
Traceability Types for Mastering Change
in Collaborative Software Quality Management

Boban Celebic, Ruth Breu, and Michael Felderer(B)

Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{boban.celebic,ruth.breu,michael.felderer}@uibk.ac.at

Abstract. Software is constantly evolving and to successfully compre-
hend and manage this evolutionary change is a challenging task which
requires traceability support. In this paper we propose a novel approach
to traceability as a cornerstone for successful impact analysis and change
management, in the context of collaborative software quality manage-
ment. We first motivate the crucial role of traceability within lifecycle
management of the new generation of distributed fragmented software
services. Based on the model-based collaborative software quality man-
agement framework of Living Models, we then categorize software qual-
ity management services and identify novel types of traceability. This
is followed by an overview and classification of sample software quality
management services from literature, enabled by the interrelation with
the identified types of traceability. From this classification we derive the
need for further research on traceability in collaborative software quality
management.

Keywords: Collaborative software quality management · Traceability ·
Software change management · Software evolution

1 Introduction

In modern IT systems distributed across organizational and system boundaries
the grand challenge for software quality management becomes the coordina-
tion of people, methods, processes and tools [5]. Current quality management
processes and methods are not yet capable to scale up to the novel arising scenar-
ios like cars and aircrafts communicating to each other, health records exchanged
on national level or energy traded all over continents, for several reasons.

First, an integrated view of the full service life cycle from business alignment,
service design to deployment and runtime monitoring is of utmost importance.
This becomes immediately obvious for the quality attribute of security. Secu-
rity requirements are mostly negative requirements and security vulnerabilities
may originate from all parts of the service lifecycle including, for instance, orga-
nizational flaws, design failures or deficiencies in runtime configuration. The
necessary integration of different processes and data, for example from IT man-
agement and software development, is hardly supported in current practice and
theory.
c© Springer International Publishing AG 2016
B. Steffen (Ed.): Transactions on FoMaC I, LNCS 9960, pp. 242–256, 2016.
DOI: 10.1007/978-3-319-46508-1 13



Traceability Types for Mastering Change 243

Second, the new generation of software services is of inherent evolutionary
character. Novel technologies make flexible composition of services technically
feasible. However, current quality management methods and tools do not sup-
port change and evolution at a level of effectiveness which is required by the
complexity of the novel application scenarios.

Finally, new business models require new kinds of quality management
processes. As an example, Sneed [44] has recently pointed out the new role
of testing for systems incorporating cloud services.

To successfully comprehend and manage continuous software change, stake-
holders must first identify what will be affected by any proposed change - fore-
cast and analyze its potential impacts. This implies the necessity to record and
maintain the traces among artifacts to guarantee traceability. Traceability, as
a general term in software engineering, is the ability to describe and follow
the life of software artifacts [50]. This is a generalization of the requirements
traceability definition of Gotel and Finkelstein [21] to arbitrary artifacts. In a
model-based context, the artifacts of interest are models, conforming to one or
more meta models. Traceability in this context is predominantly concerned with
typed relationships (often called trace links or traces) between models and model
elements - i.e., traceability needs to relate elements in a source model to the cor-
responding elements in a target model (in a transformation chain) and vice versa
(which further implies that trace information ought to be generated as a result
of model transformations). For example, trace links help with tracking which
part of the code satisfies which requirements, monitoring the (implementation,
test) status of requirements, or measuring coverage of artifacts by test cases.
Unfortunately, impact analysis and traceability are not easy tasks, due to the
complexity and size of software systems nowadays, their ever-changing artifacts
with complex interdependencies, short development cycles, and numerous stake-
holders involved in the process. Moreover, the information amount increases
significantly over time, as the services evolve. As a result, keeping trace links
synchronized is a cumbersome, time-consuming, expensive and error-prone task,
often resulting in undesired confusion concerning the software product’s current
status.

In this paper we argue that a novel approach to traceability (as a cornerstone
for successful impact analysis and, thus, software change and quality manage-
ment) is a prerequisite to overcome the aforementioned challenges. This novel
approach presupposes identification of novel trace types, particularly those spe-
cific to concrete environments (so to achieve the full potential and benefits of
traceability use in such environments).

The paper is structured as follows. Section 2 provides an overview of the
state-of-the-art. Section 3 sketches Living Models, a conceptual framework for
collaborative software quality management, and identifies as well as categorizes
relevant types of collaborative software quality management services. Section 4
presents the associated new types of traceability. Section 5 provides examples of
beneficial use of traceability in all service categories. Finally, Sect. 6 concludes
this paper.



244 B. Celebic et al.

2 State-of-the-Art

Before discussing the existing classifications of traceability, we must first jus-
tify the need for such classifications. In short, classification of traceability into
types leads to: better understanding of the traceability links, their meaning and
semantics [37]; better management and evaluation of trace links [37]; ability to
perform automatic operations with traces [33]; and better visual representation
of trace links, as a result of the possibility to customize the visualization to a
specific type of traceability link.

Classification of software traceability has been addressed earlier on several
occasions [45]. These classifications were based on several criteria: the types
of the related artifacts, the activities connected to the relation (e.g., evolution,
verification, impact analysis), the elements and properties of trace links (different
tasks may require access to a specific set of links, based on their properties [29]),
and others.

Besides the well-known concepts of pre- and post- requirement specification,
forward and backward, horizontal and vertical, functional and non-functional
traceability [50], some other, model-specific classifications have been proposed.
The simplest taxonomy is the one with manual (trace link established manually
in the trace model) and automatic (created by a tool) trace types [36]. Accord-
ing to transformation traceability, traces are produced as a result of (automatic)
model transformations and indicate how source elements are related to target
elements and vice versa. Galvao et al. [18] classify the traceability approaches in
model-based and model-driven engineering into three categories: requirements-
driven approaches use requirements models as abstractions to guide their trace-
ability methods; modeling approaches are interested in how meta models, models
and conceptual frameworks are involved in the tracing process; transformation
approaches make use of model transformation mechanisms for generating trace
information. Another taxonomy is on post-model-specification (i.e., traceability
of models to and from various artifacts produced by their use) and pre-model-
specification traceability [39]. A similar taxonomy is given in [50]: pre-model-,
intra-model-, and post-model- traceability - “denoting traceability between early
artifacts and the first model, traceability between the gradually refined models,
and traceability between the final model and the non-model artifacts generated or
derived from it, respectively”.

Further traceability classifications in model-based software engineering have
been developed so to emphasize different attributes or characteristics of trace-
ability [37]. More precisely, two directions for classifications can be identified in
the literature: classifications that focus on explicit trace links (captured directly
in models by using a suitable concrete syntax) and implicit trace links (trace
information is generated as a result of an application of model management
operation(s)) [37].

Problems with Existing Traceability Classifications. Unfortunately, all of
the proposed classifications are difficult to evaluate and compare because there is



Traceability Types for Mastering Change 245

no common level of abstraction and usually no unambiguous or formal definition
of the different categories, and, additionally, the categories themselves cannot
be separated clearly [50]. The classifications vary from more or less abstract,
conceptual classifications to concrete ones (i.e., traceability meta models). It
can be stated that the definition and the basic classifications of model-related
traceability are still not agreed upon.

Furthermore, some of the more obvious open issues in model-based traceabil-
ity can easily be identified by analyzing the referenced traceability classifications
and types: lack of automation to cope with traceability in the early development
stages in model-based approaches should be addressed, as well as mechanisms for
the evolution of trace links; better trace meta models for enhancing model-based
traceability should be developed; more efficient management of fine grained trace
links is needed.

3 Collaborative Software Quality Management

In this section, we outline the model-based collaborative software quality man-
agement framework Living Models and related quality management services,
which together provide the context for identifying novel traceability types. For
a more detailed presentation of Living Models, we refer to [2].

3.1 The Living Models Framework

The scope of Living Models is not only software engineering but includes also IT
management and systems operation. Accordingly, the stakeholders we envisage
range from IT and security managers to system analysts, developers, testers to
platform responsibles and network administrators.

In a Living Models environment all kind of information is conceptualized in
a model-aware way. We distinguish functional data (like data about business
processes, services, components or physical infrastructure elements [30,31]) and
non-functional data (like a security requirement, a test case or a bug attached to
a component [16]). We assume that each non-functional data instance is attached
to a functional data instance. Our minimum requirement to model awareness is
that all data instances adhere to a global meta model. The global meta model
may vary in the degree of rigor, e.g., comprising both a partial meta model repre-
senting the abstract syntax of a programming language and a partial meta model
capturing informally described requirements and their interdependencies. In [2]
we have presented a reference meta model integrating the enterprise architecture
and the software engineering domain (Fig. 1).

Living Models suggests stakeholder-centric model-based work environments.
These environments support the tasks of the stakeholders involved and use mod-
els to provide concepts and information at an appropriate abstraction level. An
example for a stakeholder-centric model-based work environment is a model-
based testing tool supporting the tester to design, execute and evaluate tests [17],



246 B. Celebic et al.

Fig. 1. Reference functional system meta model of living models

whereas IT architects may use a UML tool for modeling and analyzing a system’s
components.

Third, Living Models comprise close coupling of models and the runtime as a
prerequisite that stakeholders can take proper decisions. The minimum require-
ment for this coupling is a process defining the responsibilities, the points of
time when the synchronization between model and runtime takes place and the
automated and manual tasks within the synchronization. Examples for such syn-
chronization processes are model-based software development (i.e., generating
runtime artifacts out of models) [32,47] or semi-automated workflow-controlled
model maintenance [13].

A fourth major principle is concerned with the collaboration of stakeholders.
Living Models proposes a change-driven interaction between stakeholders. This
comprises change events (e.g., a modified model element or a time event), change
propagation to linked elements and change handling encompassing coordinated



Traceability Types for Mastering Change 247

Fig. 2. Core concepts of living models

manual and automated actions. As a reference model we employ state machines
attached with model elements to control the change-driven workflows (Fig. 2).

3.2 Collaborative Quality Management Services

The Living Models paradigm incorporates the following categories of executable
software quality management services:

– Knowledge Engineering Services provide each stakeholder with informa-
tion at the appropriate level of abstraction, way of presentation and degree
of quality (e.g., preciseness, actuality). The information may potentially origi-
nate from all data resources in the software life cycle, comprising, for example,
software portfolio management, business process modeling, requirements engi-
neering, test reports, code, bug tracking, and many more. Examples of Knowl-
edge Engineering services are services for information aggregation, visualiza-
tion and maintenance, for example sophisticated views for Enterprise Archi-
tecture Models or code bases [25] and semi-automated maintenance services
for Enterprise Architecture Models [11].

– Analysis Services apply assistive analysis techniques at model instance and
meta model level and on runtime data to enhance model quality and to con-
trol processes. Examples for analysis services comprise analysis of code level
information (service code, tests, bugs) [1], model consistency checks [9,27] or
risk models [15,35,46] controlling test processes.

– Change-Driven Engineering Services coordinate quality relevant actions
of stakeholders in dynamic contexts. These services track and propagate
changes and coordinate change handling. Services of this kind can be found
in many tools, e.g., in form of tickets in requirements and defect management
tools.

– Basic Quality Actions refer to any quality related action performed on a
homogeneous data base or in a given tool, either in a (semi-)automated or



248 B. Celebic et al.

manual way. This, for example, comprises all testing services, code generation
out of models, reviews or static code analysis. Since in this paper we are
focusing on collaborative aspects, basic quality actions are not considered
further.

The above categorization of collaborative quality management services may
not be sharp in all cases. For instance, data visualization may require sophisti-
cated data analysis, and thus may adhere both to Knowledge Management and
Analysis services.

The concept of Living Models has been developed in several third party
funded projects. It has been materialized in research prototypes and tool envi-
ronments of industrial partners. Case studies have been conducted in manifold
contexts, including security requirements engineering [3], enterprise architecture
management [11] and system testing [14].

4 Traceability Categories

Traceability between artifacts is the core concept to provide the services listed
before in the context of the model-based collaborative software quality man-
agement framework of Living Models. Having also in mind the aforementioned
benefits of traceability classifications, and the services of Living Models, we iden-
tified the following traceability categories.

Design Time Traceability. Design time traceability denotes traceability at
the level of design time and management artifacts. This includes both the well-
known notions of horizontal and vertical traceability in literature, as defined, for
example, in [22,49]. Horizontal traceability concerns the interconnection of data
at the same level of abstraction (e.g., recording dependencies between require-
ments), whereas vertical traceability concerns the interconnection of data across
levels of abstraction (e.g., linking requirements with software architecture arti-
facts or linking application level model elements with infrastructure model ele-
ments in an Enterprise Architecture Model).

Deployment Traceability. Deployment traceability is the traceability
between design time artifacts and information collected at runtime (e.g.,
deployed system components, runtime events, key performance indicators like
service duration). An example for deployment traceability is the attachment of
workflow models with the maximum number of running instances.

Evolution Traceability. Evolution traceability is the traceability of informa-
tion across versions, like versions of component implementations or models. Evo-
lution traceability may vary in its granularity and kind of representation. For
instance, model history may be documented on model element level (document-
ing the history of each model element) or on model type level (documenting
the history of the whole model), and may be stored as change operation or as
sequence of model versions [2].



Traceability Types for Mastering Change 249

Stakeholder Action Traceability. Stakeholder action traceability means the
association of events or actions with the stakeholders involved. Stakeholder
action traceability has many facets since the tracking may vary in the kind of
information that is tracked and in the way how stakeholders are represented (e.g.,
as institutions, roles or persons). Accordingly, stakeholder traceability might be
unwanted or even legally prohibited due to privacy reasons.

5 Traceability Supporting Collaborative Software Quality
Management Services

In this section we interrelate the categorized kinds of software quality manage-
ment services with the categorized kinds of traceability (Fig. 3). We do this by
referring to approaches from literature which consider applications of traceabil-
ity within the domain of software quality management services. The following
categorization may not be sharp in all cases, due to the previously mentioned
non-sharp categorization of Collaborative Software Quality Management Ser-
vices. Some of the examples may fall into several service and/or traceability
types but are representative for the category where they are listed.

Fig. 3. Collaborative quality management services and traceability types

5.1 Traceability Support for Knowledge Engineering Services

Design Time Traceability. Mohan and Ramesh [34] discuss the key role
played by a traceability-based knowledge management system in documenting
design decisions associated with various configurations of basic building blocks
on which service family architectures are based on and in tracing variability. A
framework for managing traceability knowledge for the design and development



250 B. Celebic et al.

of e-service families, based on the REMAP (Representation and Maintenance of
Process Knowledge) environment [41], is presented. Using the case study, they
illustrate the importance of using such a knowledge management system for
the design and development of service families. Furthermore, in [38] traceabil-
ity across design artifacts in software project, i.e., from product specification
to interface requirements specification, software requirement specification and
system components, is addressed.

Deployment Traceability. Conklin and Begeman [7] describe an application-
specific hypertext system designed to facilitate capturing of early design delib-
erations. As consequence, traceability relations may lead to the reuse of system
components when these components are related to requirements of existing sys-
tems that are similar to requirements of new systems.

Evolution Traceability. Goknil et al. [20] present a tool built to support
reasoning about requirements relations, as well as consistency checking of rela-
tions and for inferring new relations. This tool supports better understanding of
dependencies between requirements, tracking model history and changes (either
at model element or type level).

Stakeholder Action Traceability. Li and Maalej [26] present a compara-
tive study of common traceability visualization techniques, including an experi-
ment and interviews with 24 participants. This study supports the finding that
traceability, in general, helps users in describing and tracking the relationships
between software artifacts, while different visualization techniques (matrices,
graphs, hyperlinks, lists) visualize these relationships and help users to access
and understand them.

5.2 Traceability Support for Analysis Services

Design Time Traceability. Felderer et al. [15] and Stallbaum et al. [46] apply
risk models based on traceable design artifacts for testing purposes.

Deployment Traceability. Gander et al. [19] present a pluggable framework
for multi-level security monitoring of workflows, which links event information
and modeling specification in order to perform compliance detection and anom-
aly detection. In [51] authors propose a traceability based knowledge manage-
ment approach to support adaptation of workflows capability in Workflow Man-
agement Systems. They present a framework for representing traceability knowl-
edge to capture the context in which workflows are specified and evolved. They
also discuss the functionalities of a knowledge management system that can sup-
port dynamic reconfiguration of workflows in the context of changing business
processes as well as for maintaining their integrity.



Traceability Types for Mastering Change 251

Evolution Traceability. Hata et al. [23] present a fine-grained version control
system for Java called Historage. This system targets Java software and conducts
fine-grained prediction of bugs with well-known historical metrics (fine-grained
module histories). Maletic et al. [28] present an XML based approach to support
the evolution of model-to-model traceability links is presented. This approach
allows for versioning and differencing of specific elements of the models versus
just lines or whole files.

Stakeholder Action Traceability. Zimmermann et al. [52] apply data mining
of version histories in order to guide programmers along related changes.

5.3 Traceability Support for Change-Driven Engineering Services

Design Time Traceability. Felderer et al. [14] present a model-driven sys-
tem testing methodology for service-centric systems called Telling TestStories,
its tool implementation and the underlying model validation mechanism. This
methodology is based on tightly integrated but separated platform-independent
requirements, system and test models. Telling TestStories is capable of test-
driven development on the model level and provides full traceability between
all system and testing artifacts. Change propagation between the system, test
and requirements artifacts is used for regression test derivation. In [48] authors
discuss facilitating change management in geographically distributed software
engineering by effective discovery and establishment of dependency links using
domain models which provide a common reference point. The proposed method
advocates the use of domain models throughout the whole development life-cycle
and is apt to facilitate multi-site software engineering.

Deployment Traceability. The authors of [4,12,24] deal with synchronization
of Enterprise Architecture Models with the runtime environment. The first paper
investigates a specific Enterprise Service Bus (ESB) considered as the nervous
system of an enterprise interconnecting business applications and processes as an
information source. A vendor-specific ESB data model is reverse-engineered and
transformation rules for three representative EA information models are derived.
These transformation rules are further employed to perform automated model
transformations making the first step towards an automated EA documentation.
In the second paper the authors propose network scanning for automatic data
collection and uses an existing software tool for generating EA models based on
the IT infrastructure of enterprises. The third paper presents (semi-)automated
processes for maintaining enterprise architecture models by gathering informa-
tion from both human input and technical interfaces and discusses implemen-
tation issues for realizing the processes in practice. This work aims toward the
direction of minimizing manual work for EAM by automation and increasing EA
data quality attributes such as consistency and actuality.



252 B. Celebic et al.

Table 1. Examples of traceability supporting Collaborative Software Quality Manage-
ment Services

Knowledge management Data analysis Change-driven engineering

Design time
traceability

Framework for managing
traceability
knowledge for the
design and
development of
e-service families [34]
based on the REMAP
(Representation and
Maintenance of
Process Knowledge)
environment [41]

Traceability across
design artifacts in
software project, i.e.,
from product
specification to
interface
requirements
specification,
software requirement
specification and
system
components [38]

Risk models based on design
artifacts are used for
testing purposes [15,46]

Identify components and
objects which satisfies a
requirement [10]

Test procedures, if traceable
to requirements or
designs, can be modified
when errors are
discovered [40]

Rigorous system testing by
supporting vertical
traceability; Rigorous
vertical software system
testing In IDE [42]

System testing by relating
requirements with test
models and indicating
routes for demonstrating
product compliance [45]

Change propagation between
the system, test and
requirements artifacts is
used for regression test
derivation [14]

Propagation of changes
during redesign [8]

Facilitating change
management in
geographically distributed
software engineering by
effective discovery and
establishment of
dependency links using
domain models [48]

Deployment
traceability

Traceability may lead to
the reuse of system
components when
these components are
related to
requirements of
existing systems [45]

Multi-level security
monitoring of
workflows [19]

Dynamic reconfiguration of
workflows in the context
of changing business
processes as well as for
maintaining their
integrity [51]

Synchronisation of Enterprise
Architecture Models with
the runtime
environment [4,12,24]

Evolution
traceability

Tracking model history
and changes (either
at model element or
type level) [20]

Prediction of bugs based on
fine-grained module
histories [23]

An XML based approach to
support the evolution of
model-to-model
traceability links [28]

Event-Based Traceability for
Managing Evolutionary
Change [6]

Stakeholder action
traceability

Visualization of
traceability [26]

Data mining of version
histories in order to guide
programmers along
related changes [52]

Change-driven collaborative
security requirements
management [43] -
maintenance and
evaluation of security
requirements in multi-user
environments through
state-based workflows

Evolution Traceability. Cleland-Huang et al. [6] propose a new method of
event-based traceability for managing evolutionary change, which is applica-
ble even in a heterogeneous and globally distributed development environment.
Traceable artifacts are no longer tightly coupled but are linked through an event
service, which creates an environment in which change is handled more efficiently,
and artifacts and their related links are maintained in a restorable state. The
method also supports enhanced project management for the process of updating
and maintaining the system artifacts.

Stakeholder Action Traceability. Sillaber and Breu [43] elaborate on change-
driven collaborative security requirements management, maintenance and eval-
uation of security requirements in multi-user environments through state-based
workflows.



Traceability Types for Mastering Change 253

Summarizing, we can state that there are many existing approaches in
research that focus on design time traceability, as visible in Table 1. For the use of
deployment, evolution and stakeholder action traceability much less research has
been conducted. However, in each category recent research could be identified
[12,23,26].

6 Conclusion

In this paper we first presented novel categories of software quality management
services, i.e., knowledge engineering, analysis, and change-driven engineering,
and types of traceability, i.e., design-time, deployment, evolution, and stake-
holder action traceability, derived from the conceptual framework of Living Mod-
els for collaborative software quality management. These trace types empower
the software quality management services of Living Models. Through interrelat-
ing the traceability and quality management services we demonstrated not only
the bandwidth of software quality management services exploiting traceability
but also the need for further research in this area.

In our future work we will further develop our classification of trace types,
for example by identifying trace types for supporting IT management, systems
operation and software engineering. In addition, we will invest efforts in devel-
oping and integrating powerful interactive visual solutions, based on premises
from this paper, to support the exploration of trace links belonging to the newly
identified trace categories.

Acknowledgements. This work was partially funded by the research project QE
LaB - Living Models for Open Systems (www.qe-lab.at).

References

1. Binkley, D.: Source code analysis: a road map. In: Future of Software Engineering,
2007. FOSE 2007, pp. 104–119. IEEE (2007)

2. Breu,R., Agreiter, B., Farwick,M., Felderer, M., Hafner,M., Innerhofer-Oberperfler,
F.:Livingmodels - tenprinciples for change-driven software engineering. Int. J. Softw.
Informatics 5(1–2), 267–290 (2011)

3. Breu, R., Hafner, M., Innerhofer-Oberperfler, F., Wozak, F.: Model-driven security
engineering of service oriented systems. In: Kaschek, R., Kop, C., Steinberger, C.,
Fliedl, G. (eds.) UNISCON 2008. LNBIP, vol. 5, pp. 59–71. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78942-0 8

4. Buschle, M., Grunow, S., Matthes, F., Ekstedt, M., Hauder, M., Roth, S.: Automat-
ing enterprise architecture documentation using an enterprise service bus. In: 18th
Americas Conference on Information Systems, AMCIS 2012 (2012)

5. Capgemini: World quality report 2011/12 (2011)
6. Cleland-Huang, J., Chang, C.K., Christensen, M.: Event-based traceability for

managing evolutionary change. IEEE Trans. Softw. Eng. 29(9), 796–810 (2003)
7. Conklin, J., Begeman, M.L.: gIBIS: a hypertext tool for exploratory policy discus-

sion. ACM Trans. Inf. Syst. (TOIS) 6(4), 303–331 (1988)

www.qe-lab.at
http://dx.doi.org/10.1007/978-3-540-78942-0_8


254 B. Celebic et al.

8. Dömges, R., Pohl, K.: Adapting traceability environments to project-specific needs.
Commun. ACM 41(12), 54–62 (1998)

9. Egyed, A.: Instant consistency checking for the UML. In: Proceedings of the 28th
International Conference on Software Engineering, pp. 381–390. ACM (2006)

10. Egyed, A., Grünbacher, P.: Supporting software understanding with automated
requirements traceability. Int. J. Softw. Eng. Knowl. Eng. 15(05), 783–810 (2005)

11. Farwick, M., Schweda, C., Breu, R., Voges, K., Hanschke, I.: On enterprise archi-
tecture change events. In: Aier, S., Ekstedt, M., Matthes, F., Proper, E., Sanz, J.L.
(eds.) TEAR and PRET 2012. LNBIP, vol. 131, pp. 129–145. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-34163-2 8

12. Farwick, M., Agreiter, B., Breu, R., Ryll, S., Voges, K., Hanschke, I.: Automation
processes for enterprise architecture management. In: 2011 15th IEEE International
Enterprise Distributed Object Computing Conference Workshops (EDOCW),
pp. 340–349. IEEE (2011)

13. Farwick, M., Pasquazzo, W., Breu, R., Schweda, C.M., Voges, K., Hanschke, I.: A
meta-model for automated enterprise architecture model maintenance. In: EDOC,
pp. 1–10 (2012)

14. Felderer, M., Chimiak-Opoka, J., Zech, P., Haisjackl, C., Fiedler, F., Breu, R.:
Model validation in a tool-based methodology for system testing of service-oriented
systems. Int. J. Adv. Softw. 4(1 and 2), 129–143 (2011)

15. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic
risk assessment for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J.
(eds.) SWQD 2012. LNBIP, vol. 94, pp. 159–180. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-27213-4 11

16. Felderer, M., Agreiter, B., Breu, R.: Evolution of security requirements tests for
service–centric systems. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS
2011. LNCS, vol. 6542, pp. 181–194. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19125-1 14

17. Felderer, M., Zech, P., Fiedler, F., Breu, R.: A tool-based methodology for system
testing of service-oriented systems. In: 2010 Second International Conference on
Advances in System Testing and Validation Lifecycle (VALID), pp. 108–113. IEEE
(2010)

18. Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven engi-
neering. In: 11th IEEE International Enterprise Distributed Object Computing
Conference, 2007. EDOC 2007, p. 313. IEEE (2007)

19. Gander, M., Katt, B., Felderer, M., Breu, R.: Towards a model- and learning-
based framework for security anomaly detection. In: Beckert, B., Damiani, F.,
Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 150–168.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-35887-6 8

20. Goknil, A., Kurtev, I., van den Berg, K., Veldhuis, J.W.: Semantics of trace rela-
tions in requirements models for consistency checking and inferencing. Softw. Syst.
Model. 10(1), 31–54 (2011)

21. Gotel, O., Finkelstein, C.: An analysis of the requirements traceability problem. In:
Proceedings of the First International Conference on Requirements Engineering,
1994, pp. 94–101. IEEE (1994)

22. Gotel, O., Finkelstein, A.: Contribution structures [requirements artifacts]. In: Pro-
ceedings of the Second IEEE International Symposium on Requirements Engineer-
ing, 1995, pp. 100–107. IEEE (1995)

23. Hata, H., Mizuno, O., Kikuno, T.: Bug prediction based on fine-grained module
histories. In: 2012 34th International Conference on Software Engineering (ICSE),
pp. 200–210. IEEE (2012)

http://dx.doi.org/10.1007/978-3-642-34163-2_8
http://dx.doi.org/10.1007/978-3-642-27213-4_11
http://dx.doi.org/10.1007/978-3-642-19125-1_14
http://dx.doi.org/10.1007/978-3-642-19125-1_14
http://dx.doi.org/10.1007/978-3-642-35887-6_8


Traceability Types for Mastering Change 255

24. Holm, H., Buschle, M., Lagerström, R., Ekstedt, M.: Automatic data collection for
enterprise architecture models. Softw. Syst. Model. 13, 825–841 (2012)

25. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice: Using Software
Metrics to Characterize, Evaluate, and Improve the Design of Object-oriented Sys-
tems. Springer, Heidelberg (2006). doi:10.1007/3-540-39538-5

26. Li, Y., Maalej, W.: Which traceability visualization is suitable in this context? A
comparative study. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS, vol.
7195, pp. 194–210. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28714-5 17

27. Lucas, F., Molina, F., Toval, A.: A systematic review of UML model consistency
management. Inf. Softw. Technol. 51(12), 1631–1645 (2009)

28. Maletic, J.I., Collard, M.L., Simoes, B.: An XML based approach to support the
evolution of model-to-model traceability links. In: Automated Software Engineer-
ing: Proceedings of the 3rd International Workshop on Traceability in Emerging
Forms of Software Engineering, vol. 8, pp. 67–72 (2005)

29. Marcus, A., Xie, X., Poshyvanyk, D.: When and how to visualize traceability links?
In: Proceedings of the 3rd International Workshop on Traceability in Emerging
Forms of Software Engineering, pp. 56–61. ACM (2005)

30. Margaria, T., Steffen, B.: Service engineering: linking business and it. Computer
39(10), 45–55 (2006)

31. Margaria, T., Steffen, B.: Business process modelling in the jABC: the one-thing-
approach. In: Handbook of Research on Business Process Modeling, pp. 1–26 (2009)

32. Margaria, T., Steffen, B.: Continuous model-driven engineering. Computer 42(10),
106–109 (2009)

33. Maté, A., Trujillo, J.: A trace metamodel proposal based on the model driven
architecture framework for the traceability of user requirements in data warehouses.
In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 123–137.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21640-4 11

34. Mohan, K., Ramesh, B.: Managing variability with traceability in product and ser-
vice families. In: Proceedings of the 35th Annual Hawaii International Conference
on System Sciences, 2002. HICSS, pp. 1309–1317. IEEE (2002)

35. Neubauer, J., Windmüller, S., Steffen, B.: Risk-based testing via active continuous
quality control. Int. J. Softw. Tools Technol. Transf. 16(5), 569–591 (2014)

36. Olsen, G.K., Oldevik, J.: Scenarios of traceability in model to text transformations.
In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA 2007. LNCS, vol.
4530, pp. 144–156. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72901-3 11

37. Paige, R.F., Olsen, G.K., Kolovos, D.S., Zschaler, S., Power, C.: Building model-
driven engineering traceability classifications (2008)

38. Ramesh, B., Powers, T., Stubbs, C., Edwards, M.: Implementing requirements
traceability: a case study. In: Proceedings of the Second IEEE International Sym-
posium on Requirements Engineering, pp. 89–95. IEEE (1995)

39. Ramesh, B.: Representing and reasoning with traceability in model life cycle man-
agement. Ann. Oper. Res. 75, 123–145 (1997)

40. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE Trans. Softw. Eng. 27(1), 58–93 (2001)

41. Ramesh, B., Tiwana, A.: Supporting collaborative process knowledge management
in new product development teams. Dec. Support Syst. 27(1), 213–235 (1999)

42. Seo, K.I., Choi, E.M.: Rigorous vertical software system testing in ide. In: 5th
ACIS International Conference on Software Engineering Research, Management &
Applications, 2007. SERA 2007, pp. 847–854. IEEE (2007)

http://dx.doi.org/10.1007/3-540-39538-5
http://dx.doi.org/10.1007/978-3-642-28714-5_17
http://dx.doi.org/10.1007/978-3-642-21640-4_11
http://dx.doi.org/10.1007/978-3-540-72901-3_11


256 B. Celebic et al.

43. Sillaber, C., Breu, R.: Managing legal compliance through security requirements
across service provider chains: a case study on the german federal data protection
act. In: GI-Jahrestagung, pp. 1306–1317 (2012)

44. Sneed, H.M.: Testing web services in the cloud. In: Winkler, D., Biffl, S., Bergsmann,
J. (eds.) SWQD2013.LNBIP,vol. 133, pp. 70–88. Springer,Heidelberg (2013). doi:10.
1007/978-3-642-35702-2 6

45. Spanoudakis, G., Zisman, A.: Software traceability a roadmap. Handb. Softw. Eng.
Knowl. Eng. 3, 395–428 (2005)

46. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for risk-based test
case generation and prioritization. In: Proceedings of the 3rd International Work-
shop on Automation of Software Test, pp. 67–70. ACM (2008)

47. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven devel-
opment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol.
4383, pp. 92–108. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70889-6 7

48. Strasunskas, D., Hakkarainen, S.E.: Domain model-driven software engineering:
a method for discovery of dependency links. Inf. Softw. Technol. 54, 1239–1249
(2012)

49. Von Knethen, A., Paech, B.: A survey on tracing approaches in practice and
research. Frauenhofer Institut Experimentelles Software Engineering, IESE-Report
No 95 (2002)

50. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and
model-driven development. Softw. Syst. Model. (SoSyM) 9(4), 529–565 (2010)

51. Xu, P., Ramesh, B.: Supporting workflow management systems with traceability.
In: Proceedings of the 35th Annual Hawaii International Conference on System
Sciences, pp. 1519–1528. IEEE (2002)

52. Zimmermann, T., Weibgerber, P., Diehl, S., Zeller, A.: Mining version histories
to guide software changes. In: Proceedings of 26th International Conference on
Software Engineering, 2004. ICSE 2004, pp. 563–572. IEEE (2004)

http://dx.doi.org/10.1007/978-3-642-35702-2_6
http://dx.doi.org/10.1007/978-3-642-35702-2_6
http://dx.doi.org/10.1007/978-3-540-70889-6_7

	Traceability Types for Mastering Change in Collaborative Software Quality Management
	1 Introduction
	2 State-of-the-Art
	3 Collaborative Software Quality Management
	3.1 The Living Models Framework
	3.2 Collaborative Quality Management Services

	4 Traceability Categories
	5 Traceability Supporting Collaborative Software Quality Management Services
	5.1 Traceability Support for Knowledge Engineering Services
	5.2 Traceability Support for Analysis Services
	5.3 Traceability Support for Change-Driven Engineering Services

	6 Conclusion
	References


