
Ad Hoc Networks 78 (2018) 24–31

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

QoS-base d distribute d flow management in software defined

ultra-dense networks

Tu ̆gçe Bilen

a , ∗, Kübra Ayvaz

a , Berk Canberk

a , b

a Computer Engineering Department, The Faculty of Computer and Informatics, Istanbul Technical University, Ayazaga, Istanbul, Turkey
b Department of Electrical and Computer Engineering, Northeastern University, Boston USA

a r t i c l e i n f o

Keywords:

Ultra-dense networks

Software defined networking

Controller outage

Queuing theory

Mice and Elephant flows

Flow management

a b s t r a c t

Ultra-dense small cell deployment is a promising solution to meet the 10 0 0 × through-

put improvement desired in next-generation wireless networks. This deployment results

in a correspondingly high number of small cells, also increasing the complexity of the ar-

chitecture. The Software-Defined Networking (SDN) can be used as a solution to ease the

management of Ultra-Dense data plane with distributed controllers. However, in a dis-

tributed architecture, the load must be balanced among the controllers and an outage in

any controller should not damage the management of the network. In order to recover

from an outage by considering load distributions, we propose a distributed flow manage-

ment model in Software-Defined Ultra-Dense Networks based on the queuing theory. In

this approach, we model the distributed controllers with different Markovian queuing sys-

tems by considering the flow characteristics and outage. Thus, the proposed flow separa-

tion module divides the incoming flows of controllers according to the characteristics of

mice and elephant during modeling. Correspondingly, incoming mice and elephant flows

are modeled by using M / M /1 and M

X / M /1 systems with additional M / M / c queue until the

detection of the outage. The M / M / c queues are used for outage detection thanks to Erlang-

C parameter. On the other hand, the M / M /1 and M

X / M /1 systems are used to load estima-

tions of mice and elephant flows. Therefore, the mice and elephant flows of the outage

controllers are transferred to the compensatory controllers by considering the estimated

load distributions. Thence, the M / M / c queues of the compensatory controllers are con-

verted to the M / M

Y /1 system to satisfy the massive flow traffic with bulk service. With

this method, we are able to decrease the waiting times of mice and elephant flows during

the outage by 15% and 11% respectively compared to the conventional distributed con-

troller implementation. Moreover, the packet losses of the controllers during the outage

are decreased by 32% compared to the conventional implementation.

© 2018 Elsevier B.V. All rights reserved.

1

i

q

h

1

. Introduction

Next generation networks will result in an increas-

ng number of mobile devices with high data rate re-

uirements. Some industry estimates, such as the Cisco
∗ Corresponding author.

E-mail addresses: bilent@itu.edu.tr (T. Bilen), kbra.ayvaz@gmail.com

(K. Ayvaz), canberk@itu.edu.tr (B. Canberk).

ttps://doi.org/10.1016/j.adhoc.2018.05.002

570-8705/© 2018 Elsevier B.V. All rights reserved.
Visual Networking Index (VNI) report, point towards ag-

gregate mobile data traffic reaching 49 exabytes per month

in 2021 [1] . The new infrastructures are developed to sat-

isfy the high data rate demand with low latency. The Ultra-

Densification is one of the key infrastructure innovations to

enable performance and capacity gain in next-generation

networks.

The network densification is a promising architec-

tural solution that can help meet such high data transfer

https://doi.org/10.1016/j.adhoc.2018.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2018.05.002&domain=pdf
mailto:bilent@itu.edu.tr
mailto:kbra.ayvaz@gmail.com
mailto:canberk@itu.edu.tr
https://doi.org/10.1016/j.adhoc.2018.05.002

T. Bilen et al. / Ad Hoc Networks 78 (2018) 24–31 25

r

c

c

w

a

o

fi

t

t

i

o

f

w

t

q

t

m

b

i

m

c

a

1

t

a

t

b

[

t

e

i

f

S

s

S

o

c

f

n

f

t

t

c

u

t

i

O

d

m

fl

t

i

o

t

t

fl

1

a

b

a

w

fl

t

S

I

p

c

2

c

c

d

c

2

b

s

F

t

t

r

i

w

t

f

p

equirements. In such scenarios, the high number of small

ells are located within the coverage area of the macro-

ell. This design results in a low-cost, low-power operation,

ith a significant increase in the total capacity, coverage,

nd energy efficiency of the network [2] .

The control and management of the excessive number

f small cells become hard despite the above-listed bene-

ts of the network densification. One of the key solution

o ease the management of this dense network infrastruc-

ure is the SDN. Thanks to the SDN, network is separated

nto control and data planes. Therefore, the management

f the data plane is executed by the centralized controller

rom the control plane based on the OpenFlow protocol

ithout any hardware configuration [3] . However, the cen-

ralized controller can be overloaded while meeting the re-

uirements of the Ultra-Dense data plane. As a solution to

his problem, the controllers can be used in a distributed

anner. However, in this architecture, the load must be

alanced among the distributed controllers and an outage

n any controller should not prevent the network manage-

ent.

Thus, through this paper, we aim to compensate the

ontroller outages by considering the flow characteristics

nd load distributions of all controllers.

.1. Related work

In current literature, there have been many works

o propose different control plane fault management

pproaches. Gonzalez et al. [4] proposes a mechanism

o design a fault-tolerant master-slave SDN controller to

alance the consistency and performance. The paper in

5] proposes a prototype SDN controller to tolerate Byzan-

ine faults in the control and data planes. Similarly, Botelho

t al. [6] designs a fault-tolerant controller, and materialize

t by proposing and formalizing a practical architecture

or small to medium-sized networks. The fault-tolerant

DN controller platform processing the control mes-

ages transactionally and exactly once is proposed in [7] .

anchez Vilchez et al. [8] proposes a self-healing based

n bayesian networks, but this solution is applied to the

entralized SDN infrastructure. The paper in [9] proposes a

ast controller failover for multi-domain software-defined

etworks. The proposed system consists of the controller

ailure detection and switches reassignment. Also, the

imeout delay is used to reduce the detection time of

he failures. Obadia et al. [10] proposes two strategies as

ontroller failover mechanisms. Here, the first mechanism

ses a greedy algorithm which sends LLDP packets during

he failure to search controllers. The second mechanism

s based on the pre-partitioning among controllers. The

penFlow-like pipeline is proposed in [11] for inter-

omain failure management. This design uses a detection

echanism based on link probing and reroutes the traffic

ows regardless of controller availability. Furthermore,

he fault management in software-defined networks is

nvestigated in [12] from different aspects. However, none

f these works considers the separation of flows according

o the characteristics while compensating the outage. But,

his separation decreases the queue waiting times of the

ows with different characteristics.
.2. Contributions

In this paper, we propose a distributed flow man-

gement model in software-defined Ultra-Dense networks

ased on queuing theory to compensate the controller out-

ges. In this approach, distributed controllers are modeled

ith the Markovian queuing systems by considering the

ow characteristics and outage. The main contributions of

he proposed method can be listed as follows:

• The proposed model is executed by the Controller Man-

agement Unit through the Controller Modeling, Outage

Detection, Flow Load Estimation, and Controller Remod-

eling Modules.

• In Controller Modeling Module, the proposed flow sep-

aration module marks the incoming flows according to

the characteristics of mice and elephant. Accordingly,

incoming mice and elephant flows are modeled by us-

ing M / M /1 and M

X / M /1 systems with additional M / M / c

queue until the detection of the outage.

• M / M / c queues are used in the Outage Detection Module

to determine the outage controllers thanks to Erlang-C

parameter.

• The M / M /1 and M

X / M /1 systems are used to calculate

loads of mice and elephant flows in the Flow Load Es-

timation Module. In case of the outage, the mice and

elephant flows are transferred to other controllers ac-

cording to estimated load distributions. We also define

these as Compensatory Controllers.

• In Controller Remodeling Module, the M / M / c queues

of the compensatory controllers are converted to the

M / M

Y /1 system to satisfy the massive flow traffic with

bulk service.

The rest of the paper organized as follows: In

ection 2 , the proposed network architecture is presented.

n Section 3 , the flow management model is explained. The

roposed mechanism is evaluated in Section 4 . Lastly, we

onclude the paper in Section 5 .

. Proposed network architecture

In the proposed network architecture, we add a new

ontroller management unit in addition to the traditional

ontrol and data planes of the SDN as shown in Fig. 1 . The

etails of the controller management unit and these planes

an be explained as follows.

.1. Control and data planes

In this paper, we define a data plane with a high num-

er of dummy small cells and mobile nodes. These dummy

mall cells and mobile nodes can be considered as Open-

low switches and managed by the control plane based on

he OpenFlow protocol [13] . The control plane consists of

he controllers defined in a distributed manner. The main

eason for the distributed controller architecture is to sat-

sfy the needs of the Ultra-Dense data plane. In this paper,

e do not perform any data plane optimization. We inves-

igate the controller outage and flow compensation issues

rom the control plane aspect as explained in the following

arts.

26 T. Bilen et al. / Ad Hoc Networks 78 (2018) 24–31

Fig. 1. The proposed network architecture.

Fig. 2. Flow management framework.

2

t

D

a

c

d

M

i

R

r

t

c

3

t

M

t

3

e

.2. Controller management unit

As mentioned above, we define the controllers in a dis-

ributed manner to satisfy the requirements of the Ultra-

ense data plane. However, in this distributed architecture,

 fault in any controller must be compensated by the other

ontrollers by considering the flow characteristics and load

istributions. For this purpose, we define a Controller

anagement Unit and it consists of the Controller Model-

ng, Outage Detection, Flow Load Estimation, and Controller

emodeling Modules . The Controller Management Unit is

esponsible for the selection of the compensatory con-

rollers during the outage according to the proposed flow

ompensation model as detailed in the following section.

. Flow management model

The proposed flow management model is executed by

he Controller Management Unit through the Controller

odeling, Outage Detection, Flow Load Calculation, and Con-

roller Remodeling Modules as shown in Fig. 2 .

.1. Controller modeling module

In this module, we model each controller with differ-

nt Markovian queuing models until the detection of the
outage. Also, we define a Flow Separation Module in each

controller to divide the incoming flows according to the

characteristics of mice and elephant.

3.1.1. Flow separation module

The incoming flows cannot reach to the controller in

a specific distribution instead they come as random ar-

rivals with high variability. Also, the total arrival stream

of flows to each controller is the collection of all flows

transferred by the data plane. Therefore, we model the

proposed Flow Separation Module according to the G/G/1

queuing system. Accordingly, the number of incoming

flows from one small cell in the data plane to the cor-

responding controller by time t equal to the N f (t). The

total arrival flow to the controller equals to the N(t) =∑ k
f=1 N f (t) and here, k represents the maximum num-

ber of sender small cell. Correspondingly, the arrival rate

of flows from one small cell in the data plane to the

corresponding controller is λi ≡ lim t→∞

E[N f (t)]

t . Equiva-

lently, the mean arrival rate of flows to the correspond-

ing controller λ =

∑ k
i =1 λi equals to lim t→∞

E[N(t)]
t . Af-

ter reaching the mean arrival rate λ, we can calcu-

late the squared coefficient of variation of inter-arrival

time to the corresponding controller (C 2
A

) by using the

T. Bilen et al. / Ad Hoc Networks 78 (2018) 24–31 27

Fig. 3. Controller model until detection of outage.

f

C

t

i

ϑ

v

m

a

i

t

A

q

m

t

r

h

t

q

fl

p

t

m

d

t

A

1

1

3

p

h

a

a

o

λ

a

e

t

c

p

f

t

fi

l

r

i
ollowing equation:

2
A =

1

λ

k ∑

i =1

λi C
2
i , ∀ i ∈ N (1)

In Eq. (1) , C 2
i

is the squared coefficient of variation be-

ween the departures from a small cell to the correspond-

ng controller and found as C 2
i

= ϑ i /λi . In this equation, the

i is limiting factor and calculated as ϑ i ≡ lim t→∞

Var[N f (t)]

t .

The Flow Separation Module calculates the C 2
A

to di-

ide the incoming flows according to the characteristics as

ice and elephant. This parameter represents the variation

mong incoming flows. Therefore, this module marks the

ncoming flow as an elephant if C 2
A

value is greater than

he predefined threshold (it is taken as 1 in this paper).

fter that, we model the mice flows by using the M / M /1

ueue. The elephant flows are modeled with M

X / M /1 batch

odel to satisfy the massive incoming traffic characteris-

ic. Because the mice flow is the delay sensitive and car-

ies less packet compared to the elephants. On the other

and, in elephant flows, throughput is more crucial than

he delay. Moreover, the M / M / c queue is added next to the

ueues of mice and elephant flows. In this way, the mice

ow with higher priorities is taken queue ahead of ele-

hants as summarized in Algorithm 1 . Therefore, each con-

roller is modeled by using the M / M /1, M

X / M /1, and M / M / c

odels until the outage is detected as shown in Fig. 3 . The

etails of these queuing models are explained in next sec-
ions.

lgorithm 1 Controller Modeling Module.

1: for i ← − 1 to k do

2: Calculate C 2
A

with Eq. 1 for F low i

3: if C 2
A

>1 then

4: Mark F low i as elephant

5: Assign F low i to M

X /M/ 1

6: else

7: Mark F low i as mice

8: Assign F low i to M/M/ 1

9: end if

10: Assign F low i to M/M/c from M/M/ 1

11: if (M/M/ 1 == ∅) then

2: Assign F low i to M/M/c from M

X /M/ 1

3: end if

14: end for

a

p

W

a

w

C

p

l

a

v

o

q
.2. Outage detection module

In this paper, the M / M / c system is designed as non-

reemptive and the high priority mice flows goes to the

ead of the queue without any interruption. Also, the mice

nd elephant flows are transferred to the M / M / c queue

ccording to the Poisson process. The mean arrival rates

f the mice and elephant flows to this queue are λ1 and

2 , respectively. The total arrival rate is λ = λ1 + λ2 . We

lso assume that the mean service times of both mice and

lephant flows are equal to 1
μ . By using these parame-

ers, the steady-state system size probabilities (p n) of the

ontrollers are found as given in the following equation:

p n =

{
λn

n ! μn p 0 , 0 ≤ n < c
λn

c n −c c! μn p 0 , n ≥ c
, ∀ n ∈ N (2)

In Eq. (2) , r =

λ
μ and ρ =

r
c . Additionally, p 0 is the

robability of queue being empty and found by using the

ollowing equation:

p 0 =

(
r c

c!(1 − ρ) +

∑ c−1
n =0

r n

n !

)−1

, ∀ c, n ∈ N (3)

We use the queuing delay probabilities of the flows in

he corresponding controller to determine the outage. We

rstly obtain W q (0), the probability that flow has zero de-

ays in the queue of the controller. Similarly, 1 − W q (0)

epresents the probability that flow has a nonzero delay

n the queue of the controller. Therefore, 1 − W q (0) shows

 probability instead of the direct length of time and this

robability is found by using the following equation:

 q (0) = 1 − r c p 0
c!(1 − ρ)

, ∀ c ∈ N (4)

Equivalently, the probability that an incoming flow has

 nonzero delay in the queue of the controller is found

ith the following equation:

(c, r) =

r c

c!(1 −ρ)

r c

c!(1 −ρ)
+

∑ c−1
n =0

r n

n !

, ∀ c, n ∈ N (5)

Eq. (5) can also be defined as Erlang C which is the

robability that a flow is blocked after waiting a specific

ength of time in the queue of the controller as explained

bove. We consider the controller in an outage if this

alue is greater than the predefined threshold. This thresh-

ld is determined according to the Erlang-C table. Conse-

uently, the determined outage controller is transferred to

28 T. Bilen et al. / Ad Hoc Networks 78 (2018) 24–31

Fig. 4. M

X / M /1 queuing model for elephant flows (For 1 or 2 batch sizes).

Algorithm 2 Outage Detection Module.

1: for j ← − 1 to N do

2: Calculate C(c, r) with Eq. 5 for Control l er j
3: if C(c, r) > thrreshold then

4: Mark Control l er i as outage

5: Flow Load Estimation (Control l er i)

6: end if

7: end for

t

t

3

l

c

c

q

t

fl

i

a

M

q

fl

L

c

q

a

t

(

r

W

(

e

L

d

t

fl

a

a

b

Algorithm 3 Flow Load Estimation Module.

1: for j ← − 1 to N do

2: Calculate L M j
with Eq. 6 for Control l er j

3: Calculate L E j with Eq. 7 for Control l er j
4: end for

5: for j ← − 1 to N do

6: Find M/M/ 1 queue with min. L M j

7: Assign outage mice flows to this M/M/ 1

8: Find M

X /M/ 1 queue with min. L E j
9: Assign outage elephant flows to this M

X /M/ 1

10: Controller Remodeling (Control l er j)

11: end for

he Flow Load Estimation Module for the flow compensa-

ion as summarized on Algorithm 2 .

.3. Flow load estimation module

In this module, we estimate the mice and elephant flow

oads of each controller separately. In this way, we can

ompensate the outage controller by considering the flow

haracteristics and load status. First, we analyze the M / M /1

ueues to determine the mice flow load. Correspondingly,

he λM

and μ are the arrival and service rates of the mice

ows. The steady-state probabilities of the M / M /1 queue is

p n = p 0 ρ
n , ρ = λM

/μ. In this equation, p 0 is the probabil-

ty that no available resource in the controller and found

s p 0 = 1 − ρ . Accordingly, the mean queue length of the

 / M /1 queue is found as given in Eq. (6) . This estimated

ueue length also equals to the number of waiting for mice

ow load (L M

).

 M

=

λ2
M

μ(μ − λM

)
(6)

To satisfy the massive traffic characteristics of the in-

oming elephant flows, we use the M

X / M /1 Markovian

ueuing model as shown in Fig. 4 . In this model, λn is the

rrival rate of elephant flow batches of size n (n represents

he packet count in an elephant flow). The total arrival rate

 λE) equals to the
∑ ∞

n =1 λn . Also, in the M

X / M /1 queue, X

epresents the number of packet per elephant flow batch.

ith all of these in mind, the number of elephant flows

 L E) in the M

X / M /1 queue is found by using the following

quation:

 E =

ρ + rE[X

2]

2(1 − ρ)
(7)

Also, in this equation, ρ is found as ρ =

λE E[X]
μ . The ad-

itional details about the M

X / M /1 model can be found in

he [14] . Consequently, the mice (L M

) and elephant (L E)

ow loads are estimated for all controllers. After the out-

ge detection, the mice and elephant flows of the out-

ge controller are transferred to compensatory controllers

y considering the estimated load distributions. Thus, the
mice (or elephant) flows are transferred to the controller

with fewer mice (or elephant) flow load as summarized

on Algorithm 3 . In the following stage, these compensatory

controllers are transmitted to the Controller Remodeling

Module.

3.4. Controller remodeling module

As detailed above, the queuing flows of the outage

controller are transferred to the compensatory controllers

according to the flow characteristics and estimated load

distributions. However, loads of these compensatory con-

trollers are increased dramatically.

To satisfy this flow load, the queue model of the com-

pensatory controllers should be remodeled as the M / M

Y /1

Markovian queuing model as shown in Fig. 5 . The con-

trollers with this model give the bulk service and process

the flows K at a time. The flows come to M / M

Y /1 queue

according to the Poisson process. The arrival rates of the

mice and elephant flows to the M / M

Y /1 queue are λ1 and

λ2 , respectively. The total arrival rate λ = λ1 + λ2 . Addi-

tionally, we consider the M / M

Y /1 queue according to the

partial-batch model. Thus, flows are served K at a time re-

gardless of the number of flow in the queue. The service

rate for these flows is the μ.

Accordingly, the waiting time (W q) of the flows in this

queue can be found as W q =

r 0
λ(1 −r 0)

− 1
μ . Here, r 0 is any

root of the characteristic equation as given in [14] .

4. Performance evaluation

4.1. Simulation details

The proposed approach is simulated on the Mininet

[15] . The mininet is run on Ubuntu 14.04 with 8 GB mem-

ory, 2,9 GHz Intel Core i7 operating system. The controller

T. Bilen et al. / Ad Hoc Networks 78 (2018) 24–31 29

Fig. 5. Controller model after detection of outage (Compensatory Controller).

Fig. 6. Mice and elephant flows queue waiting time (During usual operation).

Table 1

Simulation parameters.

Simulation time 600 ms

Receiving Bandwidth 4096 MHz

Noise Rise 6 dB

Maximum/Minimum UE Tx power 21 dBm / −44 dBm

Tx power for macrocells/small cells 30 dBm /20 dBm

Transmission power for macrocells 30 dBm

Transmission power for small cells 20 dBm

Small-cell range 25 m

Macro-cell coverage distance 1 km

i

O

C

r

c

e

o

n

t

T

q

4

s

f

a

p

n

t

t

F

i

d

M

w

i

a

i

t
s coded by using POX [16] in Python 2.7 1 language. The

penFlow 1.0 protocol 2 is used for communication between

ontrol and Data Plane. Details of the other simulator pa-

ameters are given in Table 1 .

Additionally, the proposed approach is evaluated by

onsidering the queue waiting times of the mice and

lephant flows in controllers for two cases as (i) until the

utage (ii) during the outage with increased small cell

umber. Also, we compare the proposed approach with

he conventional distributed controller implementation.
1 Copyright © 20 01–20 06 Python Network Foundation.
2 Copyright © 2014, Open Network Foundation.

fl

t

a
he conventional implementation is not modeled by a

ueuing system according to the flow characteristics.

.2. Simulation results

In the usual operation of the distributed controllers, we

eparate incoming flows as mice and elephant to two dif-

erent queuing system by using Eq. (1) . Here, the M / M /1

nd M

X / M /1 queues are used to model the mice and ele-

hant flows, respectively. Then, the M / M / c queue is added

ext to these systems to prioritize the mice flows against

he elephants. This situation decreases the queue waiting

ime of the mice flows as given in Eq. (4) . As shown in

ig. 6 , the queue waiting times of the mice flows dur-

ng the usual operation are 31% less than the conventional

istributed controller implementation. Also, the defined

X / M /1 bulk input and M / M / c queues are reduced the

aiting times of the elephant flows. Therefore, as shown

n Fig. 6 , the queue waiting times of the elephant flows

re 10% less than the conventional distributed controller

mplementation during the usual operation. Additionally,

he increased small cell number accumulates the incoming

ows of the controllers. This also gain the waiting times of

he mice and elephant flows.

Moreover, after detection of the outage, the mice

nd elephant flows are transferred to the selected

30 T. Bilen et al. / Ad Hoc Networks 78 (2018) 24–31

Fig. 7. Mice and elephant flows queue waiting time (during outage).

Fig. 8. Packet losses observed during outage.

c

o

q

e

m

t

t

c

fl

p

t

a

l

s

t

5

a

ompensatory controllers. In this selection, the mice flows

f the outage controllers are transferred to the M / M /1

ueue with minimum L M

by using Eq. (6) . Equivalently, the

lephant flows are transmitted to the M

X / M /1 queue with

inimum L E by using Eq. (7) . Therefore, as shown in Fig. 7 ,

he waiting times of the mice and elephant flows during

he outage are decreased by 15% and 11% compared to the

onventional distributed controller implementation.

We also evaluate the observed packet losses of the

ows during the outage according to the time. In the pro-

osed approach, we observe the Erlang-C parameters of

he queues by using Eq. (5) . Correspondingly, the flows

re transferred to compensatory controllers before packet

osses. Therefore, as shown in Fig. 8 , the packet losses ob-

erved during the outage are decreased by 32% compared

o the conventional implementation.

. Conclusion

In this paper, we proposed a distributed flow man-

gement model for the Ultra-Dense software-defined
networks based on Markovian queuing systems. We mod-

eled the distributed controllers based on the incoming

flow characteristics and outage status. For this aim, we

add a flow separation module to controllers for mice and

elephant flow differentiation. Therefore, we can model the

mice and elephant flows with M / M /1 and M

X / M /1 systems

with additional M / M / c queue until the detection of an

outage. The M / M / c queue is used to detect the outage

with Erlang-C parameter. The M / M /1 and M

X / M /1 systems

enable to estimate the mice and elephant flow loads. By

using estimated load distributions, the mice and elephant

flows in the outage controller are directed to the com-

pensatory controllers. Additionally, to satisfy this massive

incoming flow, the M / M / c queues of the compensatory

controllers are converted to the M / M

Y /1 system. Therefore,

the waiting times of the mice and elephant flows during

the outage are decreased by 15% and 11% compared to

the conventional distributed controller implementation,

respectively. Also, the packet losses observed during the

outage are decreased by 32% compared to the conventional

implementation.

T. Bilen et al. / Ad Hoc Networks 78 (2018) 24–31 31

R

[

[

[

[

[
[

N

A

E

I

A

H

a

G

eferences

[1] White paper: Cisco Visual Networking Index: Global Mobile Data

Traffic Forecast Update, 2016–2021 (2017) .
[2] J. Hoydis, M. Kobayashi, M. Debbah, Green small-cell networks, IEEE

Veh. Technol. Mag. 6 (1) (2011) 37–43, doi: 10.1109/MVT.2010.939904 .

[3] ONF, Open Networking Foundation, available: https://www.
opennetworking.org/ (2014).

[4] A.J. Gonzalez, G. Nencioni, B.E. Helvik, A. Kamisinski, A fault-tolerant
and consistent SDN controller, in: IEEE Global Communications

Conference (GLOBECOM), 2016, pp. 1–6, doi: 10.1109/GLOCOM.2016.
7841496 .

[5] K. ElDefrawy, T. Kaczmarek, Byzantine fault tolerant software-defined

networking controllers, in: IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), 2, 2016, pp. 208–213, doi: 10.

1109/COMPSAC.2016.76 .
[6] F. Botelho, A. Bessani, F.M.V. Ramos, P. Ferreira, On the design of

practical fault-tolerant SDN controllers, in: Third European Work-
shop on Software Defined Networks, 2014, pp. 73–78, doi: 10.1109/

EWSDN.2014.25 .

[7] N. Katta, H. Zhang, M. Freedman, J. Rexford, Ravana: controller fault-
tolerance in software-defined networking, in: Proceedings of the 1st

ACM SIGCOMM Symposium on Software Defined Networking Re-
search, in: SOSR ’15, ACM, New York, NY, USA, 2015, pp. 4:14:12.

doi: 10.1145/2774993.2774996 .
[8] J. Sanchez Vilchez, I. Grida Ben Yahia, N. Crespi, Poster: Self-Healing

Mechanisms for Software-Defined Networks, 2014.

[9] Y.-C. Chan, K. Wang, Y.-H. Hsu, Fast controller failover for multi-
domain software-defined networks, in: 2015 European Conference

on Networks and Communications (EuCNC), 2015, pp. 370–374,
doi: 10.1109/EuCNC.2015.7194101 .

10] M. Obadia, M. Bouet, J. Leguay, K. Phemius, L. Iannone, Failover
mechanisms for distributed SDN controllers, in: 2014 International

Conference and Workshop on the Network of the Future (NOF),
Workshop, 2014, pp. 1–6, doi: 10.1109/NOF.2014.7119795 .

[11] C. Cascone , L. Pollini , D. Sanvito , A. Capone , B. Sanso , SPIDER: fault

resilient SDN pipeline with recovery delay guarantees, in: IEEE Net-
Soft Conference and Workshops (NetSoft), 2016, pp. 296–302 .

12] P.C. d. R. Fonseca, E.S. Mota, A survey on fault management in
software-defined networks, IEEE Commun. Surv. Tutor. 19 (4) (2017)

2284–2321, doi: 10.1109/COMST.2017.2719862 .
13] Open Networking Foundation, Openflow Switch Specification (2012)

Version 1.3.1.

14] D. Gross , J.F. Shortle , J.M. Thompson , C.M. Harris , Fundamentals of
Queueing Theory, 4th, Wiley-Interscience, New York, NY, USA, 2008 .

15] Mininet (http://mininet.org/).
16] Pox, Pox Openflow Controller, available: http://www.noxrepo.org/

pox/about-pox . (2014).
Tu ğçe Bilen received her BSc and MSc de-

grees in Computer Engineering from Istanbul
Technical University, Turkey in 2015 and 2017,

respectively. She is currently a Phd student
in Computer Engineering Program of Istanbul

Technical University. She currently serves as

a reviewer in IEEE Transactions on Vehicu-
lar Technology (TVT), The International Journal

of Computer and Telecommunications Network-
ing (COMNET), The Computer Communications

(COMCOM). Her research interests include Mo-
bility Management, Content Delivery Networks,

Software-Defined Networks and Context Aware

etworks.

Kübra Ayvaz received her BS and MS degrees

in Computer Engineering from Istanbul Techni-

cal University, Turkey, in 2014 and 2017, respec-
tively. She has been working as a Software En-

gineer at Research and Development Center in
Corporate Technology Department, Siemens AS

since 2014.

Berk Canberk [S’03, M’11, SM’16] is an Asso-

ciate Professor at the Department of Computer
Engineering in ITU. nce 2016, he is also an

Adjunct Associate Professor with the Depart-
ment of Electrical and Computer Engineering

at Northeastern University. He serves as an

Editor in IEEE Communications Letter, IEEE
Transactions in Vehicular Technology, Elsevier

Computer Networks, Elsevier Computer Com-
munications and Wiley International Journal

of Communication Systems. He is the recipient
of IEEE INFOCOM Best Paper Award (2018),

The British Council (UK) Researcher Link

ward (2017), IEEE CAMAD Best Paper Award (2016), Royal Academy of
ngineering (UK) NEWTON Research Collaboration Award (2015), IEEE

NFOCOM Best Poster Paper Award (2015), ITU Successful Faculty Member
ward (2015) and Turkish Telecom Collaborative Research Award (2013).

is current research areas include Software-Defined Networking (SDN)
nd Network Function Virtualization (NFV) in 5G Systems, and Next

eneration Network Management Systems.

http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0001
https://doi.org/10.1109/MVT.2010.939904
https://www.opennetworking.org/
https://doi.org/10.1109/GLOCOM.2016.7841496
https://doi.org/10.1109/COMPSAC.2016.76
https://doi.org/10.1109/EWSDN.2014.25
https://doi.org/10.1145/2774993.2774996
https://doi.org/10.1109/EuCNC.2015.7194101
https://doi.org/10.1109/NOF.2014.7119795
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0009
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0009
https://doi.org/10.1109/COMST.2017.2719862
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0011
http://refhub.elsevier.com/S1570-8705(18)30196-3/sbref0011
http://mininet.org/
http://www.noxrepo.org/pox/about-pox

	QoS-based distributed flow management in software defined ultra-dense networks
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Proposed network architecture
	2.1 Control and data planes
	2.2 Controller management unit

	3 Flow management model
	3.1 Controller modeling module
	3.1.1 Flow separation module

	3.2 Outage detection module
	3.3 Flow load estimation module
	3.4 Controller remodeling module

	4 Performance evaluation
	4.1 Simulation details
	4.2 Simulation results

	5 Conclusion
	 References

