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A B S T R A C T

Precision medicine relies on an increasing amount of heterogeneous data. Advances in radiation oncol-
ogy, through the use of CT Scan, dosimetry and imaging performed before each fraction, have generated
a considerable flow of data that needs to be integrated. In the same time, Electronic Health Records now
provide phenotypic profiles of large cohorts of patients that could be correlated to this information. In
this review, we describe methods that could be used to create integrative predictive models in radia-
tion oncology. Potential uses of machine learning methods such as support vector machine, artificial neural
networks, and deep learning are also discussed.

© 2016 Elsevier Ireland Ltd. All rights reserved.

Introduction

Level I evidence-based medicine relies on randomized con-
trolled trials designed for large population of patients. But the
increasing number of clinical and biological parameters that need
to be explored to achieve precision medicine makes it almost im-
possible to design dedicated trials [1]. New approaches are needed
for all subpopulations of patients. Clinicians need to use all the di-
agnostic tools (medical imaging, blood tests and genomics) in order
to decide the appropriate combination of treatments (radiothera-
py, chemotherapy, targeted therapy and immunotherapy). Each
patient has an individual set of molecular abnormalities responsi-
ble for their disease or correlated with treatment response and
clinical outcome. The concept of tailored treatments relies on iden-
tifying and leveraging these aberrations for each patient. This shift
to molecular oncology has driven cancer research in the last 25 years
and has allowed significant progress in poor-prognosis diseases such
as non-small cell lung cancer (through the use of EGFR inhibitors
[2]) or melanoma (through the use of immunotherapy [3]). But the
burden of variant mutations can involve up to several hundred genes
in a single tumor. Next-Generation Sequencing can be focused on
specific regions, on whole-exome (all coding genes are sequenced)
or whole-genome (all DNAs are sequenced). The same approach can
be used to study the transcriptome. In any case, exploring as many
genes as possible will be mandatory as we unravel the complexity

of the molecular circuits involved in primary or secondary treat-
ment resistance or radiation response [4]. The intricacy involved
makes it almost certainly impossible to create specific trials for each
and every case. It is traditionally considered that our cognitive ca-
pacity can integrate up to five factors in order to take a decision.
By 2020, a decision will rely on up to 10,000 parameters for a single
patient [5].

As sequencing costs have significantly decreased [6–8] and com-
puting power has steadily increased (Fig. 1), the only factor
preventing us from discovering factors influencing the disease’s
outcome is the lack of large phenotyped cohorts. The generaliza-
tion of Electronic Health Records (EHR) gives us a unique opportunity
to create adequate phenotypes. Data science has an obvious role in
the generation of models that could be created from large data-
bases to predict outcome and guide treatments.

Moreover, the similarity between clinical research patients and
routine care patients regarding comorbidities, severity, time before
initiation of treatment and tumor characteristics has been ques-
tioned [9]. A new paradigm of data driven methodologies reusing
routine healthcare data to provide decision support is emerging. To
quote I.S. Kohane, “Clinical decision support algorithms will be
derived entirely from data… The huge amount of data available will
make it possible to draw inferences from observations that will not
be encumbered by unknown confounding” [10].

Integrating such a large and heterogeneous amount of data is
in itself a challenge that must be overcome before we can actually
create accurate models. The objective of this review is to explain
the main informatics challenges in the implementation of a preci-
sion medicine program in radiation oncology and describe
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approaches to address these challenges. Wewill discuss themethods
available to create models predicting the outcome after radiother-
apy or chemoradiation.

Which data should be considered and how should they be
managed?

Lambin et al. have described in details the features that should
be considered and integrated into a predicting model [11]. They
include:

– Clinical features (patient performance status, grade and stage of
the tumor, blood test results, patient questionnaires).

– Treatment features: planned spatial and temporal dose distri-
bution, associated chemotherapy. For this, data could be extracted
directly from the record-and-verify software to be analyzed.

– Imaging features: tumor size and volume,metabolic uptake (more
globally included into the study field of “radiomics”).

– Molecular features: intrinsic radiosensitivity [12], hypoxia [13],
proliferation and normal tissue reaction [14]. In that part, genomic
studies play a key role to determine these characteristics.

Data collection and management

State of the art radiation oncology provides a clear digital rep-
resentation of the treatment performed. For each patient, we record
the radiation regimen that has actually been performed. For each
patient and treatment session, we know very well where photons
go in the body and, by definition, we already have it in a digital
format for every patient. Daily variability is also taken into account
by onboard imaging, so we know where the dose is actually deliv-
ered. These systems can give the temporal and spatial distribution
of the treatments performed. Data are prospectively collected for
every patient in the record-and-verify software in each depart-
ment. This highly digital nature lends itself to quantifying and
analyzing the care delivery process. The quality of data gathered
is far better than in most other fields of medicine. Extracting these
data to integrate it in clinical data warehouse (CDW) in hospitals
can be performed at different levels. Raw data provide detailed in-
formation on dose volume histograms, treatment volumes, time
between each fraction, overall treatment time, dose rate, and images
produced by onboard systems. Another approach that would consist
of extracting only the data that are considered relevant before in-
tegrating it into the CDW would greatly decrease the richness of
information and should be avoided [15].

Beyond the data described earlier, follow-up is very important
in radiation oncology andmedicine in general in order to detect tox-

icity. In that regard, online and mobile, but also wearable device
inputs should be encouraged. Patients would then be able to provide
detailed, real-time information on adverse events during and after
the treatment without having to wait for their next appointment
with the radiation oncologists. Several studies in that field have
already shown the interest of patient reported outcomes to improve
follow-up [16,17].

The volume of data that need to be collected and managed is
rapidly growing. Today, we can estimate that data for a single patient
would amount to 7 GB, including the raw genomic data that would
account for roughly 70% of it (Table 1). Health data security and ac-
cessibility is a major challenge for any institution. They should be
accessible with ease and velocity from anywhere, without com-
promising their safety. Remote access to the data requires that the
architecture takes into account high security constraints, includ-
ing a strong user authentication and methods that guarantee
traceability of all data processing steps. Relevant healthcare pro-
fessionals’ login procedures require scalable process with a significant
cost, but they should certainly not be overlooked [18]. Medical record
linkage and data anonymization are very often necessary steps to
provide data for research. They often require a trustworthy third
party that takes care of these procedures. In general, to provide
healthcare data for research, the data must be moved from the care
zone, where data are under the control of the trusted relationship
between physician and patient, to the none-care zone, where data
are under the control of special data governance bodies, to be
anonymized and made available for analysis.

Existing solutions to support the storing and access of care include
translational research platforms. These platforms are able to inte-
grate large data sets of clinical information with omics data [19].
Despite technological advances, some authors believe the in-
creases in data volume could be outstripping the hospitals’ ability
to cope with the demand for data storage [20]. One solution would
consist of managing these data asmost hospitals manage oldmedical
files, i.e. moving the oldest and biggest files to external storage. For
digital data, in order tomaintain fast and easy access, wewould need
tomove themost voluminous data to a secondary storage-optimized
platform, separate from the query platform. Fig. 2 shows a propos-
al for a system integrating data from the hospital and data directly
provided by the patients.

Use of ontologies for quality data extraction

Standardization in the fields and terms used in the EHR, treat-
ment procedures, and genomic annotations increase the quality and
comparability of the data used to create models. Diversity in these
features results in an almost impossible challenge to extract and
aggregate quality data. An ontology, i.e. a set of common con-
cepts, is a key component of any data collecting system and
predictive models. There are currently around 440 biomedical
ontologies. The most commonly used include SNOMED [21], the NCI
Thesaurus [22], CTC AE [23] and the UMLS meta-thesaurus [24].

Fig. 1. Whole Genome Sequencing (actual cost, gray line) and computer power (Moore
law, black line) costs.

Table 1
Data types and approximate sizes for a single patient.

Data type Format Approx.
size

Clinical features Text 10 MB
Blood tests Numbers 1 MB
Administrative ICD-10 codes 1 MB
Imaging data DICOM 450 MB
Radiation oncology data (planning
and on-board imaging)

DICOM, RT-DICOM 500 MB

Raw genomic data BAM: Position, base, quality 6 GB
Total 7.9 GB
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These ontologies do not include many radiation oncology terms,
which led to the creation of the Radiation Oncology Ontology (ROO)
[25], which reused other ontologies but adds RO words such as
Region Of Interest (ROI), Target Volumes (GTV, CTV, PTV), and Dose-
Volume Histograms (DVH). Universal use of common ontologies will
allow automatic multicentric data extraction and integration.

Data set quality and careful feature selection are very impor-
tant. Independent verification by a second curator or data checker
should be used when possible. Further verification by a knowl-
edgeable expert is also very valuable, which means that the
collaboration between the physician and the data scientist con-
ducting the experiment is mandatory.

How to create a predictive model

Predictive modeling is a two-step process involving qualifica-
tion followed by validation. Qualification will consist of
demonstrating that the data are indicative of an outcome. Once pre-
dictive or prognostic factors have been identified, they should be
validated on a different dataset. Once a model has been qualified
and validated, further studies must be conducted in order to assess
whether treatment decisions relying on the model actually improve
the outcome of patients.

Kang et al. have proposed seven principles of modeling [15] in
radiation oncology:

1. Consider both dosimetric and nondosimetric predictors
2. Manually curate predictors before automated analysis
3. Select a method for automated predictor selection
4. Consider how predictor multicollinearity is affecting the model
5. Correctly use cross-validation to improve prediction perfor-

mance and generalization to external data to provide model
generalizability with external data sets when possible

6. Assess multiple models and compare results with established
models

These principles can be expanded to the whole field of medi-
cine and should be carefully considered before creating a predictive
model and validating this model. In order to create a model, we can
rely on traditional statistical methods or machine learning methods.
We will mostly focus on machine learning methods applied to ra-
diation oncology.

Traditional statistical methods

For models predicting qualitative outcomes (such as toxici-
ties), logistic regression should be considered, while Cox regression
is traditionally used for survival-type data.

Logistic regression (LR) maps a combination of predictors to a
probability of an outcome on an S-shaped curve (sigmoidal logistic
function). LR should be used when exploring few, unrelated pre-
dictors (age, sex, tumor size). For example, in lung SBRT, it can be
used to determine the optimal radiation dose that would probably
achieve local control (one-dimension data, Fig. 3A) or even add-in
GTV size (two-dimensions, Fig. 3B) as a predictor. Each feature comes
into the model linearly and additively. A decision boundary can be
created that is one dimension lower than the number of predictors
explored (one dimension line for two predictors, two for three pre-
dictors, etc). LR has been used to predict esophagitis and xerostomia
after lung or head and neck radiotherapy in several studies [26–28].

Machine learning (ML) methods

Several ML algorithms have been used in oncology:

– Decision Trees (DT) [29] where a simple algorithm creates mu-
tually exclusive classes by answering questions in a predefined
order,

– Naïve Bayes (NB) classifiers [30,31], which output probabilistic
dependencies among variables,

Fig. 2. Data collection and management system (PRO = patient reported outcomes).
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– k-nearest Neighbors (k-NN) [32], where a feature is classified
according to its closest neighbor in the dataset, are used for clas-
sification and regression,

– Support Vector Machine (SVM) [33], where a trained model will
classify new data into categories,

– Artificial Neural Network (ANN) [34], where models inspired by
biological neural networks are used to approximate functions,

– Deep Learning (DL) [35], a variant of ANNs, wheremultiple layers
of neurons are used.

Each of these methods has advantages and limitations, with dif-
ferent computation power requirements (Table 2). These should be
used to choose the relevant method for any data analysis project.
We will detail the two methods that were used in radiation oncol-
ogy studies: SVM, ANN and its variant, DL.

Support vector machine
As mentioned above, LR defines a linear threshold for a limited

number of features. If the model needs to integrate a higher number

of variables that cannot be separated linearly, SVM can be used to
find complex patterns. Similarity functions (or kernels) are chosen
to perform a transformation of the data and choose data points or
“support vectors”. Patients with a combination of vectors are used
to compare new patients and predict their outcome (Fig. 4). SVMs
have been used in several studies to predict radiation pneumoni-
tis after conformal radiotherapy [36], local control after lung SBRT
[37] and chemoradiosensitivity in esophageal cancer [38]. In these
studies, the authors classified the input parameters as dose (DHVs,
EUD, BED) or non-dose features (clinical or biological features). It
should be noted that the exact number and nature of features used
is not always provided, which might limit the impact and applica-
bility of the results.

Artificial neural network
In Artificial neural network, several layers of neurons are set

up. Each “neuron” has a weight that determines its importance.
Each layer receives data from the previous layer, calculates a score
and passes the output to the next layer (Fig. 5). Using an ANN
requires weighting neurons and connections correctly. A method
to achieve this is to assign random weights to neurons and itera-
tively calculate and adjust these weights to progressively improve
the correlation. ANNs have been used to predict survival in ad-
vanced head and neck cancers treated with irradiation with or
without chemotherapy [39]. A three-layer feed-forward neural
network integrating fourteen clinical parameters was trained through
a thousand iterations. Bryce et al. showed that ANN was more
reliable than LR and used more predictive variables. Six years
later, Gulliford et al. used ANN to predict biological outcome and
toxicity after radiotherapy for prostate cancer [40]. They used
dosimetric parameters (DVH) and three separate ANNs on noctu-
ria, rectal bleeding and PSA measurement. They showed that ANNs
were able to predict biochemical control and specific bladder and
rectum complications with sensitivity and specificity above 55%.
Other studies performed on larger datasets improved sensitivity
and specificity [41,42].

In lung radiotherapy, ANNs have also been used to predict pneu-
monitis [43,44]. In the study by Chen et al., six input features were
selected: lung volume receiving >16 Gy (V16), generalized equiv-
alent uniform dose (gEUD) for the exponent a = 1 (mean lung dose),
gEUD for the exponent a = 3.5, free expiratory volume in 1 s (FEV1),
diffusion capacity of carbon monoxide (DLCO%), and whether or not
the patient underwent chemotherapy prior to radiotherapy. All fea-
tures were then removed from the model to assess their relevance.

Fig. 3. Logistic Regression can create a linear threshold for one-dimension (A, total
dose) or two-dimension (B, total and GTV size) data. Blue dots are local control failure
and orange are local control success. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 2
Benefits and limitations of different machine learning algorithms.

Algorithm Advantages Limitations

Decision Tree • Easy to understand
• Fast

• Classes must be mutually exclusive
• Results depend on the order of attribute selection
• Risk of overly complex decision trees

Naïve Bayesian • Easy to understand
• Fast
• No effect of order on training

• Variables must be statistically independent
• Numeric attributes must follow a normal distribution
• Classes must be mutually exclusive
• Less accurate

k-nearest Neighbors • Fast and simple
• Tolerant of noise and missing values in data
• Can be used for non-linear classification
• Can be used for both regression and classification

• Variables with similar attributes will be sorted in the same class
• All attributes are equally relevant
• Requires considerable computer power as number of variables increases

Support Vector Machine • Robust model
• Limits the risk of error
• Can be used to model non-linear relations

• Slow training
• Risk of overfitting
• Output model is difficult to understand

Artificial Neural Network
and Deep Learning

• Tolerant of noise and missing values in data
• Can be used for classification or regression
• Can be easily updated with new data

• Output model is difficult to understand (« black-box »)
• Risk of overfitting
• Requires a lot of computer power
• Requires experimentation to find the optimal network structure
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All of them except FEV1 and whether or not the patient under-
went chemotherapy prior to radiotherapy were required for optimal
prediction. In another study, ANNs have been used to predict sur-
vival in uterine cervical cancer treated with irradiation [45]. In that
study, the predictive model used only seven parameters (age, per-
formance status, hemoglobin, total protein, FIGO stage, histological
and grading of radiation effect determined by periodic biopsy
examination).

Deep learning
Deep learning is a variant of ANN. While ANN commonly fea-

tures one or two hidden layers and is considered as supervised
machine learning, DL differentiates itself with a higher number of
hidden layers and is able to perform supervised or unsupervised
learning. While DL is gaining interest in medical imaging [46,47]
for classification or segmentation, it has not been used to predict
the outcome after radiotherapy yet.

Difference between supervised learning (SL) and unsupervised
learning (UL)

The goal of supervised learning is to predict a known output. It
is commonly used to recognize images of objects or types of docu-
ments. A supervised algorithmwill analyze a training dataset (where
each example is a pair including an input feature and the desired
output value) in order to create a function that best matches these
training examples. Themachine will generalize this function to pairs
with unknown output value to predict them. In UL, the data pro-
vided are unlabeled and the algorithm will try to find natural
patterns or groups within the data. In medicine, this will consist
of characterizing each patient with vectors with values given to clin-
ical features. Higher level features can be detected that would not
have been seen as potential predictive or prognostic factors by a
human intervention. UL could also identify new physiopathology
by highlighting new groups of patients. With the increasing role of
Graphics Processors Units (GPU) [48], UL could see more interest
from researcher. If unsupervised machine learning can find salient
correlations and connections between data points that no human
would have thought to look for, a significant drawback could be that
it does not necessarily provide any insight into what those corre-
lations and connections mean. This could lead in some cases to a
highly significant correlation found by UL that no human can un-
derstand. To this day, almost all machine learning algorithm studies
within the context of predictive oncology are using supervised learn-
ing [49,50].

Discussion

Why should we use Big Data in radiation oncology?

The fours Vs of Big Data are Volume, Variety, Velocity and Ve-
racity [51]. A comprehensive Electronic Health Record for any cancer
patient will be around 8 GB, with genomic data being much larger

Fig. 4. Support Vector Machine transforms data points (A) with the help of support vectors in order to classify patients (B).

Fig. 5. Artificial Neural Network – Each neuron belongs to a layer and has a weight.
Data are passed from layer to layer from the input (factors explored) to the output
layer (outcome).
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than all other data combined (volume). Creating a predictive model
in radiation oncology requires a significant variety and heteroge-
neity of the data types that need to be included (variety). This
represents in itself a significant challenge. In line with this, if we
develop a decision support system based on such models, we will
need fast data processing to support decision-making (velocity).
Finally, data quality is exceptionally high in radiation oncology, as
all departments use record-and-verify systems that prospectively
store all information regarding the treatment prescribed, how the
treatments have actually been performed and the potential devia-
tions (veracity). All this contributes to believe that exploiting big
data in radiation oncology is truly a match made in heaven.

Artificial intelligence and machine learning for cancer research

Studies using machine learning have not all been conducted with
rigorous experimental designs. Data size is not always large enough
to be partitioned into a training and a test set, let alone validate the
algorithm on another dataset. Testing a model will need initially
taking out 10–20% of the data for later internal validation [49]. In
order to remove, or at least minimize, any bias coming from the data
used, an external validation using a different (large enough) dataset
will be required. The patient-per-feature ratio is also very chal-
lenging when you want to integrate thousands of information
(especially genomics) into a model, because it is considered that
this ratio should be at least 5 to 10 [52]. A small ratio will result in
overtraining (or overfitting), i.e. creating a model that describes
random errors or noise, specific to the dataset used to train the ANN
that is not reliable on another population. Multiple predictor models
based on different machine learning techniques should be used to
assess the performance of the model. Ideally, a new model should
outperform older classifications. It is estimated that only about 17%
of the published ML studies in oncology tested more than one ML
method [49].

ANN is the most used method in oncology predictive model-
ing, but Deep Learning (DL) is gaining interest in many fields [35].
With the release of open source software library, such as Google’s
TensorFlow [53], we could see more DL studies in the coming years.

A vision of the future: the learning health system

The task of creating and validating a truly integrative model in
radiation oncology to guide treatment will require multicentric
sharing of data and scientists. However, these models and the meth-
odology used to create them can be used in all tumor localization.
They will underpin decision support system that will use big data
in every RO department in 10–15 years. These systems will need
to be updated almost in real-time with dynamic programming and
reinforcement learning techniques. They will guide decisions at the
time of initial consultation for the best treatment options accord-
ing to the patient’s feature and state of knowledge. Optimal dose
distribution, treatment time, associated chemotherapy, targeted
therapy or immunotherapy will be chosen not by the physician, but
by an algorithm. Private initiative, such as IBM’s Watson, is already
used in some Institutions, such as the Memorial Sloan Kettering
Cancer Center in New York [54,55]. The same system could also guide
decisions treatment for adverse event management and after the
treatments for follow-up and early detection of any relapse. This
“learning health system” will certainly be a game-changer in on-
cology, if it can actually be achieved. Follow-upwill have to integrate
all the data collected by wearable devices and connected objects
that are being adopted by a large proportion of the population
[56,57]. Continuous, real-time monitoring of abnormal events will
lead to earlier detection of relapse, optimization of salvage treat-
ment’s efficiency and cost. Eventually, overall survival will be
impacted by such approaches [16].

Implications for clinical research

Precision medicine has given birth to new clinical trial designs.
For example, the SHIVA clinical trial compares targeted therapy based
on tumor molecular profiling versus conventional therapy in pa-
tients with refractory cancer. Similarly, personalized radiation
treatment based on data driven algorithms could be compared to
conventional radiation therapy [58].

Big data in radiation oncology means studying large cohorts of
patients and integrating heterogeneous types of data. Using these
types of data through unsupervised machine learning holds great
promises for identifying patterns beyond human comprehension.
Oncology is already moving away from therapies based on ana-
tomical and histological features and focusing on molecular
abnormalities that define new groups of patients and diseases. This
evolution induces an increasingly complex and changing base of
knowledge that ultimately will not be usable by physicians. The other
consequence of this is that, as we individualize molecular traits, de-
signing clinical trials will become more and more difficult to the
point where it will become statistically impossible to achieve suf-
ficient power. The financial andmethodological burdens of designing
these clinical trials will eventually become unsustainable. Electron-
ic Health Record (EHR) use in most institutions is an elegant and
easy way to digitally capture large amount of data on patient char-
acteristics, treatment features, adverse events and follow-up. The
wealth of information should be used to generate new knowl-
edge. The quality and nature of the data captured are important,
as poor data will generate poor results (“garbage in, garbage out”)
and Big Data should not be seen as a magical box able to answer
any question with ease and trust. Clinical trials are designed to avoid
confounding factors and gather detailed data, not always available
in EHR [59].

Several SEER studies have generated fast results on important
questions [60–64]. However, when studying radiation treatments,
a major limitation of big data is the lack of detailed information on
treatment characteristics. Integrating these features straight out of
the record and verify systems will provide faithful dosimetric and
temporal data.

Several teams have already published studies using prediction
to better adapt radiation treatments [65–70]. However, none of these
approaches have reached clinical daily use. A simple, easy-to-use
system would need to be directly implemented into the treat-
ment planning system to provide decision support. The best
achievable treatment plan based on a patient’s medical history and
anatomy would be given to the dosimetrist or physicist. The same
system would be used to monitor patients during treatment and
notify physicians whenever an adverse event outside of the pre-
dicted normwould happen. The data generated by each patient and
treatment would be integrated into themodel. We are however very
far from this vision and in order to achieve it several methodolog-
ical challenges will need to be addressed (capture core RO data into
EHR, integrate clinical, dosimetric and biologic data into a single
model, validate this model on a prospective cohort of patients).

Conclusion

A significant trend of big data analytics and machine learning
will hopefully create high quality evidence in radiation oncology.
Decrease in computer power cost, generalization of EHR, and ad-
vances in machine learning algorithms (mostly ANNs and DL) will
drive innovations in this field. The improvement of the perfor-
mance of predictive models will result in their use in learning health
system that will help in personalizing radiation treatments with
safety and efficiency. The physician must take ownership of these
algorithms in order to remain at the center of healthcare.
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Search strategy and selection criteria

Information for this Review was compiled by searching the
PubMed and MEDLINE databases for articles published between
January 1980 and April 2016, including early release publications.
Search terms included “radiation therapy,” “bioinformatics,” “big
data”, “genomics”, “electronic health records”, “decision support
systems” and “machine learning”. Only articles published in English
were considered and references were chosen based on suitability
for inclusion. Full articles were obtained and the reference lists were
checked for additional material, when appropriate.
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