
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221000055

Software reuse in agile development organizations: A conceptual management

tool

Conference Paper · January 2011

DOI: 10.1145/1982185.1982255 · Source: DBLP

CITATIONS

11
READS

926

3 authors, including:

Some of the authors of this publication are also working on these related projects:

ArchiMate View project

SEMIOTICS SEMantic model-driven engineering for IOT Interoperability of emergenCy serviceS View project

Maria-Eugenia Iacob

University of Twente

116 PUBLICATIONS 1,403 CITATIONS

SEE PROFILE

Marten van Sinderen

University of Twente

99 PUBLICATIONS 577 CITATIONS

SEE PROFILE

All content following this page was uploaded by Maria-Eugenia Iacob on 13 January 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221000055_Software_reuse_in_agile_development_organizations_A_conceptual_management_tool?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221000055_Software_reuse_in_agile_development_organizations_A_conceptual_management_tool?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ArchiMate?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SEMIOTICS-SEMantic-model-driven-engineering-for-IOT-Interoperability-of-emergenCy-serviceS?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Eugenia_Iacob?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Eugenia_Iacob?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Eugenia_Iacob?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marten_Van_Sinderen?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marten_Van_Sinderen?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marten_Van_Sinderen?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Eugenia_Iacob?enrichId=rgreq-c2d6700f799904522a8e61398ff7a060-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAwMDA1NTtBUzoxODUxMjc0NjQzNDk2OTZAMTQyMTE0OTIzNTE2MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Software Reuse in Agile Development Organizations -

A Conceptual Management Tool

Wouter Spoelstra
University of Twente

P.O. Box 217
7500 AE Enschede
+31 (0) 53 489 4134

w.j.t.spoelstra@student.ut
wente.nl

Maria Iacob
University of Twente

P.O. Box 217
7500 AE Enschede

+31 (0) 53 489 4134

m.e.iacob@utwente.nl

Marten van Sinderen
University of Twente

P.O. Box 217
7500 AE Enschede
+31 53 489 3677

m.j.vansinderen@ewi.utwe
nte.nl

ABSTRACT

The reuse of knowledge is considered a major factor for

increasing productivity and quality. In the software industry

knowledge is embodied in software assets such as code

components, functional designs and test cases. This kind of

knowledge reuse is also referred to as software reuse. Although

the benefits can be substantial, software reuse has never reached

its full potential. Organizations are not aware of the different

levels of reuse or do not know how to address reuse issues. This

paper proposes a conceptual management tool for supporting

software reuse. Furthermore the paper presents the findings of the

application of the management tool in an agile development

organization.

Categories and Subject Descriptors

D.2.13 [Reusable Software]: reuse models.

General Terms

Management, Measurement, Design, Performance and Theory.

Keywords

Software reuse, knowledge management, agile development,

reuse maturity model, maturity levels, reuse factors and

assessment method.

1. INTRODUCTION
The reuse of knowledge is considered a major factor for

increasing productivity and quality. Although organizations have

always used different knowledge practices to produce goods and

services, their way of sharing knowledge is often informal and not

systematic [1]. A large quantity of literature is dedicated to this

subject as the reuse of knowledge is interesting to both

practitioners and researchers. In the software industry the reuse of

knowledge manifests itself in software assets such as code

components, functional designs and test cases. The reuse of this

kind of knowledge is also referred to as software reuse in

literature [26]. Mili et al. describe software reuse as a two-fold

concept: first of all it is 'building software that is reusable by

design' and secondly it is 'building with reusable software' [31].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
SAC’11, March 21-25, 2011, TaiChung, Taiwan.

Copyright 2011 ACM 978-1-4503-0113-8/11/03…$10.00.

The two-fold definition explicitly indicates that software reuse it

not purely a technical issue, but also an organizational one.

Systematic software reuse has been regarded as the only

appropriate solution for the notion of the software crisis [19, 26,

31]. Systematic software reuse on its turn is defined as reuse

which is repeatable and excludes ad-hoc reuse events [33].

The reuse of existing software assets offers intuitively great

benefits, but despite its promises it has never reached its full

potential. The first wave of researchers focused on the technical

aspects to optimize software reuse. The second wave of

researchers shifted towards the organizational aspects of software

reuse [33].

Software reuse processes are at best a secondary concern as the

focus of a normal project is on project specific goals and

outcomes [33]. Both organizational and technical issues have to

be addressed to facilitate software reuse within and outside the

normal project scope in order to reach higher levels of reuse.

1.1 Problem statement
When analyzing the problem regarding software reuse in greater

detail, it becomes evident that there is no holistic approach

available to address software reuse issues. Literature assumes that

systematic and formalized processes are key for achieving higher

levels of reuse, but agile development organizations and the open

source community are also successfully practicing software reuse

without having these, often extensively documented and

formalized procedures or task definitions.

Software reuse in agile development settings and the open source

community indicate that there is a wide range of practices that

have to be addressed to utilize software reuse [21]. Without a

holistic approach to software reuse organizations are not able to

address related issues and even more important they are not able

to identify potential improvement areas for achieving even greater

benefits.

1.2 Research goal and approach
The purpose of this research is to develop a conceptual software

reuse management tool for addressing both technical and

organizational reuse issues. In order to set up such a management

tool a solid theoretical basis is required. A literature survey has

been conducted to evaluate the current state of software reuse

literature, existing reuse models and frameworks. Furthermore,

the reuse issues are analyzed in greater detail through a systematic

literature review of the top 25 IS journals. The proposed

management tool is validated through an expert panel at a medium

sized software development organization, providing valuable

315

insights in the software reuse practices and the validity of the

management tool. The results are presented in the following

chapters. In Section 2 we explain the core components of our

approach. Section 3 is devoted to an account on the results of the

validation we performed for our tool by applying it in an agile

software development organization. We conclude the paper with a

discussion of some conclusions and of several pointers to future

work.

Figure 1: Overview of the conceptual management tool structure

2. REUSE MANAGEMENT TOOL
The proposed reuse management tool is a conceptual tool which

has been set up after a careful analysis of existing reuse models

and frameworks. The evaluated reuse models and frameworks

include the work of: Holibaugh et al. [22], Koltun and Hudson

[25], Prieto-Díaz [39], M. Davis [11], T. Davis [12], Wartik and

Davis [52], Rine and Nada [42] and Garcia et al. [17]. All of them

provide valuable insights, each from a slightly different

perspective. None of them, however, address software reuse

specifically for agile development. In fact most papers approach

software reuse from a static perspective instead of a dynamic one.

Lastly the vast majority of papers provides little or no guidance to

the adaption of software reuse. In order to overcome the majority

of these limitations we propose a new reuse management tool

continuing on the basis provided by previous models. The basic

structure is derived from the Software Process Improvement (SPI)

framework defined by Niazi et al. [36]. The management tool

contains a reuse maturity model based on maturity levels, reuse

factors and a set of reuse practices. Together they form the first

component of the reuse management tool. In order to

operationalize the reuse management tool a second component is

added which is the assessment method. This component defines a

way to assess the state of a reuse factors by determining its score

and relevance. The basis for the assessment method component is

provided by the work of Daskalantonakis [10]. An overview is

provided in Figure 1, all component elements are explained in

greater detail in the following sections.

2.1 Maturity levels
The maturity levels are incremental plateaus for addressing reuse

factors. After analyzing existing models and frameworks we

decided to use a combination of the incremental reuse levels

defined by Griss [18] and the maturity stages of the CMMI model

[49]. Such a combination is possible because both approaches

assume that additional investments will have to be made before

higher levels of reuse can be achieved. Morisio et al. note for

example that a library approach can be good with 30% reuse, but

also that a product line approach can be bad with 70% reuse [33].

The investments for a product line approach are far more

substantial than for a library approach and not all organization

will or can reach these reuse levels. It remains up to the individual

organization to determine which level is suitable for their

business. The defined reuse levels for providing guidance are

presented below:

At level 1 ad-hoc reuse events are found. Ad-hoc reuse events are

reuse events caused by individuals. The reuse events are not

coordinated and not monitored. No formal reuse processes are

present. The individual is driven by previous experience, where

code is often scavenged. Scavenged code is code that is copy-

pasted from previous projects. Every organization is expected to

have a form of ad-hoc reuse.

At level 2 the reuse process is characterised as managed. The

basic infrastructure is installed to let reuse events take place. Its

processes are more structured and can be controlled and

monitored. Pieces of leveraged code, or rather code components,

are used at this level.

316

At level 3 the processes are standardized and thus followed by the

organisation. The code components are managed and controlled

by a group, guiding reuse in the right direction. Additional

elements of a systematic reuse process are implemented.

At level 4 software reuse is defined as quantitatively managed

architected reuse. Architected indicates that an architecture is used

to define and fit the code components, which is in line with the

software product line approach. Quantitatively managed reuse

means that the reuse processes are controlled using statistical and

other quantitative analysis techniques. Also, the reuse processes

are managed throughout the entire software lifecycle.

In the final maturity stage, level 5, the reuse events are optimized

for a specific domain. Not only do the reusable assets have to fit

within the architecture, but the architecture is also guiding the

development of reusable assets. New components complement or

extend the existing architecture. Each product is composed of or

created by reusable assets exploiting software reuse to its limits.

2.2 Reuse factors
The second element of the maturity model component is the reuse

factors. A reuse factor is describing a relevant aspect of software

reuse, which can be related to both a technical and organizational

issue. Previous reuse models and frameworks do not always

organize their reuse factors into categories, making it difficult to

address relevant areas. When looking at the models of Garcia et

al. , Lucrédio et al. [30] and Nerur [35] a slightly different mix of

reuse factors can be found. Returning to the work of Morton [34]

a synthesis between the various defined categories is suggested.

An overview of the model of Morton is presented in Figure 2.

Figure 2: BTOPP model [34].

The BTOPP model stands for the Business, Technology,

Organizations, Process and People model. The model is used to

organize the reuse factors in a coherent way. The reuse factors are

identified through a systematic literature review to the top 25 IS

journals as identified by Schwartz and Russo [47]. Only the

empirical papers were selected found by the search queries

'software reuse' or 'component reuse'. After removing the false

positives and performing forward and backward searching on the

remaining articles, a total of 24 articles were found. These articles

include the work of: Banker [2], Banker [4], Desouza [13],

Fafchamps [14], Frakes and Fox [15], Frakes and Fox [16], Griss

[19], Griss [20], Haefliger [21], Isoda [23], Joos [24], Lee and

Litecky [28], Lim [29], Lucredio et al. [30], Mohagheghi [32],

Morisio et al. [33], Prieto Diaz [38], Purao [40], Rine [41], Rine

and Sonneman [43], Rosenbaum [44], Rothenberger [46],

Rothenberger [45] and Selby [50]. The identified reuse factors are

elaborated on in greater detail per BTOPP category.

2.2.1 Business factors
The literature review resulted in the identification of the business

factor ‘domain focus’. The domain focus is an indicator for the

level of commonalities among products. The development of

applications for a narrow and focused domain will likely result in

high levels of commonalities among created solutions, while the

development of solutions for a broad and unfocussed domain will

likely result in low levels of commonalities. The software reuse

levels are therefore influenced by the strategic choice of an

organization to focus on a certain domain. Griss also recognizes

the domain focus as a form of a need to commit to software reuse

[19]. He notes that when there is no need to commit to reuse

employees may behave according to the Not Invented Here (NIH)

syndrome [19]. This syndrome assumes that developers prefer to

build their own assets instead of reusing the assets created by

someone else.

2.2.2 Organizational factors
We have identified three organizational factors: ‘top management

support and instrumental mechanisms’, ‘organizational structure

and reuse roles’ and ‘communication channels and organizational

support’.

Top management support and instrumental mechanisms are taken

as a factor for indicating the commitment of top management. The

support provided by top management can be both passive and

active. They can be reinforced through several instrumental

mechanisms. Instrumental mechanisms mentioned in literature

include the use of reuse champions, sample solutions, rewards and

incentives, reuse education and training [15, 31].

The organizational structure and related reuse roles are often

approached as a formal separation between producers of reusable

assets and consumers of reusable assets [8, 14, 37] The producers

of reusable assets are those who create the assets and the

consumers are those who use the assets in building new solutions.

The way how these reuse roles and others are installed within the

organizational are related to the reuse levels.

The identification of communications channels and how they are

supported is identified as a potential reuse factor. This reuse factor

is embodied in a systematic software reuse process and includes

the communication of change requests [14, 23]. The factor is

emphasized by agile development methodologies as they tend to

rely on informal processes and face-to-face communication [5].

2.2.3 Process factors
The process factors can be directly related to a systematic reuse

process. The literature review resulted into six process factors:

'reuse planning', 'reuse measurement and cost justification',

'requirements management', 'quality management', 'supplier

management' and 'configuration and change management'.

Reuse planning describes whether reuse events are planned in the

beginning of a software development project or they pop-in

during the development process. Reuse planning is an indicator

for a systematic reuse process [2, 30]. Domain analysis may be

used for systematically scanning the domain for potential reuse

opportunities [41].

The use of reuse measurement and costs models is another reuse

factor indicating a systematic reuse process. The measurement of

317

reuse activities may be enforced by top management for

performing cost-benefit analysis [24]. Investments in reuse

measurement and costs models may be substantial and are not

always desired [33]. The factor is nevertheless taken as a reuse

factor as it contributes to a systematic reuse process.

Requirements management over multiple projects can provide a

solid basis for identifying commonalities, which is an indicator of

a systematic software reuse process [26]. Based on the

commonalities potential reusable assets can be identified and

produced.

Quality management is arguably one of the most important reuse

factors. Rosenbaum describes quality management as mandatory

for a successful reuse program [44]. Quality management can be

installed through the use of quality models or ranking systems

[21, 41]. The way how quality management is addressed and its

importance differs over the various reuse levels. Supplier

management addresses issues related to the acquisition of

externally acquired assets (such as from black-box component

markets and open source projects), asset certification and legal

aspects [15].

The last process factor is configuration and change management

required for the managed of reusable assets. Without

configuration and change management, reusable assets are

expected to start 'having a life of their own'. In literature

configuration and change management is addressed by assigning

dedicated roles [38] or assuming that components are carefully

tested before they are populated into a repository [26]. In practice

additional mechanisms are likely to be present varying over

different reuse levels.

2.2.4 People factors
The literature review identified two people factors which are

'producer skills and experience' and 'consumer skills and

experience'.

A producer is a person actively working and the production of

reusable assets. Producer skills and experience include both

technical aspects such as programming languages skills, but also

organization aspects such as domain specific knowledge. The

latter one is required to recognize reuse patterns and to separate

project specific functionality from functionality reusable over

multiple projects [46].

A consumer is a person who is using existing reusable assets to

create new solutions. Consumer skills and experience relate to all

the knowledge and practices required at the consumer side

including knowledge about the reusable assets itself and best

practices for integrating reusable assets.

The people factors are operationalized in the reuse maturity model

component through the use of the People Capability Maturity

Model (P-CMM) [48].

2.2.5 Technology factors
Lastly, the literature review identified three technology factors

including 'repository support', 'CASE tool support' and

'communication tool support'.

Repository supports refers to the use of a repository for storing

and retrieving reusable assets. This reuse factor includes the use

of search and retrieval techniques [4] and configuration

management tools. A simple configuration management tool may

serve as the basis for providing and managing reusable assets

[33].

Computer Aided Software Engineering (CASE) tool support

refers to the use of integrated programming tools [3]. Effective

software reuse may make use of tools where the repository is

integrated in the programming tools, reducing reuse barriers as

much as possible. By further integrating CASE tool support the

idea of an application generator may become feasible [26].

Communication tool support is used to describe the active support

of communication among producers and consumers through the

use of tools. The reuse factor is included into the management tool

as it is also identified as a possible way to scale agile

methodologies for more complex environments.

2.3 Reuse practices
The combination of a reuse factor and a maturity level is

operationalized through the use of reuse practices [36]. A reuse

practice describes a set of practices which a reuse factor has to

meet before it reaches a certain maturity stage. The reuse practices

form the basis for the assessment method component discussed in

the following two sections. Due to space limitations in this paper,

the practices are not further elaborated on. The original set of

reuse practices and related information can be found in the master

thesis of Spoelstra [51].

2.4 Factor scoring and factor relevance
The assessment method component consists of the measurement

of two variables. The first is the scoring of reuse factors, which is

done according to the three dimensions defined by

Daskalantonakis: 'approach', 'deployment' and 'results' [10]. The

combination of these three dimensions leads to a fixed score on a

scale of 0-10. By dividing the score by 2 the related reuse level

can be found. An odd score can be used to indicate that the current

reuse level shows characteristics of two adjacent reuse levels, but

has not met all the characteristics of the upper level.

The second element of the assessment method is the relevance

variable. The relevance variable is added to the assessment

method to overcome the limitation of not being able to tailor the

management tool to the demands of the individual organization.

Furthermore the relevance variable is used as an indicator of the

need to scale a certain reuse factor. The use of a relevance

variable favors the continuous approach of the CMMI-DEV

model [9]. By using the relevance variable in multiple case studies

in similar research settings it is expected that reuse patterns can be

discovered. The use of reuse patterns favors the staged approach

of the CMMI-DEV model. Investigating reuse patterns was out of

scope for this research.

3. VALIDATION RESULTS
The management tool has been validated based on three validity

factors, which are: 'completeness', 'internal consistency' and

'applicability'. The identified validity factors can be compared

with the work of Lagerström et al. [27]. An expert panel has been

selected within the case organization for performing the validation

process. During the validation process the expert panel was asked

to apply the management tool and evaluate the tool during and

after the application process. The first section of this chapter

introduces the case organization and the expert panel. After that

the application results are presented per BTOPP category. An

overview of the results is also presented in Table 1. In the last

section the expert evaluation results are presented.

318

Table 1: Application results

 Score Results (0-10) Relevance results (0-5)

Reuse factor Average

Standard

deviation

BTOPP

average Average

Standard

deviation

BTOPP

average

1. Domain focus 6,3 1,3 6,3 4 0,9 4

2. Top management support and instrumental

mechanisms 5,4 2,1

4,9

4,3 0,5

3,9

3. Organizational structure and reuse roles 4,6 1,1 3,9 0,9

4. Communication channels and support 4,6 1,1 3,3 1,0

5. Planning for reuse 4,2 1,9

2,9

3,2 1,2

2,6

6. Reuse measurement and cost models 2,1 1,5 2,4 1,3

7. Requirements management 3,3 0,9 2,8 0,8

8. Quality management 2,3 0,9 2,7 1,0

9. Supplier management 1,8 0,7 1,1 0,6

10. Configuration and change management 3,3 1,1 3,4 1,0

11. Producer skills and experience 5,0 1,7

4,8

3,4 1,2

3,2 12. Consumer skills and experience 4,7 1,5 2,9 1,3

13. Repository support 4,7 0,7

3,0

3,8 0,9

2,8

14. CASE tool support 1,3 2,3 1,6 1,3

15. Communication tool support 2,9 1,5 3,2 0,7

3.1 Case description and expert panel
The case organization is a medium sized Dutch software

development organization. This organization utilizes agile

development methodologies [5] to be able to quickly respond to

fast changing dynamic markets. Within the organization each

business units focuses on separate market segments (e.g., financial

sector, healthcare, etc). Because each business unit is operating in

a separate market segment, its domain is defined to a certain

extend and natural levels of reuse exist. The expert panel consist

of 9 members and covers four business units operating on the

same knowledge base. The roles covered by the expert panel are:

developer, analyst and project manager. Each role is covered

multiple times.

3.2 Business factor results
All the business units of the case organization have defined their

own market niche. In some cases there may be overlap between

the defined market niches offering opportunities for collaboration

between business units. Some business units have matured their

solutions more for their market niche than others, but all of them

have relevant domain experience. Because the domain focus is for

a large part defined it is also architected to a certain extend. A true

product line architecture as defined by Bosch [8] is however not

used, as the customer demands are leading and not the existing

architecture. The domain factor was considered as very relevant.

3.3 Organizational factor results
Software reuse activities are stimulated and encouraged within all

business units. As one of the experts noted: 'software reuse is

considered an integrated part of the selling strategy’. Top

management assigned dedicated resources for the production of

reusable assets. Due to resource constraints the roles dedicated to

software reuse are merely part time roles and only the most

important reusable assets are maintained actively. The other

reusable assets are often created within the normal project scope

and have to be extracted from there in order to be reused. The

communication channels are installed and information is shared

across multiple business units. The extent of sharing is however

informal and relies greatly on individual efforts. Some experts

noted that they would like to see more information from other

business units, but at the same time such information is likely to

be irrelevant as the most important aspects are shared.

Furthermore the experts emphasized that sharing information is a

desired situation and it should not be formalized. Simply asking

around is considered as being a good practice. Additional

documentation in general could further improve the information

flow though. The three reuse factors we have identified were

considered by the expert panel as relevant factors for software

reuse.

3.4 Process factor results
The processes regarding software reuse can grouped around two

sets of components. The first set of components consists of those

that are centrally and more formally managed. The assessment

results for these components were remarkably higher than for the

319

other set of components. The other set of components is managed

more informally often within a business unit or a specific project.

The components have to be extracted from these projects first

before they can be reused. For both component sets the customer

demands are directive. The customer is effecting a pull

mechanism on the development of components. The components

are not developed for being pushed into the market. In some rare

cases a separate project is set up to create reusable assets, this can

be due to converging versions of reusable assets which have to be

merged again or because the expected paybacks of a reusable

asset are so obvious that the costs can be easily justified. Apart

from these extraordinary situations reuse events are usually

planned during the design phase of a project or emerge during the

development phase. In the latter case experienced developers

recognize and exploit reuse opportunities. The chance of

successfully creating reusable assets is highest at the beginning of

a project, because priorities shift near the end of the project and

negatively influence the resources available for creating reusable

assets.

The experts noted that reuse events and costs can be roughly

estimated based on the experience of a developer and relevant

domain knowledge. Formal reuse measurement and costs models

are not present at the case organization.

Requirements are analyzed at customer level and are only to a

limited extent useable over multiple projects. It is mainly the

individual who recognizes and exploits reuse opportunities. The

idea of requirements management across multiple projects has

been proposed by the business, but so far its applicability appears

to be limited.

Quality models appeared seem to be less relevant as the

organization relies on the expertise of developers. An expert noted

that: 'when a component appears to be of insufficient quality it

will be improved the next time it is used'. The disadvantage of this

strategy is, however, that the other projects using this component

may have to be updated as well. This line of thought indicates a

possible relation between the amount of times a component is

reused and its quality. Formal quality models may be more

applicable in larger organizations.

The experts were in general not positive about externally acquired

assets from black-box component markets. The functionality

required was often slightly different from the functionality

provided by such components. Open source projects such as

.Spring and NHibernate are successfully integrated and have

proven their value. Formal supplier management appeared to be

not applicable for open source projects.

Configuration and change management seems to be difficult at the

case organization. Individual projects wish to reuse a component

in a slightly different that the way they are offered, leading to the

possible existence of multiple versions. These versions have to be

merged back at a certain point in time, requiring substantial

efforts. Configuration and change management was installed

through a revision management system and through frequent

meetings regarding the most important assets. This point is

expected to require additional attention in the future.

Our observation is that process factors scored consistently lower

during the evaluation process compared to the other reuse factors.

The experts also added lower relevance variables indicating that

major improvement are not desired. The discussion with the

experts confirmed this statement. The essence seems to be that

reuse events should be planned in the beginning of a project as

much as possible, outside the project scope the efforts are difficult

to justify.

3.5 People factor results
A formal role distinction between producers and consumers of

reusable assets was less applicable at the case organization, as

roles are interchangeable. This is also a characteristic of agile

development environments [6]. The experts noted that producers

of reusable assets are usually experienced developers in line with

the findings of Fafchamps [14]. Best practices have been defined

and the producers sometimes act as a coach towards the

consumers of reusable assets, helping them learn the required

knowledge and skills. When a consumer wants to change a

component the change request must be placed at the producer of

this asset. If the change request is accepted the change requester

has to populate the change into the software asset. When a

consumer decides the skip this step a separate component version

is created leading to possible merge conflicts in the future. The

assessment of the people factors appeared to be difficult as the

People Capability Maturity Model seems to be more applicable

for larger organizations. Smaller organization do address the

development of skills and experience, but arguable do not do this

structurally. Additional research is required to improve the

assessment of the people factors.

3.6 Technology factor results
The first set of components is stored within a central revision

management system. The other component set is usually stored

within a project specific repository. These components have to be

extracted from a project first before they can be reused, they are

however set up in such a way that this can be done relatively

quickly. Documentation such as functional designs and test cases

is stored separated from the assets if available at all.

CASE tool support is integrated as far as desired, namely, for

interface components. The experts do not see potential in further

investing in CASE tool support for software reuse. In a narrower

domain it may however offer additional benefits.

Communication tool support is installed through the use of

mailing lists and a bug tracking system. Both tools are not specific

for software reuse and are used in a broader sense. The experts

emphasized that communication channels should remain informal.

Wikipedia pages may be used for complementary documentation.

The technology factors were also considered relevant factors. The

experts did note that the technology factors are rather supportive.

Basic technology issues have to be addressed and can be

developed along the demands of the organization.

3.7 Expert evaluation
This section presents the expert opinions based on the evaluation

during and after the application process. The proposed reuse

levels are considered useful and relevant. During the discussion

presented in previous sections of this chapter, several points

regarding the reuse factors already became clear. Supplier

management and CASE tool support are considered less relevant,

but may be more applicable in other organizations. Furthermore,

the experts emphasized the importance of the selling strategy

related to the domain focus. It is reasonable to assume that the

selling strategy is the basis for the domain focus, it was however

not taken explicitly in the reuse factor itself. Due to

interchangeable roles the experts had problems with making a

320

distinction between the people factors, but at the same time it

proved to be valuable for discussing relevant aspects from

different viewpoints. Based on the expert evaluation no direct

changes were proposed to the proposed set of reuse factors, they

are considered complete without superfluous elements. The reuse

practices were not evaluated in detail, but the application process

did provided valuable insights. A high standard deviation among

the results can possibly serve as an indicator for assessment

difficulties. The relatively high standard deviation for the people

factors confirmed such difficulties. The used practices for the

people factors are derived from the P-CMM [48], which are likely

to be more applicable in larger organizations. The experts did note

that these practices contained relevant elements, but the exact

matching of the elements was a combination spread out over

multiple reuse levels. Improving the practices through the use of

additional case studies likely leads to a higher applicability of the

management tool in general. The experts also suggested

improving the assessment method through the use of an additional

variable. This variable should measure the desired scalability of a

reuse factor explicitly. The relevance variable indirectly includes

the scalability as well, but the way it includes the scalability did

not completely satisfy the experts.

4. DISCUSSION AND CONCLUSION
This paper proposes a conceptual management tool for addressing

software reuse issues. The management tool extends existing

literature and provides valuable insights in the adoption of

software reuse in agile development organizations. Although the

tool was intended to be specific for agile development

organizations it was set up in a more generic way, because agile

development methodologies have proven to be applicable in more

complex environments. The combination of the CMMI-DEV

model with agile methodologies seems to be contradictive, but

recent literature investigates the combination of both resulting in

several success stories by balancing both aspects [7]. In all cases it

remains up to the individual organization to choose which levels

of the management tool are desirable for the business

environment. Furthermore, the case study resulted in insights

regarding the validity of the management tool. CASE tool support

and supplier management appeared to be less applicable for the

case, but are expected to be more important for other

organizations. The assessment of the people factors should be

further improved through the use of additional case studies. The

use of a single case study is considered a major limitation of this

research. Another limitation is that the performed case study is

based on a great amount of quantitative data. Despite the use of a

voice recorder, transcripts and multiple data sources the results are

coloured by individual perception. Interestingly, the results

discovered during the case study are in line with the expectations

of agile development organizations, which maintain less

formalized processes and focus on people aspects. The case study

confirms that such organizations are indeed well capable of

identifying and seizing reuse opportunities as stated in the

introduction. Future research can use the assessment results as a

basis for identifying reuse patterns. A reuse pattern defines a

combination of reuse scores and relevance variables linked to

certain types of organizations. When several reuse patterns have

been identified they can be used for new organizations as

implementation guideline. The purpose of the management tool in

such a case is then no longer focussed on evaluating software

reuse, but also on providing prescriptive guidelines for

implementing software reuse into organizations.

5. ACKNOWLEDGMENTS
This research would not have been possible without the support of

the anonymous experts and the resources provided by the case

organization. Furthermore we want to thank Jasper Laagland and

Johan te Winkel for their support and contributions made to the

content of this paper. The work presented in this paper is also

partly supported by the Agile Service Development project, which

is part of the Service Innovation & ICT program (www.si-i.nl),

sponsored by the Dutch Ministry of Economic Affairs.

6. REFERENCES
[1] Alavi, M. and Leidner, D.E. Review: Knowledge

Management and Knowledge Management Systems:

Conceptual Foundations and Research Issues. MIS

Quarterly, 25 (1). 107-136.

[2] Banker, R.D. and Kauffman, R.J. Reuse and productivity in

integrated computer-aided software engineering: an

empirical study. MIS Quarterly, 15 (3). 375-401.

[3] Banker, R.D., Kauffman, R.J., Wright, C. and Zweig, D.

Automating output size and reuse metrics in a repository-

based computer-aided software engineering (CASE)

environment. IEEE Transactions on Software Engineering,

20 (3). 169-187.

[4] Banker, R.D., Kauffman, R.J. and Zweig, D. Repository

evaluation of software reuse. IEEE Transactions on Software

Engineering, 19 (4). 379-389.

[5] Beck, K. Agile Manifesto, http:/agilemanifesto.org/.

[6] Boehm, B. Get ready for agile methods, with care. Computer,

35 (1). 64-69.

[7] Boehm, B. and Turner, R., Balancing agility and discipline:

Evaluating and integrating agile and plan-driven methods. in

Proceedings - International Conference on Software

Engineering, (2004), 718-719.

[8] Bosch, J. Organizing for Software Product Lines. in Software

Architectures for Product Families, 2000, 117-134.

[9] CMMI-ProductTeam. CMMI-DEV, V1.2 - Improving

processes for better Products, Software Engineering Institute,

2006.

[10] Daskalantonakis, M.K. Achieving Higher SEI Levels. IEEE

Software, 11 (4). 17-24.

[11] Davis, M.J., Stars Reuse Maturity Model: Guidelines for

Reuse Strategy Formulation. in Proceedings of the Fifth

Annual Workshop on Institutionalizing Software Reuse, (Palo

Alto, California, USA, 1992), M 1-6.

[12] Davis, T. The reuse capability model: A basis for improving

an organization’s reuse capability proceedings of the 2nd

International Workshop on Software Reuse, Lucca, Italy,

1993, 126-133.

[13] Desouza, K.C., Awazu, Y. and Tiwana, A. Four dynamics

for bringing use back into software reuse. Communications

of the ACM, 49 (1). 96-100.

[14] Fafchamps, D. Organizational Factors and Reuse. IEEE

Softw., 11 (5). 31-41.

[15] Frakes, W.B. and Fox, C.J. 16 Questions About Software

Reuse. Communications of the ACM, 38 (6). 75-&.

[16] Frakes, W.B. and Fox, C.J. Quality improvement using a

software reuse failure modes model. IEEE Transactions on

Software Engineering, 22 (4). 274-279.

321

[17] Garcia, V.C., Lucredio, D., Alvaro, A., De Almeida, E.S., De

Mattos Fortes, R.P. and De Lemos Meira, S.R. Towards a

maturity model for a reuse incremental adoption SBCARS

2007 - Brazilian Symposium on Software Components,

Architectures and Reuse, Brazil, 2007, 61-74.

[18] Griss, M. Systematic Software Reuse: Architecture, Process

and Organization are Crucial, Fusion Newsletter, HP

Laboratories, Oct 1996, 1996.

[19] Griss, M.L. Software reuse: from library to factory. IBM

Syst. J., 32 (4). 548-566.

[20] Griss, M.L. Architecting for large-scale systematic

component reuse Proceedings of the 21st international

conference on Software engineering, ACM, Los Angeles,

California, United States, 1999.

[21] Haefliger, S., Von Krogh, G. and Spaeth, S. Code reuse in

open source software. Management Science, 54 (1). 180-193.

[22] Holibaugh, R., Cohen, S., Kang, K. and Peterson, S. Reuse:

where to begin and why Proceedings of the conference on

Tri-Ada '89: Ada technology in context: application,

development, and deployment, ACM, Pittsburgh,

Pennsylvania, United States, 1989.

[23] Isoda, S. Experience report on software reuse project: its

structure, activities, and statistical results Proceedings of the

14th international conference on Software engineering,

ACM, Melbourne, Australia, 1992.

[24] Joos, R. Software Reuse at Motorola. IEEE Softw., 11 (5).

42-47.

[25] Koltun, P. and Hudson, A., A reuse maturity model. in 4th

Annual Workshop on Software Reuse, (Hemdon, Virginia:

Center for Innovative Technology, 1991).

[26] Krueger, C.W. Software reuse. ACM Computing surveys, 24

(2). 131-183.

[27] Lagerström, R., Johnson, P. and Ekstedt, M. Architecture

analysis of enterprise systems modifiability: a metamodel for

software change cost estimation. Software Quality Journal.

[28] Lee, N.Y. and Litecky, C.R. An empirical study of software

reuse with special attention to ada. IEEE Transactions on

Software Engineering, 23 (9). 537-549.

[29] Lim, W.C. Effects of reuse on quality, productivity, and

economics. IEEE Software, 11 (5). 23-30.

[30] Lucrédio, D., dos Santos Brito, K., Alvaro, A., Garcia, V.C.,

de Almeida, E.S., de Mattos Fortes, R.P. and Meira, S.L.

Software reuse: The Brazilian industry scenario. Journal of

Systems and Software, 81 (6). 996-1013.

[31] Mili, H., Mili, F. and Mili, A. Reusing software: issues and

research directions. Software Engineering, IEEE

Transactions on, 21 (6). 528-562.

[32] Mohagheghi, P. and Conradi, R. An empirical investigation

of software reuse benefits in a large telecom product. ACM

Transactions on Software Engineering and Methodology, 17

(3).

[33] Morisio, M., Ezran, M. and Tully, C. Success and Failure

Factors in Software Reuse. IEEE Trans. Softw. Eng., 28 (4).

340-357.

[34] Morton, M.S. The Corporation of the 1990s: Information

Technology and Organizational Transformation. Oxford

University Press, USA, 1991.

[35] Nerur, S., Mahapatra, R. and Mangalaraj, G. Challenges of

migrating to agile methodologies. Commun. ACM, 48 (5).

72-78.

[36] Niazi, M., Wilson, D. and Zowghi, D. A maturity model for

the implementation of software process improvement: an

empirical study. J. Syst. Softw., 74 (2). 155-172.

[37] Poulin, J.S. Technical opinion: reuse: been there, done that.

Commun. ACM, 42 (5). 98-100.

[38] Prieto-Díaz, R. Implemeting Facted Classification for

Software Reuse. Communications of the ACM, 34 (5). 88-97.

[39] Prieto-Díaz, R. Making software reuse work: an

implementation model. SIGSOFT Softw. Eng. Notes, 16 (3).

61-68.

[40] Purao, S. and Storey, V.C. Evaluating the adoption potential

of design science efforts: The case of APSARA. Decision

Support Systems, 44 (2). 369-381.

[41] Rine, D.C. Success factors for software reuse that are

applicable across domains and businesses Proceedings of the

1997 ACM symposium on Applied computing, ACM, San

Jose, California, United States, 1997.

[42] Rine, D.C. and Nada, N. An empirical study of a software

reuse reference model. Information and Software

Technology, 42 (1). 47-65.

[43] Rine, D.C. and Sonnemann, R.M. Investments in reusable

software. A study of software reuse investment success

factors. Journal of Systems and Software 41 (1). 17-32.

[44] Rosenbaum, S. and Castel, B.d. Managing software reuse -

an experience report Proceedings of the 17th international

conference on Software engineering, ACM, Seattle,

Washington, United States, 1995.

[45] Rothenberger, M.A. Project-level reuse factors: Drivers for

variation within software development environments.

Decision Sciences, 34 (1). 83-106.

[46] Rothenberger, M.A., Dooley, K.J., Kulkarni, U.R. and Nada,

N. Strategies for software reuse: A principal component

analysis of reuse practices. IEEE Transactions on Software

Engineering, 29 (9). 825-837.

[47] Schwartz, R.B. and Russo, M.C. How to quickly find articles

in the top IS journals. Commun. ACM, 47 (2). 98-101.

[48] SEI. Overview of the People Capability Maturity Model,

Software Engineering Institute 1995.

[49] SEI. CMMI-DEV, V1.2 - Improving processes for better

Products, Software Engineering Institute 2006.

[50] Selby, R.W. Enabling reuse-based software development of

large-scale systems. IEEE Transactions on Software

Engineering, 31 (6). 495-510.

[51] Spoelstra, W.J.T. Reusing software assets in agile

development organizations - a management tool, Master

thesis, University of Twente, Enschede, 2010.

[52] Wartik, S. and Davis, T. A phased reuse adoption model.

Journal of Systems and Software, 46 (1). 13-23.

322

View publication statsView publication stats

https://www.researchgate.net/publication/221000055

