 

cognitive and social parameters, respectively. 𝑟𝑖,1 and 𝑟𝑖,2 are two independent randomly distributed values within the range 

of [0, 1]. 

To update the velocity, there are three major components [10]: 

1. The first component (𝑉𝑖) models the tendency to continue in the same direction. 

2. The second component (𝑝𝑏𝑒𝑠𝑡𝑖) is a linear attraction toward the personal best position ever found, which is scaled 

by random weight 𝑐1𝑟𝑖,1. 

3. The third component (𝑔𝑏𝑒𝑠𝑡) is a linear attraction towards the global best position found by any particle of the 

swarm, which is scaled by another random weight  𝑐2𝑟𝑖,2 . 

The overall procedure of PSO is shown in Table 1. 

■ Particle Swarm Topologies 

The major components above indicate that the performance of PSO is influenced by the personal best positions ( 𝑝𝑏𝑒𝑠𝑡)  

and global best position  𝑔𝑏𝑒𝑠𝑡. Therefore, the best positions are heavily dependent on information exchange between 

neighborhood particles. The particles can be connected to each other in any way. Two general types of neighborhood 

topologies have been studied for global best (𝑔𝑏𝑒𝑠𝑡) and personal best (𝑝𝑏𝑒𝑠𝑡) [3]. The following are the most common 

adapted neighborhood topologies: 

Empty Graph: Each particle is connected to itself and is compared with its own current position, which is found so far 

as (𝑝𝑏𝑒𝑠𝑡) [8]. Therefore, in this case Eq. 2 is calculated with 𝑐2 = 0. 

Local Best: In this topology, the 𝑘-immediate neighbors’  (𝑙𝑏𝑒𝑠𝑡) performance affects each particle, and each particle is 

also affected by its own past experience (𝑝𝑏𝑒𝑠𝑡) [8]. In this case, Eq. 2 has  𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑙𝑏𝑒𝑠𝑡. If the topology has two 

immediate neighbors (𝑘 = 2), then the structure is a ring topology and is shown in Figure 1(a). 

Fully Connected Graph: In this topology, all members of the given swarm are connected to one another. It can also be 

observed as the opposite of an empty graph. Each particle uses its own best solution (𝑝𝑏𝑒𝑠𝑡)so far, and the best position of 
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the particle from the whole swarm (𝑔𝑏𝑒𝑠𝑡). This kind of structure is called star topology [11]. Therefore, in this case, Eq. 2 

is calculated with  𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑔𝑏𝑒𝑠𝑡.  Star topology is shown in Figure 1(b). 

Star Network: In this topology, one particle, called the focal particle, is connected to all the remaining particles in the 

swarm, but each is connected to that one only. In the PSO community, this type of topology is called a wheel topology 

(shown in Figure 1(c)) [8]. In this case, 𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑓𝑜𝑐𝑎𝑙 is used to calculate Eq. 2. A focal particle is the only particle that 

can communicate with all the others, therefore other particles are isolated from one another.  The focal particle adjusts the 

other particles’ trajectory by comparing the performances of the all particles in the swarm. 

Tree Network:  All the particles are arranged in a tree structure in which each node has exactly one particle [61].  In the 

PSO community, this structure is called a hierarchical topology (shown in Figure 1(d)). In this case, Eq. 2 is calculated 

with  𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑝𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑒𝑛𝑡 . 

Ring and wheel are the two most common topologies. Kennedy [12] suggested that a fully connected topology 

converges very fast, but there is a chance to be trapped in local minima. 

 

Table 1.  Overall procedure of the PSO 

begin 

   for each particle of the swarm 

      Initialize particles position and velocity randomly  

   end for 

   do 

   for each particle of the swarm 

      Evaluate the fitness function 

      if the objective fitness value is better than the personal best objective fitness value (𝑝𝑏𝑒𝑠𝑡) in history 

         Current fitness value set as the new personal best (𝑝𝑏𝑒𝑠𝑡) 

       end if 

   end for 

   From all the particles or neighborhood, choose the particle with best fitness value as the 𝑔𝑏𝑒𝑠𝑡 or 𝑙𝑏𝑒𝑠𝑡  

   for each particle of the swarm 

      Update the particle velocity according to Eq. 2 

      Update the particle position according to Eq. 1 

   end for 

until stopping criteria is not satisfied 

end begin 
 

 

  
(a) (b) 

  

(c) (d) 

Figure 1. Topologies of the swarm: (a) ring neighbourhood topology (b) fully connected topology (c) star network 

topology (d) tree network topology. 

Focal Particle 

l Particle 
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■ Parameter Selection for Particle Swarm 

During the implementation of the PSO algorithm, many considerations are required to facilitate the prevention of swarm 

explosion and convergence. These considerations include selecting acceleration constants, limiting the maximum velocity 

and inertia constant, or the constriction factor [4].  

a) Maximum velocity selection: The velocity of the particle is a stochastic variable. Therefore, it creates an 

uncontrolled trajectory to follow wider cycles in the problem [3, 13]. The upper and lower limits of the velocity are 

defined to avoid this problem as follows [3]: 

if  𝑉𝑖𝑑 > 𝑉𝑚𝑎𝑥  then 𝑉𝑖𝑑 = 𝑉𝑚𝑎𝑥  

else if 𝑉𝑖𝑑 < −𝑉𝑚𝑎𝑥 then 𝑉𝑖𝑑 = −𝑉𝑚𝑎𝑥  

If velocity   Vmax  is very large, then there is a possibility to move beyond the solution space. On the other hand, if 

velocity  Vmax   is too small, then the movement of the particle is limited. Therefore, an optimal solution may not be 

obtained. According to the problem characteristics, the value of  Vmax is selected empirically. H. Fan [14] proposed 

a maximum velocity to ensure that the uniform velocity throughout the all dimensions as shown in Eq. 3.  

𝑉𝑚𝑎𝑥 = (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛  )/𝑁                                                                    (3) 

Xmax  and   Xmin are the maximum and minimum values of the particle position found so far, and the number of 

intervals 𝑁 in the 𝑘th dimension that are selected by the users. 

b) Acceleration constants selection: Acceleration of 𝑝𝑏𝑒𝑠𝑡  and 𝑔𝑏𝑒𝑠𝑡  are controlled by the acceleration constants  𝑐1 

and  𝑐2 , respectively. The larger values of the acceleration constant may diverge the particles, and small values may 

limit movement. Ozcan and Mohan [15] carry out several experiments in order to study the effects of a deterministic 

acceleration constant  𝑐 = 𝑐1 +  𝑐2. The author concluded that the trajectory of the particle goes to infinity when 𝑐 >
4. The high value of the acceleration constant will be limited by 𝑉𝑚𝑎𝑥. Ozcan and Mohan [15] suggested that a good 

starting acceleration constant point is   𝑐1 =  𝑐2 = 2 . It is important to understand that   𝑐1  and   𝑐1  may differ 

according to the problem characteristics. 

c) Inertia constant and constriction factor selection: In the literature, the acceleration constant and maximum 

velocities are well defined, but the particles may still go to infinity, which is called an explosion of the swarm. 

Therefore, two methods have been proposed in the literature to control the explosion of the swarm, namely inertia 

constant [16, 17] and constriction factor [18, 58]. 

Inertia constant: The inertia (𝑤)  is only multiplied by the velocity 𝑉𝑖(𝑡)  at previous time step  𝑡. Therefore in Eq. 

2, the velocity of the particle can be rewritten as [3]: 

𝑉𝑖(𝑡 + 1) = 𝑤(𝑡) × 𝑉𝑖(𝑡) + 𝑐1𝑟𝑖,1(𝑡) × (𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑋𝑖(𝑡)) + 𝑐2𝑟𝑖,2(𝑡) × (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡))        (4) 

The inertia constant can be a fixed or dynamically changing value [19, 59]. Inertia weight w(t) can be dynamically 

scaled to the previous velocity that is defined as in Eq. 5: 

w(t) =
(T−t)×(ws−we)

T
                                                                    (5) 

where T is the maximum number of time steps to search in the swarm, ws is the starting inertia weight, and we is the 

ending inertia weight. The starting inertia weight, ws , is typically 0.9, because it allows for finding a global 

optimum quickly. To shift from an exploratory nature to an exploitative nature, the ending inertia weight keeps on 

decreasing until 0.4 [16, 17]. 

Constriction factor: Clerc and Kennedy [58] proposed a constriction factor to control a swarm explosion. If 

particles are in multidimensional space, then the velocity Eq. 2 can be rewritten as [3]: 

𝑉𝑖(𝑡 + 1) = 𝜒 (
𝑉𝑖(𝑡) + 𝑐1𝑟𝑖,1(𝑡) × (𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑋𝑖(𝑡))

+𝑐2𝑟𝑖,2(𝑡) × (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡))
)                                         (6) 

where 

𝜒 =
2𝑘

|2−𝜑−√(𝜑2−4𝜑)|
                                                                           (7) 

where  φ = c1 + c2, φ > 4 ; typically  k = 1  and φ = 4.1  [20]. The value of constriction factor  χ  is thus 0.729. 

Therefore, the previous velocity is multipled by 0.729. 

Multi-Objective Optimization Problem 
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Many varieties of real-world problems are available that are concerned with more than two conflicting objectives. These 

kinds of problems are known as multi-objective problems. The solutions to multi-objective problems are those that have the 

best possible negotiation among all given objectives [21]. Therefore, multi-objective optimization is required to find the 

best possible negotiated solutions. To better understand the multi-optimization problem, first we will discuss and define the 

single objective optimization problem followed by a multi-objective optimization problem (MOOP). 

■ Single-Objective Optimization 

Single-objective optimization can be represented for a minimization or maximization problem as: 

Minimize/Maximize 𝑓(𝑥)                                                                      (8) 

subject to: 

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2,3, … , 𝑚                                                                              (9) 

ℎ𝑗(𝑥) = 0, 𝑖 = 1,2,3, … , 𝑝                                                                            (10) 

where  𝑔𝑖(𝑥) ≤ 0 and ℎ𝑗(𝑥) = 0 are the constraints that satisfy the minimizing or maximizing of 𝑓(𝑥), while optimizing 

and  𝑥 ∈ S ⊂ ℝn, where S is a solution space (Definition 1) [22]: 

  Definition 1 (Single Objective Optimization Problem): 

“A single objective optimization problem is defined as minimizing or maximizing of objective  𝑓(𝑥), subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 =
1,2,3, … , 𝑚  and ℎ𝑗(𝑥) = 0, 𝑖 = 1,2,3, … , 𝑝 ; where 𝑥 ∈ 𝑆 ⊂ ℝ𝑛  and 𝑆  is the solution space (decision variable). A solution 

minimizes or maximizes the scalar  𝑓(𝑥), where n-dimensional decision variable vector   𝑥 = (𝑥
1
, 𝑥2, 𝑥3, … , 𝑥𝑛)”. 

 Single objective optimization is to find the many unique global optimums. Single objective global minimum 

optimization is represented in Definition 2 [22]: 

Definition 2 (Single Objective Global Minimum Optimization): 

“Given a function 𝑓: 𝑆 ⊆ ℝ𝑛 ⟶ ℝ, 𝑆 ≠ ∅ for 𝑥 ∈ 𝑆  the value  𝑓∗ ≜ 𝑓(𝑥∗) > −∞ is called a global minimum if and only if 

∀𝑥 ∈ 𝑆: 𝑓(𝑥∗) ≤ 𝑓(𝑥) . 𝑥∗ is by definition the global minimum solution, 𝑓 is the objective function, and the set 𝑆 is the feasible 

region of   𝑥 . The global of determining the global minimum solution(s) is called the global optimization problem for the single 

objective problem.”. 

Single-objective optimization has a unique solution, but MOOP may have an uncountable set of solutions that come from 

trade-offs in objective space. 

■ Multi-Objective Optimization Problem 

MOOP minimizes or maximizes the number of objective functions simultaneously. MOOP is also called a vector 

optimization, multi-performance, or multi-criteria problem [23]: 

A general MOOP is represented as follows [24]: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 / 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓𝑛(𝑥)                                                                   (11) 

where  𝑛 = 1,2,3, … , 𝑁 

Subject to  

𝑔𝑖(𝑥) ≥ 0,                    𝑖 = 1,2,3, … , 𝑚 

ℎ𝑘(𝑥) = 0,                   𝑘 = 1,2,3, … , 𝑝                                                                    (12) 

𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

,     𝑖 = 1,2,3, … , 𝑞  

Decision variable: 𝑥 is a vector of 𝑛 decision variables which can be written more suitably as: 

𝑥 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛]𝑇                                                                           (13) 

where 𝑇  is the transposition of a column vector to a row vector. Decision variables are numerical quantities that are 

chosen for optimization.  

Constraints:  Restrictions imposed on the available resources and environment (e.g. time restriction, physical limitation, 

etc.) are called constraints. They are described as dependence among the parameters and decision variables that are 

involved in the problem. The last set of constraints,   𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

  , restricts each variable 𝑥𝑖   to take a value within a 

lower   𝑥𝑖
(𝐿)

  and upper   𝑥𝑖
(𝑈)

  bound. These bounds are called the decision space [24]. 𝑔𝑖(𝑥)  and ℎ𝑘(𝑥)  constraints are called 

inequality and equality constraints, respectively. The inequality constraints greater-than-equal-to can be converted into less-than-

equal-to and vice versa by multiplying by -1. 
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 Infeasible solution: A solution   𝑥  that does not satisfy all constraints and variable bounds of the problem is called an 

infeasible solution. 

 Feasible solution: A solution  𝑥  that satisfies all the constraints and variable bounds is known as a feasible solution. 

 Feasible region: A set of all feasible solutions is called a search space or feasible region, denoted as  𝑆. 

It is important to have some evaluation criteria to know the goodness of certain solutions. The criteria to express as 

computable functions of the decision variable are called the objective function [22]. The 𝑁-number of objective functions can be 

written more conveniently as: 

𝑓(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑁(𝑥)]𝑇                                                                (14) 

The multi-objective optimization comprises a multi-dimensional space, called objective space. There are two Euclidean spaces 

which are considered in the MOOP, namely the decision variable and objective space. For each decision variable, there exists a 

point on objective space, 𝑂. It can be represented as: 

𝑓(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑁(𝑥)]𝑇 = 𝑂 = [𝑂1, 𝑂2, 𝑂3, … , 𝑂𝑁]𝑇                                        (15) 

The mapping of   𝑛-decision variables and   𝑁-objective space is shown in Figure 2. 

 

 

Figure 2. The mapping of decision variable and objective space 

 

MOOP optimizes many objective functions. Therefore, it does not have a unique solution, but a set of solutions. Pareto-

optimality Theory [25] is used to find the set of solutions. A mathematical definition of MOOP is defined in Definition 3 [22]. 

Definition 3 (A General MOOP): 

“Multi-Objective Optimization problem is defined as minimizing/maximizing  𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑁(𝑥) subject to 

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2,3, … , 𝑚 and  ℎ𝑘(𝑥) = 0, 𝑘 = 1,2,3, … , 𝑝; 𝑥 𝜖 𝑆. An MOOP solution minimizes/maximizes the components of 
a vector   𝐹(𝑥) where 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) is 𝑛-dimensional decision variable from some universe 𝑆. It is denoted that  𝑔𝑖(𝑥) ≤
0  and   ℎ𝑘(𝑥) = 0  represents the constraints that must be fulfilled while minimizing/maximizingv𝐹(𝑥) , and 𝑆  contains all 
possible 𝑥 that can be used to satisfy an evaluation of  𝐹(𝑥).” 

The objective functions may be continuous or discrete and linear or non-linear in nature. The decision variables can be 

discrete or continuous. 

Linear and Non-linear MOOPs: Linear and Non-linear MOOPs are defined on the basis of objective functions and related 

constraints. If all objective functions and constraints of the optimization problem are linear, then the MOOP is called a Multi-

Objective Linear Program (MOLP). However, if any one of the objective functions or constraints is nonlinear, then the MOOP is 

a nonlinear multi-objective problem [24]. 

Convex and Non-convex MOOP: A convex function is defined in Definition 4 [24]. 

Definition 4 (Convex Function):  

A function  𝑓: ℝ𝑛 ⟶  ℝ  is a convex function if for any two pair of solutions   𝑥1, 𝑥2 ∈ ℝ𝑛 , the following condition is 

true: 𝐹(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼𝐹(𝑥1) + (1 − 𝛼)𝐹(𝑥2);  ∀ 0 ≤ 𝛼 ≤ 1.”  

The convex function properties are given as follows: 

1. The actual function value is always underestimated by the linear approximation of  𝐹(𝑥) in the interval [𝑥1, 𝑥2]. 

2. Hessian matrix 𝐹(𝑥)  is positive definite for all  𝑥. 

3. A local minimum of the convex function is always a global minimum. 

Now, a convex MOOP can be easily understood, which is defined in Definition 5 [24]. 
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Definition 5 (Convex MOOP): 

“A multi-objective optimization problem is convex if all functions are convex and the feasible region is convex (or all 

inequality constraints are non-convex and equality constraints are linear).” 

■ Ideal Objective Vector and Dominance Concept 

In a multi-objective optimization algorithm (MOOA), the concept of the dominance is used to find the solution from 

their search space. Therefore, the concept of dominance and terms need to be defined properly. 

Ideal Objective Vector 

There exists an optimal solution for each 𝑁-conflicting objective. The ideal objective vector is constructed by individual 

optimal objective values, which are defined in Definition 6 [24]. 

Definition 6 (Ideal Objective Vector): 

“Let 𝑥𝑖
𝑜 = [𝑥𝑖,1

𝑜 , 𝑥𝑖,2
𝑜 , 𝑥𝑖,3

𝑜 , … , 𝑥𝑖,𝑛
𝑜 ]𝑇  be the vector of variables which minimizes/maximizes the 𝑖𝑡ℎ  conflicting 

objectives  𝑓𝑖(𝑥), where 𝑥𝑖
𝑜𝜖 𝑆 such that 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓𝑛(𝑥)                                                                (16) 

Subject to       𝑥 𝜖 𝑆 

It means that  𝑓𝑖(𝑥𝑖
𝑜) = 𝑜𝑝𝑡𝑖𝑚𝑖𝑚𝑥∈𝑆  𝑓𝑖(𝑥), if the ideal objective function is denoted as 𝑂∗, then the ideal vector can be 

written as follows: 

𝑂∗ = 𝑓∗ = [𝑓1
𝑜, 𝑓2

𝑜, 𝑓3
𝑜, … , 𝑓𝑁

𝑜]𝑇”                                                             (17) 

where 𝑓∗ is the  𝑖𝑡ℎ objective function minimum/maximum.  

Form Eq. 17 above it can be observed that for each objective function, it is not necessary to have the same 

minimize/maximize solution. Therefore, in general, an ideal vector is non-existing solution. It is only possible when all 

objective functions are non-conflicting and have same minimum/maximum value to the MOOP. But, the ideal objective 

vector is used as a reference solution or normalized objective values in a common range in the algorithms. Form Figure 3 it 

is clear that the solutions nearer to the ideal objective vector are the better solutions. 

 

 

Figure 3. The ideal objective vector 

Dominance Concept 

The concept of dominance is used in many MOOAs. MOOP produces a set of solutions because of conflicting objective 

functions.  If solution 𝑥𝑖 is better than the solution 𝑥𝑗, then solution 𝑥𝑖 dominates solution  𝑥𝑗 . The definition of domination 

is given in Definition 7 [24].  

Definition 7 (Dominance): 

Solution  𝑥𝑖  dominates the other solution  𝑥𝑗   if the following conditions are true: 

1. 𝑥𝑖  is better than the 𝑥𝑗  solution for all objectives (  𝑓𝑘(𝑥𝑖) >  𝑓𝑘(𝑥𝑗); ∀ 𝑘 = 1,2,3, … , 𝑁). 

2. 𝑥𝑖  is strictly better than 𝑥𝑗   for at least one objective (  𝑓𝑘(𝑥𝑖) >  𝑓𝑘(𝑥𝑗);  𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑘𝜖{1,2,3, … , 𝑁}) 

Dominance relations have the following properties, namely not reflexive, not symmetric, not anti-symmetric, transitive 

and possessive. If solution 𝑥𝑖  does not dominate the solution 𝑥𝑗  , then it does not mean that 𝑥𝑗   dominates  𝑥𝑖 , called a 

possessive property. 
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■ Pareto-optimality 

The comparison of all possible pairs of solutions is performed to get the non-dominant set of solution for a given finite set 

of solutions.  The definition of a non-dominant set is given in Definition 8 [21].  

Definition 8 (Non-dominant Set): 

“Vector decision variable 𝑥 ∈ 𝑆 ⊂ ℝ𝑛 𝑖𝑠 non-dominant with respect to  𝑆, if there does not exist another 𝑥′ ∈ 𝑆 such 

that 𝑓(𝑥′) ≺ 𝑓(𝑥)”. 

In another way, we can say that if   𝑃∗ ⊂ 𝑆 is the set of non-dominant solutions that is not dominated by any other 

member of the solution set  𝑆. Then, 𝑃∗ is called a Pareto-optimal set. The formal definition of pareto-optimal and the 

pareto-optimal set is given in Definitions 9 and 10 [60]. 

Definition 9 (Pareto-optimal): 

“A vector decision variable 𝑥∗ ∈ 𝐹 ⊂ ℝ𝑛(F is the feasible region) is Pareto-Optimal if it is non-dominant with respect 

to  𝐹.” 

Definition 10 (Pareto-optimal Set): 

“The Pareto-optimal Set 𝑃∗ is defined by  𝑃∗ = {𝑥 ∈ 𝐹|𝑥 𝑖𝑠 𝑃𝑎𝑟𝑒𝑡𝑜 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙}.” 

The pareto-optimal solutions are also called non-inferior, efficient, or admissible solutions. Each member of the entire 

set 𝑃∗ is non-dominant. The pareto-front 𝑃𝐹∗ is defined in Definition 11 [60]. 

Definition 11 (Pareto Front): 

“For a given multi-objective optimization problem, let Pareto-optimal set 𝑃∗ and objective function  𝑓(𝑥), the Pareto 

Front  𝑃𝐹∗is defined as: 

𝑃𝐹∗ = {𝑓(𝑥) ∈ ℝ𝑘|𝑥 ∈ 𝑃∗}” 

Multi-objective optimization also has a local and global pareto-optimal set, like the single-objective optimization local 

and global optimum solutions. The definitions of locally and globally pareto-optimal sets are defined in Definition 12 [24] 

and Definition 13 [22]. 

Definition 12 (Locally Pareto-Optimal Set): 

“A set  𝑃, there is exists no solution  𝑦 to dominating any other member 𝑥  of the set, where 𝑥 𝜖 𝑃 have the neighborhood 

such that ‖𝑦 − 𝑥‖ ≤ 𝜀 and 𝜀 > 0 is small positive number, then solution belong to the set  𝑃 constitute local pareto-optimal 

set”. 

Definition 13 (Globally Pareto-optimal Set): 

“A given function 𝑓: 𝑆 ⊆ ℝ𝑛 ⟶  ℝ𝑘 , 𝑆 ≠ ∅, 𝑘 ≥ 2, for 𝑥 ∈ 𝑆 the pareto front 𝑃𝐹∗ ≜ 𝑓(𝑥𝑖
∗) > (−∞, … , ∞) is called the 

global minimum if and only if 

∀  𝑥 ∈ 𝑆 : 𝑓(𝑥𝑖
∗) ≼ 𝑓(𝑥)   

then,  𝑥𝑖
∗, i=1,2,3,…,k is called the global pareto-optimal set; where f is the multiple objective function  and  𝑆  is the set 

of feasible regions.” 

The above definition truly indicates that the globally pareto-optimal set is also a locally pareto-optimal set. The Pareto 

front 𝑃𝐹∗  can be collectively represented by non-dominant vectors. In the general case, many points (solutions) are 

computed to get corresponding objective functions 𝑓(𝑥). Then, we find the non-dominant solutions to produce the Pareto 

front. For two objectives, Figure 4 shows the four scenarios of the objective functions, namely min-min, max-min, max-max, 

and min-max, where objectives 𝑓1  and  𝑓2  are the x-axis and y-axis, respectively, and the solid continuous curve shows 

the pareto-front. 

Weak and strict pareto-optimality is defined in Definitions 14 and 15, respectively [22]. 

Definition 14 (Weak Pareto-optimality): 

“A point 𝑥∗ ∈ 𝑆 is a weakly Pareto-optimal if there is no 𝑥 ∈ 𝑆 such that  𝑓𝑖(𝑥) < 𝑓𝑖(𝑥∗),  for  𝑖 = 1,2,3, … , 𝑁”. 

Definition 15 (Strict Pareto-optimality): 

“A point 𝑥∗ ∈ 𝑆 is a strictly pareto-optimal if there is no 𝑥 ∈ 𝑆, 𝑥 ≠ 𝑥∗ such that    𝑓𝑖(𝑥) < 𝑓𝑖(𝑥∗), for  𝑖 = 1,2,3, … , 𝑁”. 

There are two conditions for pareto-optimality given by Frinz-John and Krush-Kuhn-Tucker, namely the Fritz-John 

necessary condition and Krush-Kuhn-Tucker sufficient condition. The necessary and sufficient conditions for optimality are 

defined in Definitions 16 and 17 [24]. It is assumed that the all objective functions and their constraints in Eq. 11 are 

continuously differentiable. 

Definition 16 (Fritz-John Necessary Condition for Pareto-optimality): 

“A necessary condition for 𝑥∗ to be pareto-optimal is that there exist vectors 𝜆 ≥ 0 and 𝑢 ≥ 0; where 𝜆 ∈ ℝ𝐿 , 𝑢 ∈
ℝ𝐽 and 𝜆, 𝑢 ≠ 0;such that the following conditions are true: 
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1. ∑ 𝜆𝑙𝛻𝑓𝑙(𝑥∗) − ∑ 𝑢𝑗𝛻𝑔𝑗(𝑥∗) = 0,𝐽
𝑗=1  𝐿

𝑙=1 and 

2. 𝑢𝑗𝑔𝑗(𝑥∗) = 0, ∀ 𝑗 = 1,2,3, … , 𝐽.” 

Definition 17 (Karush-Kuhn-Tucker Sufficient Condition for Pareto-optimality): 

“Let objective functions 𝑓𝑛(𝑥) (Eq. 11) be convex and their constraint functions non-convex. Let the objective and 

constraint functions be continuously differentiable at a feasible solution  𝑥∗. A sufficient condition for 𝑥∗ to be Pareto-

optimality is that there exist vectors 𝜆 > 0 and 𝑢 ≥ 0; where 𝜆 ∈ ℝ𝐿 , 𝑎𝑛𝑑 𝑢 ∈ ℝ𝐽such that the following equations are true: 

1. ∑ 𝜆𝑙𝛻𝑓𝑖(𝑥∗) − ∑ 𝑢𝑗𝛻𝑔𝑗(𝑥∗) = 0,𝐽
𝑗=1  𝐿

𝑙=1 and 

2. 𝑢𝑗𝑔𝑗(𝑥∗) = 0, ∀ 𝑗 = 1,2,3, … , 𝐽.” 

For the non-convex objective and constraint functions above, sufficient conditions for pareto-optimality does not hold. 

 

 

Figure 4. Pareto-optimal solution for the combination of two types of objectives 

■ Procedure of Identifying the Non-dominant Set 

It is known that the pareto-optimal set has a non-dominant solution set. On the other hand, a non-dominant set may have 

some pareto-optimal and non-dominant solutions. Therefore, it can be concluded that the non-dominant solution found by 

an algorithm may not be the ensured true Pareto-optimal set. It is required to find the non-dominant set from the solution 

space of the problem [24]. In this section, three basic approaches have been discussed, namely, Naive and Slow, 

Continuously updated, and Kung et al.’s efficient method [26]. In the algorithms,  "𝑥𝑖 ⊳ 𝑥𝑗" indicates that 𝑥𝑖  dominates 𝑥𝑗 

and the number of solutions are  𝑁. 

Naive and Slow Approach 

In this approach, each solution is compared to the remaining solutions of the solution space. The solution is not considered 

a non-dominant set if a member is dominated by any other member of the remaining solution. Otherwise, the solution is 

part of the non-dominant solution set. An algorithm for identifying the non-dominant set is shown in Table 2. The 

complexity of the algorithm is  𝑂(𝑀𝑁2), where 𝑁  is the number of domination comparisons and 𝑀  is the number of 

function value comparisons. 

Continuously Updated Approach 

In this approach, a partially filled population is checked by every solution from the solution space. This approach is faster 

than the naïve and slow approach because of better bookkeeping. Initially, it starts from the empty solution set 𝑃′ and 

compares all solutions of 𝑃′ to a solution that belongs to the solution space. If any member of 𝑃′ is dominated by a solution 

of the solution space, then that member must be deleted from the set 𝑃′. Otherwise, it is ignored. If any solution of 𝑃′ is not 

dominant to the solution, then the solution is inserted in the set 𝑃′. Stopping criteria is met when all the population of the 
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solution space is checked. A continuously updated algorithm for identifying the non-dominant set is shown in Table 3. The 

complexity of this approach is 𝑂(𝑀𝑁2), but the average number of comparisons is smaller than the naive and slow 

approach. 

Table 2. Naive and slow algorithm for identifying the non-dominant set 

Begin 

Initialization 

Non-dominates set 𝑃′ = {∅} 

Select a solution 𝑥𝑖 from the solution space 𝑆 

do 

for each solution 𝑥𝑗 ∈ 𝑆, where 𝑖 ≠ 𝑗, 

    if  solution 𝑥𝑖  ⊳ 𝑥𝑗  then 

         𝑃′ = 𝑃′ ∪ {𝑥𝑖} 

    end if 

𝑥𝑖 = 𝑥𝑖+1 

until 𝑖 ≤ 𝑁 

end 
 

 

Table 3. Continuously-updated algorithm for identifying the non-dominant set 

Begin 

Initialization 

  Non-dominant set 𝑃′ = { 𝑥𝑖}, // 𝑥𝑖  is the any member of the solution space 

  Select a solution  𝑥𝑗  , where  𝑖 ≠ 𝑗 and 𝑥𝑗 ∈ 𝑆 (solution space) 

Do 

if  |𝑃′| == 0 then 

insert one element in set 𝑃′ 

end if 

   for a solution  𝑥𝑗 ∈ (𝑆 − 𝑃′) 

       if  𝑥𝑗  ⊳ 𝑥𝑖  for any solution 𝑥𝑖 ∈ 𝑃′, then 

           𝑃′ = 𝑃′ − {𝑥𝑖} 

       else  

           𝑃′ = 𝑃′ ∪ {𝑥𝑖} 

       end if 

    j=j+1 

end for 

until 𝑖 ≤ 𝑁 

end 
 

 

Kung et al.’s Efficient Method 

In this approach, the population of the solutions are sorted according to the first objective function value. Thereafter, it is 

divided into top (T) and bottom half (B) sub-populations. It is considered that top first half solution is non-dominant, 

therefore second bottom half is to be checked for domination with top first half solutions. If the any member of bottom half 

B is not dominated by the any member of the top half T, then that member is combined with T. This method is most 

computationally efficient [26]. 

Multi-Objective Particle Swarm Optimization 
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Table 4. Kung et al.’s efficient algorithm for identifying non-dominant set 

Begin 

Initialization 

Descending order of importance sorting of the population according to the first objective function values 

where population is 𝑃 of size 𝑁  

if  |𝑃| == 1 then  

    return output as 𝑃 

else 

    𝑇 =top first half solution of 𝑃 and 

    𝐵 =bottom second half solution of 𝑃 

end if 

do 

   for a non-dominant solution 𝑥𝑖
𝐵 is not dominated by any 

        𝑥𝑗   
𝑇 non-dominant solution, where 𝑥𝑖

𝐵 ∈ 𝐵 and 𝑥𝑗
𝑇 ∈ 𝑇 then 

        merge set ℳ = 𝑇 ∪ {𝑥𝑖
𝐵} 

        𝑖 = 𝑖 + 1 

until 𝑖 ≤ |𝐵| 

return ℳ 

end 
 

 

The MOOP has a set of unique solutions (Pareto-optimal Set), therefore it is necessary to modify the PSO to solve MOOP. 

Eckart Zitzler [27] identified three general goals to archive: 

1. Maximum number of solutions in Pareto-optimal set. 

2. Minimization of the distance between true Pareto front and the Pareto front produced by an algorithm. 

3. Maximum diversity in the solution set found. 

There are two methods to find the non-dominant set; first, many runs of PSO where each run of the PSO produces a 

single solution. Therefore, after several runs of the PSO, a set of solutions is produced. Second, the PSO is a population-

based optimization algorithm. Therefore, in a run, it produces a set of non-dominant solutions. Three fundamental issues 

are considered to design PSO for MOOP as follows [28]: 

 

1. Strategy to choose leaders (particles) for non-dominant solutions to give preference over dominant solution. 

2. Strategy to maintain non-dominant set of solutions in the process of searching with respect to all previous and 

current populations.  

3. Strategy to retain diversity in the solution set to avoid convergence to a single solution. 

There are two basic PSO approaches for the MOOP [29].  

Approach 1: The algorithm considers each objective function separately. One function at a time is evaluated for each 

particle. The aim of this method is to communicate manipulated information from each objective in order to guide toward a 

Pareto-optimal front. 

Approach 2: All objective functions are evaluated for each particle that considers the concept of pareto-optimality. It 

produces non-dominant set, called leaders.  

From the non-dominant set, a leader (a particle) is used to guide particles toward the true pareto-optimal front. Storing 

the best position of the particles as a Pareto front may exceed the swarm size. The solutions are stored in an external 

archive to avoid the size problem during the search of non-dominant solutions. The external archive is maintained by the 

replacement of a solution that is dominated by the new solution. Pseudo-code of the general multi-objective particle swarm 

optimization is shown in Table 5. 

Table 5 has some italics that makes it different from the general single objective PSO procedure. First, the velocity and 

position of the particles of the swarm are randomly initialized. Then, a set of leaders are initialized from the swarm with 

non-dominant particles. For each particle, a leader is selected to update the velocity and position. Some quality measures 

are also performed for selecting the leader from the archive. Each particle in the swarm 𝑝𝑏𝑒𝑠𝑡 is updated, if the previous 
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𝑝𝑏𝑒𝑠𝑡 is not better than or incomparable with the current one. For each iteration, leaders in the external archive are updated, 

and the quality of the leader is also recalculated. This process is performed for a fixed number of iterations. 

 

Table 5. Pseudo-code of multi-objective particle swarm optimization 

begin 

for each particle of the swarm 

      Initialize particles position and velocity randomly  

 end for 

 Initialized external archive (initially empty) 

Quality (leader) 

 do 

   for each particle of the swarm 

         select a particle (leader) from external archive 

         Evaluate the fitness function 

         if the fitness value of the objective is the better than the best fitness value of the objective (𝑝𝑏𝑒𝑠𝑡) in 

history then 

             Current fitness value of the objective function is set as the new 𝑝𝑏𝑒𝑠𝑡 

          end if 

         update the velocity of the particle according to the equation-2 

         update the position of the particle according to the equation-1 

     end for 

    update leader in external archive 

    Quality (leader) 

  until stopping criteria is not satisfied 

Report the results of external archive 

end begin 
 

 

Gregorio Toscano Pulido [30] pointed out the algorithmic issues for PSO in a multi-objective scenario, namely, 

selection and updating of leaders and creation of the new solution. 

1. Selection and updating of the leaders: How a leader is selected from the non-dominant solution set, where all are 

incomparable. What should be the addition criteria for leader selection to maintain diversity. What the strategy 

should be for selecting particles that remain in the external archive in every iteration of the process. 

2. Creation of new solutions: What should be the criteria to promote the diversity to create the solution in terms of 

position updating and mutation operator.   

It is evident that the selection of a leader is a key concept for MOPSO design. It is easy to consider every non-dominant 

solution as new leader, and from them one of the leaders is elected. The importance of the leaders is measured by the 

quality measure criteria that can be define in many ways. Several authors proposed a density-based leader selection 

measure as the quality measure. In the literature, there are two most important density measures used, namely, the nearest 

neighbor density estimator [57] and the kernel density estimator [31]. 

 Nearest Neighbor Density Estimator: In this method, the density of a given particle is estimated by the closest 

neighbor in objective function space. 

 Kernel Density Estimator: In this method, a parameter is defined, called 𝜎𝑠ℎ𝑎𝑟𝑒 , that is the radius of the 

neighbourhood of the particle. The neighborhood is called niche which is defined for each particle.  A fewer number 

of particles is preferred. 

One of the complex tasks in MOPSO is to update an external archive. Three archives are used while designing MOPSO. 

The first is to store the global best solution; the second the personal best value, and the third to store the local best (if 

required) [60].  If the new solution is non-dominant by all members present in the archive, then the solution is included in 

the external archive. Moreover, if the new solution dominates some members of the external archive, then the dominant 

solutions are usually deleted. The bounded archive size is used to avoid the complexity of archive updating [28]. If the 

archive is full and a new solution is non-dominant by any members of the archive, then diversity is the basic decision 
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criterion for the insertion of a new solution into the external archive. The archive update is done to retain the maximum 

diversity of the archive. 

■ MOPSO Approaches 

In the literature, many MOPSO approaches have been proposed. Therefore, in this section, some common approaches have 

been elaborated for simplicity.  

1. Weighted objective functions aggregation approach 

2. Lexicographic ordering approach 

3. Pareto base approach 

4. Combined approach 

Weighted Objective Function Aggregation Approach 

In MOOP, the weighted objective function aggregation approach is the most common approach that is first introduced by 

Parsopoulos and Vrahatis [32]. In this approach, a weighted sum of the objective is used, shown in Eq. 18: 

𝐹(𝑥) = ∑ 𝑤𝑖𝑓𝑖(𝑥)𝑘
𝑖=1                                                                             (18) 

where 𝑖 = 1,2,3, … , 𝑘 and 𝑤𝑖  is a non-negative weight, shown in Eq. 19: 

∑ 𝑤𝑖
𝑘
𝑖=1 = 1                                                                               (19) 

The weight of the function may be fixed or dynamic during the optimization process. Conventional Weighted 

aggregation (CWA) is used in the case of fixed weights. This method obtains one pareto-optimal solution in each run of the 

optimization process. Prior knowledge of the search space is required to choose the appropriate weight according to the 

objective function [33]. Many times a run of the optimization process is required in order to obtain a set of pareto-optimal 

solutions. This process is not efficient due to the heavy computation of the optimization process and the inability to find 

solutions in concave regions [34]. There are two methods proposed to avoid the heavy computation, namely Bang-Bang 

Weighted Aggregation (BWA) and Dynamic Weighted Aggregation (DWA). In BWA, weights of the bi-objective function 

can be modified during the process of optimization according to Eqs. 20 and 21: 

𝑤1(𝑡) = 𝑠𝑖𝑔𝑛(sin (
2𝜋𝑡

𝑓𝑤
))                                                                 (20) 

𝑤2(𝑡) = 1 − 𝑤1(𝑡)                                                                     (21) 

Where 𝑓𝑤  and   𝑡  are the weight change frequency and iteration’s index, respectively. The 𝑠𝑖𝑔𝑛(. ) function abruptly 

changes the weight of the objective function. The DWA provides an alternative weight modification that is a slow weight 

change. The slow weight change tries to keep moving close to the true Pareto-optimal front. The weight is modified 

according to Eqs. 22 and 23: 

𝑤1(𝑡) = |sin (
2𝜋𝑡

𝑓𝑤
)|                                                                       (22) 

𝑤2(𝑡) = 1 − 𝑤1(𝑡)                                                                      (23) 

The performances of the BWA and DWA are almost equal for the concave pareto front, and BWA is better in the case 

of the convex pareto front [33].   

Lexicographic Ordering Approach 

In this method, ranking of the objective function is required by the user according to their importance. Starting from the 

first ranked objective function, after optimization of the objective functions, the optimal solution  𝑥∗  is obtained, and the 

same procedure follows according to the ranking. Let  𝑓𝑖(𝑥) be the 𝑖𝑡ℎ ranked function where 𝑖 = 1,2,3, … , 𝑛 indicates the 

rank of the objective functions. 𝑓1(𝑥) and 𝑓𝑛(𝑥) indicate the most and least important objective functions, respectively [34]. 

The first objective function is formulated as 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1(𝑥), subject to 𝑔𝑗(𝑥) ≤ 0; 𝑗 = 1,2,3, … , 𝑚 and solution is 𝑥1
∗ and 

𝑓1
∗ = (𝑥1

∗) is obtained. Likewise, the second objective function can be formulated as 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2(𝑥), subject to  𝑔𝑗(𝑥) ≤

0; 𝑓1(𝑥) = 𝑓1
∗ ; where 𝑗 = 1,2,3, … , 𝑚,  and the solution is  𝑥2

∗  and 𝑓2
∗ = 𝑓2(𝑥2

∗)  is obtained. These procedures are repeated 

until the last objective function. Therefore, the problem formulation can be written for the 𝑖𝑡ℎ objective function as follows 

[Carlos A. Coello Coello 1999]: 
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  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑓𝑖(𝑥)                                                                   (24) 

 subject to     𝑔𝑗(𝑥) ≤ 0;   𝑗 = 1,2,3, … , 𝑚                                                    (25) 

𝑓𝑘(𝑥) = 𝑓𝑘
∗;    𝑘 = 1,2,3, … , 𝑖 − 1                                                         (26) 

𝑥𝑛
∗  is the solution of the last ranked objective function that is the desire solution of the problem.  

Pareto-based Approaches 

Pareto-based approaches use the concepts of the leader selection based on pareto dominance. The leader guides the swarm 

during a search. As we know that each non-dominant solution is equally good. Therefore, several schemes have been 

proposed to select a leader (a non-dominant solution) in the literature. The additional criteria is also imposed in order to 

avoid random searches and fast convergence and the pareto front spread, swarm diversity, and information provided by 

density estimator. Some of the proposed Pareto-based techniques are categorized based on leader selection techniques in 

Table 6. It also contains the external archive and neighborhood topology information of the techniques. 

 

Table 6. List of the leader selection techniques in Pareto-based approaches 

S.N. Leader Selection Techniques 
External 

Archive 

Proposed by 

(used fully connected neighbourhood topology) 

1. Dominance 

Yes 

No 

Yes 

Fieldsend and Singh [35] 

Srinivasan and Hou [36] 

Alvarez-Benitez et al. [37] 

2. Density Estimator 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Ray and Liew[38] 

Coello et al. [55] 

Bartz et al. [39] 

Li [ 40] 

Reyes and Coello [41] 

Raquel and Naval [42] 

3. Randomly 
No 

Yes 

Toscano and Coello[43] 

Janson and Merkle [44] 

4. Niche Count 

Yes 

Yes 

Yes 

Srinivasan and Hou [36] 

Li [40] 

Salazar-Lechuga and Rowe  [45] 

5. Sigma Value Yes Mostaghim and Teich [46, 47, 48] 

6. Fuzzy Membership Yes Zhao and Cao [49] 

7. Stripes Yes Vallalabos-Arias et al. [50] 
 

 

Table 7. List of the leader selection techniques in other approaches 

S.N. Leader Selection Techniques 
External 

Archive 

Proposed by 

(used fully connected neighbourhood topology) 

1. Single Objective No Mahfouf et al. [51] 

2. Energy value Yes Xiao-hua et al. [52] 

3. Maximum fitness Yes Li [53] 

4. Composite leader No Zhang et al. [54] 
 

Other Approaches 

This subsection concludes those approaches that do not fit in the above categories. Table 7 shows the collection of 

proposed methods with leader selection techniques, external archives, and neighborhood topology attributes. 
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Future Research Directions 

It can be easily seen that this area is developed during the last decade and has very optimistic expectations.  There are many 

studies still required in this area. Therefore, this section provides some research directions for the future: 

 In weighted objective function aggregation, the most fundamental question is to address function weights. Weights 

of the functions are dependent on the problem at hand. Therefore, there is an extensive investigation of the function 

weight required according to the characteristics of the problem. 

 In the function ordering, the function ranking is performed based on its importance. To rank the objective function, 

it is required to have prior knowledge about the problem. Therefore, functions ordering according to the function 

characteristics are the opportunity for future research. 

 A fine-tuned MOPSO algorithm with no parameters is a worthy topic of research. It is required to have prior deep 

knowledge of the relationship of algorithm performance and its parameters with different features. 

 In Pareto-based algorithms, there are three crucial issues needed to properly address the selection of leader, diversity 

promotion, and archive maintenance. Selection of the leader and diversity promotion depend upon swarm dynamics. 

The promotion of diversity avoids fast convergence and becoming stuck in local optima. It promotes the Pareto 

solution to move towards the true Pareto front. Therefore, one key research opportunity is to define an efficient 

diversity promotion method. The archives have a set of leaders that are chosen to the direction of the particle 

velocity. Therefore, archive maintenance is also a good area of research. 

In non-Pareto-based algorithms, information is exchanged among the swarms. Therefore, the direction of information 

exchange and frequency are needed to investigate properly. 

Conclusions 

This paper provides an introduction of multi-objective particle swarm optimization, which includes the basic concept of 

particle swarm optimization and a multi-objective optimization problem. Particle swarm optimization includes the basic 

key concepts and equations, algorithms, topologies, and parameters descriptions. A multi-objective optimization problem 

has described the dominance concept, Pareto-optimality and procedure to identify the non-dominant set, which builds the 

key concept to a better understanding about multi-objective particle swarm optimization. Finally, fundamental issues and 

the required changes are described to extend particle swarm optimization for a multi-objective optimization problem. The 

use of external archives, swarm diversity, and leader selection in the swarm, and some common approaches of multi-

objective particle swarm optimization are also described. And finally, some of the important future research directions for 

multi-objective particle swarm optimization are also briefly addressed. 
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