Vision 2020: The Future of Software Quality
Management and Impacts on Global
User Acceptance

1(><)

Robin Poston and Ashley Calvert®

! University of Memphis, Memphis, USA
rposton@memphis. edu
2 System Testing Excellence Program, Canada, USA

Abstract. This paper explores the future evolution of software quality man-
agement (SQM), testing, and global user acceptance approaches keeping in
mind the evolution in software and technology quality management in general,
including new technologies and the increasing adoption of new software
development life cycle methodologies such as Agile and Scaled Agile. These
evolutions are forcing quality organizations to change the way they approach
software quality processes, including increased outsourcing of development, and
the need to update traditional testing and user acceptance testing approaches
which lag behind with manual and invasive techniques. User acceptance as we
know it today must evolve.

This discussion about evolution should deemphasize the role of the end user
in “testing” and emphasize the end user’s role in acceptance, adoption, and
ability to influence the quality and usability of software much further upstream
in the development life cycle. User acceptance teams should increase their role
in user experience, the development of usability standards, non-invasive auto-
mation techniques gathering usage data, etc. All of these mechanisms should
increase the ability of the end user to influence product quality and enhance the
user experience and acceptance. Perceptions of end user’s participation in user
acceptance events need to be transformed away from just another cycle of
software testing. User acceptance should not be about testing, but about vali-
dating that the end user needs and expectations have been met. All testing and
other quality processes should be completed and defects corrected before the
end user is engaged in the process of “accepting” the deliverable.

Thus, this effort will explore the future of SQM and its impacts on global
user acceptance. We will discuss how organizations involve users throughout
the development life cycle to facilitate adoption, user experience, and usability
of new technologies. This discussion will be embedded in the use of futuristic
new technologies and development methodologies. To explore these notions,
this study gathers input from technology visionaries about best practices
approaches for facilitating SQM and user acceptance throughout the develop-
ment life cycle.

Keywords: Global user acceptance - User acceptance testing - Software
development life cycle * Software quality management

© Springer International Publishing Switzerland 2015
F.F.-H. Nah and C.-H. Tan (Eds.): HCIB 2015, LNCS 9191, pp. 748-760, 2015.
DOI: 10.1007/978-3-319-20895-4_70

Vision 2020: The Future of Software Quality Management and Impacts 749

1 Introduction

Software quality management (SQM) has been a key driver enabling teams to deliver
software at the user-accepted quality levels. The focus of these management approa-
ches is to adopt specific quality assurance activities throughout the development life
cycle with input from developers, customers, and users (Poth and Sunyaev 2014), that
ultimately improve customer’s acceptance of software quality at release time. Prior
research has examined various supporting mechanisms including the adoption of total
quality management principles and process knowledge management (Shang and Lin
2009), among others. While software testing activities tend to remain relegated to the
final stages of development work, SQM brings a more holistic approach to ensure user
acceptance, keeping in mind today’s global reach of enterprise user groups.

Development life cycles have evolved over time increasing in quality management
focus. Starting with structured formalized methodologies in the 1960s and1970 s, early
approaches required each stage of the life cycle from inception of the product to release
of the final system performed under a rigid, sequential timeline. Still in use today, these
plan-driven methods typically have hierarchical organization structures, formalized
project manage processes (Agarwal and Sambamurthy 2002), and tend to be charac-
terized by predefined process phases, pre-approved designs, and agreed-to require-
ments documentation. More recently, industry has moved toward agile methodologies
in the 1990s and 2000s, characterized by flexibility and openness to embrace and learn
from changing work routines, requirements, and designs being responsive to shifting
customer demands (Conboy 2009, Ramesh et al. 2006). Today, methodologies, such as
Scaled Agile Framework (SAFe), offer guidelines for adopting agile in large enter-
prises, by addressing challenges with architecture designs, integration activities,
funding mechanics, governance oversight, and role assignments. However, quality
management and development life cycles will continue to evolve as innovative,
cutting-edge technologies are introduced, e.g., artificial intelligence, visualization tools,
and augmented reality.

With the focus on quality management and more rapid flexible software develop-
ment capabilities, user acceptance testing will inherently need to adapt. The purpose of
user acceptance testing is to gather software product feedback from actual system users,
those who have experience with the business processes and will be using the system to
complete related tasks (Klein 2003, Larson 1995). Actual users bring knowledge of
processes and work activities and are able to assess how the system meets what is
required of it. UAT typically occurs after development is complete but before the
product is released. As business systems become more complex and decentralized,
UAT on a global scale becomes more complicated to perform (Poston et al. 2014). The
execution of UAT events needs effective participation of geographically distributed
actual system users. The evolution toward increasing global dynamics, quality focus,
and more rapid development life cycles is forcing UAT organizations to change the
way they approach software quality processes. Organizations are beginning to see the
need to update traditional UAT approaches which lag behind with manual, invasive,
and time-consuming techniques (Poston et al. 2014). Thus, how will UAT evolve?

750 R. Poston and A. Calvert

This study examines the future evolution of UAT through an assessment of the
future of SQM and impacts on global user acceptance. The evolution should deem-
phasize the role of the end user in “testing” and emphasize the end user’s role in
acceptance, adoption, and ability to influence the quality and usability of software
much further up-stream in the software development life cycle. User acceptance teams
should increase their role in user experience (UX), the development of usability
standards, non-invasive automation techniques gathering usage data, etc. All of these
mechanisms serve to increase the ability of the end user to influence product quality
and enhance the user experience and acceptance. Perceptions of end user’s participa-
tion in UAT events needs to be transformed away from just another phase of software
testing to become about validating that the end users’ needs and expectations have been
met. All testing and other quality processes should be completed and defects corrected
before the end user is engaged in the process of “accepting” the deliverable. The idea is
to move toward an ‘operational readiness’ mindset.

This study set out to describe the future of SQM and its impacts on global user
acceptance. We will discuss how organizations involve users throughout the software
development life cycle to facilitate adoption, user experience, and usability of new
technologies. This discussion will be embedded in the use of futuristic new technol-
ogies and development methodologies. To explore these notions, this study gathers
input from technology visionaries about best practices forward-thinking approaches for
facilitating SQM and user acceptance throughout the development life cycle.

2 Literature Background

The goal of SQM is to place the focus on how software is progressing in quality as it is
being developed. A quality software product will meet its requirements as set by the
users or how much it satisfies user needs. The idea is to create a culture of quality within
the organizational environment holding everyone responsible for evolving a product’s
quality throughout the development life cycle. Keeping this in mind, testing and global
user acceptance approaches are well aligned to help support SQM. While regulated to
the end of the waterfall life cycle, testing and user acceptance activities have been
migrating toward the earlier stages of software development. With the introduction of
agile methodologies, testing and user acceptance team members become equally
important on software development teams. With the move to greater quality manage-
ment, the infusion of new technologies, such as artificial intelligence and virtualized
automated autonomous testing, becomes even more promising. See Table 1 in the
Appendix A for advances in these technologies and their potential implications for
quality management. As the Table illustrates, research has advanced our understanding
of how smarter tools can be created to support SQM goals. This paper explores the use
of such technologies in advancing how user acceptance techniques might evolve in the
21 century based on interviews with top visionary of the field.

Vision 2020: The Future of Software Quality Management and Impacts 751

3 Exploratory Study Methodology

The research methodology follows an exploratory approach in gathering case study
data on automated testing and artificial intelligence practices in order to provide
descriptive and explanatory insights into the management activities in software
development work. This approach has been used successfully in prior research
(Pettigrew 1990, Sutton 1997) and allows us to induce a theoretical account of the
activities found in empirical observations and analysis of team member’s viewpoints.
This approach is also known to lead to accurate and useful results by including an
understanding of the contextual complexities of the environment in the research
analysis and outcomes. This approach encourages an understanding of the holistic
systematic view of the issues and circumstances of the situation being addressed, in this
case the issues of managing development projects from team member perspectives
about their testing practices (Checkland et al. 2007, Yin 1984). To identify the future of
user acceptance practices and tools, we interviewed experts in artificial intelligent
systems, software testing, user experience, and automated systems.

4 Data Collection

The results reported in the present study are based on interviews with identified experts
in the fields predicted to influence the software development life cycle, e.g., artificial
intelligence, visualization tools, and augmented reality. Our data gathering began with
the creation of semi-structured interview protocols which comprised both closed and
open-ended questions. To inform our interview question development, we reviewed
documentation about the technology, and the relevant scholarly literature. The data
collection methods focused on interviewees’ perspectives on visualized automated
testing and artificial intelligence issues, roles played by various stakeholders involved,
and the challenges of UAT. Face-to-face and phone interviews of approximately 1 to
1.5 h were conducted. In total, we held 33 interviews, conducted between November
2014 and January 2015, with additional follow-up clarification Q&A sessions con-
ducted over e-mail. The expertise of those interviewed is available upon request. Each
expert provided input on their field of expertise and extrapolated ideas to proposed
future scenarios of SQM.

By collecting and triangulating data across a variety of methods, we were able to
develop robust results because of the perspectives we gained about testing and user
experience technologies and issues. This approach provides in-depth information on
emerging concepts, and allows cross-checking the information to substantiate the
proposed future of SQM (Eisenhardt 1989, Glaser and Strauss , 1967, Pettigrew 1990).

5 Findings

In this research, we gathered and analyzed interview data from a panel of experts. Our
findings offer insights into the future of SQM and the impacts on global user accep-
tance. The future will entail better tools and techniques for user centric design and

752 R. Poston and A. Calvert

development of software systems. Future process will infuse end user perspectives in
the design and validation of new software at the front end of the development life cycle.
Similar to the Boeing’s 777 design where significant user input was used (Birtles and
Boeing 1998, Weiner 1990), enterprise systems development will incorporate input
from more and more end users or employees via the use of automation. Boeing was
able to coordinate over 200 design teams with about 40 members each by automating
the process by using three-dimensional CAD software systems enabling team members
to assemble and simulate a virtual aircraft to verify that the thousands of components
would work together properly (Norris and Wagner 1999). Boeing also successfully
used visualization systems for design reviews and production illustrations (Abarbanel
and McNeely 1996). The Boeing 777 is successfully being used by dozens of airlines
today. Figure 1 illustrates the vision of the future of SQM best practices.

5.1 Scaled Agile Frameworks

Agile software development is increasing in prevalence and should be considered in
any vision of the future. Agile is being found across settings to deliver faster time to
market, improved productivity, better quality, and greater morale. Agile methods are
increasingly being used in high assurance and regulated environments where the cost of
errors is high. For large scale software development, Scaling Software Agility (Lef-
fingwell 2007) and Agile Software Requirements (Leffingwell 2011) have been shown
to apply at enterprise scales. Agile methods, when properly implemented, enable teams
to focus on better understanding the end user needs, and building high-quality software,
including highly reliable and safe systems. While there will always be the need to
address defects, Agile methods are being usefully applied across industries and project

Phase lll

Phase | Learning Phase Il

— (cognitive

/ - ——\ \ computing and Al)
Validating

(operational \
readiness) |

HCI-Driven
Development

~_ —<

Visualizing
(augmented reality)

Quantifying
(code
instrumentation and
hi-fi simulation)

Conceptualizing
(visualization tools)

Fig. 1. Conceptual model of HCI-driven software development

Vision 2020: The Future of Software Quality Management and Impacts 753

sizes. User acceptance validation becomes an integral part of agile frameworks given
the method calls for active, continuous user, i.e., user proxy, participation or opera-
tional readiness input.

5.2 Operational Readiness

Utilizing all or some of the concepts and tools above, user acceptance testing teams can
implement quality assurance plans covering the entire development life cycle. By
measuring technical debt along the life cycle, acceptance teams can measure a technical
debt ratio as exit criteria for input to go/no go decisions. This is essentially a risk profile
of weighted features that becomes an operational readiness score, customized for that
release for that system, and acceptance teams become readiness evaluators. This pro-
cess can be built into scaled agile frameworks and application life cycle management
systems.

Creating a quality management plan at the beginning of a project, quality teams can
expand acceptance criteria beyond simply defect counts and classifications, to develop
a new “Risk Profile” model. Using a “Technical Debt” ratio (e.g., configuration control
or software versioning) becomes a rated criteria), test environment availability becomes
a rated criteria. Continuous integration, automated testing and other forms of testing
also become rated criteria. In this way, “user acceptance testing” becomes “operational
readiness evaluation™; test cases become “operational readiness scenarios”; and exit
criteria become “operational readiness score”.

5.3 Visualization Tools

The next generation of automating testing activities will involve requirements visual-
ization tools, e.g., iRise (see: www.irise.com/). These tools enable user input into
requirements through visual formats, enabling more descriptive communications and
knowledge transfer of software product development. Enabling all of the software
development stakeholders, including users, to virtually ‘see’ product designs, these
tools create visualizations that look and act almost identical to the real end product. End
users may not be necessary if proxy combinations of experts are involved, e.g., those
trained in user experience, architectures, development, operations, and quality analysis.
Visualization helps users and those who create new software to illustrate what the
product will do before a single line of code is written, helping people understand what
the product is going to be like.

Visualization tools with high-fidelity representations have been known to reduce
costs and decrease development time. They create and communicate innovative,
revenue-enhancing ideas without coding, helping global teams to deliver apps that
delight the first time, virtually eliminating the re-work that many companies have been
forced to expect. Through simulations, software designs will be refined with the end
users’ needs and interests in mind.

http://www.irise.com/

754 R. Poston and A. Calvert

5.4 Augmented Reality, Code Instrumentation, and High-Fidelity
Simulation

Along with instrumentation, future generations of automating testing activities will
involve augmented reality, which will be used to support user-system interactions
offering additional informative overlays of explanation of system features. Instrumented
code provides the ability to monitor the software’s performance, diagnose errors, and
track information values and usage. Special code instructions monitor specific parts of
the system. Operational scenarios then can be provided via augmented reality while
enterprise users are performing daily activities, while instrumented code tracks how users
respond to the overlays. Video snippets, sensory awareness, and other tools can offer
users more informative direction for testing actions. This approach can be modelled by
companies such as User Testing (see: www.usertesting.com/) or Applause (see: www.
applause.com/) supporting distributed testing based on concepts of cloud-sourced test-
ing. Building on systems such as LARIAT, the Lincoln Adaptable Real-time Information
Assurance Testbed, which uses automated high-fidelity real-time evaluations of system
usage (Rossey, et al. 2002), artificial intelligence techniques can be used to learn then
mirror and simulate the real-time user experience as input to continuous automated
testing systems. With applications embedded into production systems, intelligence
systems can monitor user interactions with technology and model users and their
behaviors. Artificially intelligent testing systems then mimic real users and be used to
realistically evaluate new software development designs and coded products.

5.5 Cognitive Computing and Artificial Intelligence

Cognitive computing systems learn and interact naturally with people to extend what
either humans or machine could do on their own. Future generations of automating
testing activity will involve cognitive chips, e.g., the latest SYNAPSE chip by IBM
(see: www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml#fbid=
h9hs1Q-C8Ra). This chip is expected to initiate a new type of software applications
that can respond to sensory information. The IBM chip is built based on a
brain-inspired computer architecture with 1 million neurons and 256 million synapses.
This technology has the potential to utilize a cognitive hardware and software eco-
system within a business enterprise that learns user work habits and software usage
anomalies. Utilizing technology that can gain an automated profound understanding of
the actual facets of how employees use enterprise software will enable real-time vir-
tualized testing and quality management to be performed throughout the SDLC. The
technology will be able to mimic a greater breadth and depth of user experiences as it
monitors everyday use to understand how, when, and where users get work done across
the enterprise network.

5.6 Vision 2020: Future of Completely Automated User Testing

Combining cognitive chips, augmented reality, visualization tools, agile frameworks,
and operational readiness measures, tomorrow’s end user acceptance activities will take

http://www.usertesting.com/
http://www.applause.com/
http://www.applause.com/
http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml#fbid=h9hs1Q-C8Ra
http://www.research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml#fbid=h9hs1Q-C8Ra

Vision 2020: The Future of Software Quality Management and Impacts 755

on a new look. In the future, virtual end users based on artificially intelligent auton-
omous systems will interact with simulated versions of new software to utilize
reality-driven operational scenarios to perform user acceptance validation before code
is written. More efficient and faster than humans, these systems will deploy more
scenarios continuously augmented with every day usage behaviors. Neural networks
will continuously collect the activities of real-time global users to update scenarios. An
event that occurred yesterday will be replicated in simulation and testing scenarios
today. Problems will be addressed in real-time. This approach eliminates the need to
incur the expense of flying globally located users to a central location to review and
provide input on software requirements and manually test software products. Figure 2
delineates the environmental components needed to make HCI-driven software
development a reality.

Autonomous testing systems with automated learning will not be constrained by
one person’s understanding of system use, but will incorporate the mission of many
user types, understand a more holistic environmental scope, and potentially outthink
the devices under test. These test vehicles will be fed in real-time the artificial intel-
ligence gathered about users around the globe to continuously build and update test
scenarios. This approach eliminates the issue of test team members joining user
acceptance teams as user proxies with operational knowledge which becomes obsolete
with time. The goal is to shift user validation left as a virtual activity before software is
coded, through the combined use of augmented reality, cognitive computing, and
artificial intelligence. To further support this approach, code and simulations can be
modified with instrumentation to measure usage patterns.

UAT events will change based on advances being made in code instrumentation
and simulation. The focus is to design requirements visually within simulation to allow
real end users to ‘test drive’ the software before it is created. Using operational

Phase Il:
Cognitive
Automated A Computing,
Operational |, — Synaptic
Testing Neurology, Al
Scenarios (tearning)
Phase I:
Virtual Test
Environment
(validating and \
conceptualizing) \
N\
N\
\\ Bio Research Phase II:
Platform | Augmented
\\ Reality and
High Fidelity
Simulation
(visualizing and
quantifying)

Fig. 2. Vision 2020: HCI-driven development environment

756 R. Poston and A. Calvert

scenarios in the simulations based on known usage patterns, autonomous artificial
intelligence systems can use neural networks to scan actual live production systems for
real user activities. The operational scenarios can be continuously updated based on
how users change how they use the software and anomalies in usage. These systems
can provide real world operational scenarios to the simulations. Thus, the scenarios are
updated in real-time to correctly map to actual system user usage activities and patterns.
Eventually the simulations become autonomous testing devices that represent end user
actions. Consistent with the concepts behind the Internet of Things, autonomous
devices can be programmed and updated to think like end users and change as users
change their usage activities. Using autonomous devices updated in real-time elimi-
nates reduces the need for human involvement, removing issues of a non-representative
sample of end users or outdated knowledge regarding current business processes.
Autonomous UAT devices will perform mission-based scenarios with real environ-
mental parameters, representing the current user experience, and be able to outthink
humans as UAT participants, e.g., a faster supercomputer processes 8.2 billion
megaflops (million operations per second) and the human brain only 2.2 billion
megaflops (Fischetti 2011).

Software development processes will focus more on design and prototypes, with
great user involvement. The next generation high-fidelity simulations, e.g., iRise, will
offer developers the means to involve greater user input. With instrumentation, aug-
mented reality, and artificial intelligence, user proxies will eventually replace actual
users. In addition augmented reality can be added to production systems to introduce
future system modifications to users prior to their development in order to collect
feedback. As these systems autonomously gather usage information, operational sce-
narios can be augmented by the feedback and used in test lab environments.

Appendix A Table. Recently-Published Select Studies

Citation Type of artificial intelligence Potential implications on SQM
Khan(2014) Case-based reasoning Helps to reduce the knowledge
availability bottleneck
Mims(2014) Schedule group meetings Software produces marketing e-mail
messages for clients
Rusli(2014) Analysis of customer feedback Software in the development of their
language business strategies and marketing

Han et al. (2014) | Using multiple classification ripple | Used agile development for overcoming
down rules based agile approach difficulty of analysis, and business rules
approach for reducing issues in maintenance

Zapf (2013) Software agent platforms Categories of software agent systems and
their properties
Padgham et al. Oracle generation method for Oracle Generation for Automated
(2013) unit testing Unit Testing of Agent Systems
Serié¢ et al.(2013) | Intelligent forest fire monitoring Artificial perception system whose aim is
system early detection of forest fires

(Continued)

Vision 2020: The Future of Software Quality Management and Impacts

757

(Continued)

Citation

Type of artificial intelligence

Potential implications on SQM

Simonite (2012)

Powell (2011)

Oprea (2011)

Henderson-Sellers
(2011)

Omoteso et al.
(2010)

Chang 2010

Cohen et al. 2010

Singh et al., 2010

Schneidewind
(2010)

Farah(2009)

Kapur et al. (2008)

Sagarna and
Lozano 2008

Citation
Warwick

(2014)

Safiullah (2014)

Garcia et al.
(2011)
Jiao (2011)

Jiao et al. (2010)

Artificial chat partner

People are the only solution
to software problems

University knowledge management
system

Meta-models and ontologies

Information and communications
technology (ICT) tools

Artificial slow intelligence systems
Herbal toolset
Predicting software development

effort using artificial neural
network

Applying neural networks to
software reliability assessment

Techniques developed in artificial
intelligence (AI)

Software reliability assessment
using artificial neural network

Dynamic search space

transformations for software test
data generation

Type of Autonomous Systems
Automatic control systems
Methodology techniques
Multiagent systems
Autonomous software entities

Automated assembly of
internet-scale software systems
with autonomous agents

Development of chat software for instant
messaging

Requirements gathering and software modeling
through artificial intelligence

Software tools that assist the decision making
process

Contribution of meta-models and ontologies for
software engineering

Software development to help auditors match
the complexity of their clients’ information
systems

Applications of slow intelligence Systems
in software engineering

Development of intelligent agents using
established software-engineering principles

Software effort estimation of cost, time and
manpower using feed forward network
trained using back-propogation algorithm
using training and validation data of 650
projects

Neural networks to assess the reliability of
software, employing cumulative failures,
etc., method proved superior for reliability.

Artificial intelligence techniques in software
engineering

Apply neural networks to build software
reliability growth models. Logistic function
provides improved goodness-of-fit.

Propose test data generation with definition of
the initial search space using static
information extracted from source code. Grid
search method is promising option for test
data generation

Potential Implications on SQM

Use of autonomous and nondeterministic
control systems in aeronautics

Strategy for testing the autonomous system
integrations domain

Evaluation and comparison of
MAS software engineering techniques

Autonomous component to model independent
software entity

Systems are modeled by dynamic
trial-and-evaluation strategy to select high
quality agents to facilitate the interoperations
among autonomous agents

(Continued)

758 R. Poston and A. Calvert

(Continued)
Citation Type of artificial intelligence Potential implications on SQM
Trivino et al. Semiautonomous robot tele-control | Role of operator and autonomous behavior of
(2009) systems the robot
Citation Type of Augmented Reality Potential Implications on SQM
Sangani (2013) Developing applications Benefits & obstacles associated with the

augmented reality GPS

Ferran and Salim | Distributed cognition supported by | Minimize knowledge bottlenecks with virtual
(2012) technology for knowledge reality and internet-based distributed

sharing cognition.

References

Abarbanel, R., McNeely, W.: Fly Thru the Boeing 777. ACM Siggraph, New york (1996)

Agarwal, R., Sambamurthy, V.: Principles and models for organizing the information technology
function. Manag. Inf. Syst. Q. Executive 1(1), 1-16 (2002)

Birtles, P.: Boeing 777, Jetliner for a New Century. Motorbooks International, St. Paul,
Minnesota (1998)

Chang, S.: A general framework for slow intelligence systems. Int. J. Softw. Eng. Knowl. Eng.
20(1), 1-15 (2010)

Checkland, K., McDonald, R., Harrison, S.: Ticking boxes and changing the social world: data
collection and the new UK general practice contract. Soc. Policy Adm. 41(7), 693-710 (2007)

Cohen, M., Ritter, A., Haynes, F.E., Steven, R.: Applying software engineering to agent
development. Al Mag. 31(2), 25-44 (2010)

Conboy, K.: Agility from first principles: reconstructing the concept of agility in information
systems development. Inf. Syst. Res. 20(3), 329-354 (2009)

Eisenhardt, K.M.: Making fast strategic decisions in high-velocity environment. Acad. Manag.
J. 32(3), 543-576 (1989)

Engr.Farah Naaz Raza.: Artificial intelligence techniques in software engineering (AITSE), In:
International MultiConference of Engineers and Computer Scientists (1). (2009)

Ferran, C., Salim, R.: Distributed cognition supported by information technology can help solve
the knowledge management bottleneck. Acad. Bus. Res. J. 4, 432454 (2012)

Fischetti, M.: Computers Versus Brains, Scientific American, 12 October 2011

Garcia, E., Giret, A., Botti, V.: Evaluating software engineering techniques for developing
complex systems with multiagent approaches. Inf. Softw. Technol. 53(5), 494-506 (2011)

Glaser, B., Strauss, A.:The discovery grounded theory: strategies for qualitative inquiry (1967)

Han, S., Yoon, H., Kang, B., Park, S.: Using MCRDR based agile approach for expert system
development. Computing 96(9), 897-908 (2014)

Henderson-Sellers, B.: Bridging metamodels and ontologies in software engineering. J. Syst.
Softw. 84(2), 301-313 (2011)

Jiao, W.: Using autonomous components to improve runtime qualities of software. IET Softw. §
(1), 1-20 (2011)

Jiao, W., Sun, Y., Mei, H.: Automated assembly of Internet-scale software systems involving
autonomous agents. J. Syst. Softw. 83(10), 1838-1850 (2010)

Vision 2020: The Future of Software Quality Management and Impacts 759

Kapur, P.K., Khatri, S.K., Basirzadeh, M.: Software reliability assessment using artificial neural
network based flexible model incorporating faults of different complexity. Int. J. Reliab. Qual.
Saf. Eng. 15(2), 113-127 (2008)

Khan, M.J.: Applications of case-based reasoning in software engineering: a systematic mapping
study. IET Softw. 8(6), 258-268 (2014)

Klein, G.S.: Lims user acceptance testing. Qual. Assur. 10(2), 91-106 (2003)

Larson, G.B.: The user acceptance testing process. J. Syst. Manag. 46(5), 56-62 (1995)

Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Addison-Wesley
Professional, Boston (2007)

Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise. Addison-Wesley Professional, Boston (2011)

Mims, C.: Artificial intelligence comes to your inbox. Wall Street J. — East. Ed. 264(47), B1-B2
(2014)

Norris, G., Wagner, M.: Modern Boeing Jetliners. Minnesota: Zenith Imprint, Minneapolis
(1999)

Omoteso, K., Patel, A., Scott, P.: Information and communications technology and auditing:
current implications and future directions. Int. J. Auditing 14(2), 147-162 (2010)

Oprea, M.: A university knowledge management tool for academic research activity evaluation.
Informatica Economica 15(3), 58-71 (2011)

Padgham, L., Zhang, Z., Thangarajah, J., Miller, T.: Model-based test oracle generation for
automated unit testing of agent systems. IEEE Trans. Softw. Eng. 39(9), 1230-1244 (2013)

Pettigrew, A.M.: Longitudinal field research on change: theory and practice. Organ. Sci. 1(3),
267-292 (1990)

Poston, R., Sajja, K., Calvert, A.: Managing user acceptance testing of business applications In:
Proceedings of 16th International Conference on Human-Computer Interaction, Creta Maris,
Heraklion, Crete, Greece, 2227 June 2014

Poth, A., Sunyaev, A.: Efficient Quality Management: Risk- and Value-based Software Quality
Management, IEEE Software (2014)

Powell, J.: Leadership by walking around: 21* century people solutions for software problems.
Contract Manage. 51(5), 56-65 (2011)

Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?
Commun. ACM 49, 41-46 (2006)

Rossey, L.M., Cunningham, R.K., Fried, D.J., Rabek, J.C., Lippmann, R.P., Haines, J.W.,
Zissman, M.A.: LARIAT: Lincoln Adaptable Real-time Information Assurance Testbed.
IEEE (2002)

Rusli, E.M.: Deep dives into buyer minds. Wall Street J. — East. Ed. 263(87), B5 (2014)

Safiullah, F.:Some Practical Considerations and a Methodology for Testing Autonomous System
Integrations, Int. J. Softw. Eng. Appl. (IISEA), 5 (2014)

Sagarna, R., Lozano, J.A.: Dynamics search space transformations for software test data
generation. Comput. Intell. 24(1), 23-61 (2008)

Sangani, K.: Developing AR apps. Eng. Technol. (17509637) 8(4), 52-54 (2013)

Schneidewind, N.: Applying neural networks to software reliability assessment. Int. J. Reliab.
Qual. Saf. Eng. 17(4), 313-329 (2010)

Seri¢, L., Stula, M., Stipani¢ev, D.: Engineering of holonic multi agent intelligent forest fire
monitoring system. AI Commun. 26(3), 303-316 (2013)

Shang, S., Lin, S., Wu, Y.: Service innovation through dynamic knowledge management. Ind.
Manage. Data Syst. 109(3), 322-337 (2009)

Simonite, T.: Artificial intelligence, powered by many humans. Technol. Rev. 115(6), 14-16
(2012)

760 R. Poston and A. Calvert

Singh, Y., Kaur, A., Bhatia, P.K., Sangwan, O.: Predicting software development effort using
artificial neural network. Int. J. Softw. Eng. Knowl. Eng. 20(3), 367-375 (2010)

Sutton, R.I.: Crossroads-the virtues of closet qualitative research. Organ. Sci. 8(1), 97-106
(1997)

Trivino, G., Mengual, L., van der Heide, A.: Towards an architecture for semiautonomous robot
tele control systems. Inf. Sci. 179(23), 3973-3984 (2009)

Warwick, G.: Enabling autonomy. Aviat. Week Space Technol. 176(20), 28-29 (2014)

Weiner, E.: New Boeing Airliner Shaped by the Airlines, The New York Times, 19 Dec 1990

Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Beverly Hills (1984)

Zapf, M.: Two decades of software agent platform engineering. PIK - Praxis der Informationsv-
erarbeitung und Kommunikation 36(4), 235-242 (2013)

	Vision 2020: The Future of Software Quality Management and Impacts on Global User Acceptance
	Abstract
	1 Introduction
	2 Literature Background
	3 Exploratory Study Methodology
	4 Data Collection
	5 Findings
	5.1 Scaled Agile Frameworks
	5.2 Operational Readiness
	5.3 Visualization Tools
	5.4 Augmented Reality, Code Instrumentation, and High-Fidelity Simulation
	5.5 Cognitive Computing and Artificial Intelligence
	5.6 Vision 2020: Future of Completely Automated User Testing

	Appendix A Table. Recently-Published Select Studies

