
0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Recurrent Convolutional Shape Regression
Wei Wang, Member, IEEE, Sergey Tulyakov, Member, IEEE, and Nicu Sebe, Senior Member, IEEE

Abstract—The mainstream direction in face alignment is now dominated by cascaded regression methods. These methods start from
an image with an initial shape and build a set of shape increments based on features with respect to the current estimated shape.
These shape increments move the initial shape to the desired location. Despite the advantages of the cascaded methods, they all
share two major limitations: (i) shape increments are learned independently from each other in a cascaded manner, (ii) the use of
standard generic computer vision features such SIFT, HOG, does not allow these methods to learn problem-specific features. In this
work, we propose a novel Recurrent Convolutional Shape Regression (RCSR) method that overcomes these limitations. We formulate
the standard cascaded alignment problem as a recurrent process and learn all shape increments jointly, by using a recurrent neural
network with a gated recurrent unit. Importantly, by combining a convolutional neural network with a recurrent one we avoid hand-
crafted features, widely adopted in the literature and thus we allow the model to learn task-specific features. Besides, we employ the
convolutional gated recurrent unit which takes as input the feature tensors instead of flattened feature vectors. Therefore, the spatial
structure of the features can be better preserved in the memory of the recurrent neural network. Moreover, both the convolutional and
the recurrent neural networks are learned jointly. Experimental evaluation shows that the proposed method has better performance than
the state-of-the-art methods, and further supports the importance of learning a single end-to-end model for face alignment.

Index Terms—Recurrent Neural Network, Gated Recurrent Unit, Shape Regression, Facial Landmarks

F

1 INTRODUCTION

F ACE alignment methods trace their lineage from Active
Shape Models (ASM) [1] and Active Appearance Models

(AAM) [2], developed a couple of decades ago. These works first
build a statistical shape and appearance model of the face, and
during testing use numerical optimization techniques to find a set
of parameters of the statistical model that could have generated the
query face. Today’s mainstream face alignment methods belong to
Cascaded Regression Method (CRM) group [3] [4] [5] [6]. These
methods operate in a cascaded fashion, i.e. starting from an initial
shape (e.g., mean shape) and producing several shape increments
that move the initial shape closer to the desired location with the
help of a sequence of regressors which are trained independently.
As shown in Fig. 1, shape increments are learned in a supervised
manner during training stage. Formally CRMs operate in the
following fashion:

∆St+1 = Rt(Ft(I, Ŝt)), (1)

Ŝt+1 = Ŝt + ∆St+1, (2)

where I denotes a 2D image, Ft(I, Ŝt) represents the features
extracted using the previous shape estimate Ŝt, ∆St+1 is a shape
increment produced by the t-th regressor Rt in the cascade. To
initialize the pipeline, the average face shape over all images in
the training set S̄ is taken. The feature extraction function Ft(·, ·)
and a set of regressors Rt(·) constitute the main ingredients of the
CRM framework. The final output of the CRM writes as:

Ŝ(T ) = S̄ +
T∑

t=1

∆St, (3)

• Wei Wang, and Nicu Sebe are with the Department of Information Engi-
neering and Computer Science (DISI), University of Trento, Trento 38123,
Italy. E-mail: wei.wang@unitn.it, sebe@disi.unitn.it.

• Sergey Tulyakov is with Snap Research, US. Email: stulyakov@snap.com.

Manuscript received June 12, 2017; revised June 12, 2017 and October
2,2017; accepted February 9, 2018.

Fig. 1: The Cascaded Regression Methods (CRMs) train the
regressors independently. We convert CRM into an end-to-end
recurrent process, and the shape regressors are learned jointly.
The regressor at each step is generated dynamically based on the
new input features and the memory of the recurrent regressor.

where T is the total number of layers in the cascade. In order to
frame the task as a cascaded regression problem, one has to decide
upon the feature extraction function Ft(·, ·), as well as to select
a proper regression function Rt(·). Various features have been
explored (e.g., HOG [6], SIFT [3] [4], pixel differences [7], [8],
[9], local binary features [10]), and different regression functions
have been tried (e.g., linear regression [3], random ferns [11],
regression trees [7], [8], [9]). This brings to light two major
limitations of the CRM that we are going to fix in this work:
(i) manually designed features and (ii) relative independence of
the regressors at the different layers in the cascade.

Hand-crafted computer vision features, such as HOG features
for pedestrian detection [12] and SIFT features for object recog-
nition [13], have played an important role in many application
domains for a long time since they offer illumination, rotation and
scaling invariance. These features, however, represent a generic
image transformation that lacks any domain specific knowledge.
Many works have tackled this problem by selecting the best
features out of an overcomplete set [7], [8], [9], [10]. However,
this feature selection is suboptimal, since it is still performed on a



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

generic set. Recently, it has been shown for object detection [14],
tracking [15], image labeling [16] and other fields that features
learned for a specific problem using deep convolutional neural net-
works (CNNs) show much better performance. Moreover, features
learned for image classification often generalize well for different
tasks, showing the ability of CNNs (e.g., AlexNet [14]), to learn a
generic image representation.

The second limitation of the CRM is the independence of
the regressors at each layer of the cascade. One can argue the
regressor at time t is learned by using the output of the previous
regressor at time t−1, with the final prediction given by Eq. 3.
This however, affects only the feature computation (see Eq. 1),
while the regressors themselves are learned independently. It has
been shown in [3] that a single regressor is not capable of arriving
at the desired location in a single step. As shown in Eq. 3, the
final prediction of the cascade Ŝ(T ) is a function of the number
of layers in the cascade T . One can think of Ŝ(T ) as a sequence
of measurements of some stochastic process. It has been recently
shown that Recurrent Neural Networks (RNNs) are extremely
powerful in modeling the sequential inputs and outputs [17].
Given the advantage of dealing with image sequences, RNN has
also been applied for face alignment in videos. For example, a
recurrent encoder-decoder network has been proposed in [18] for
video-based face alignment. In order to model long time-varying
sequences, various RNN units have been proposed. In particular,
Long-Short Term Memory (LSTM) cells and later Gated Recur-
rent Units (GRU) have been proved to be efficient in modeling
time-varying processes and sequence-to-sequence learning [19]. In
this paper, we employ the convolutional GRU as our recurrent unit
since it has a simpler and lighter structure than LSTM while has
better performance. Besides, different from the traditional GRU
employed in [20], convolutional GRU replaces all the product
operations with convolutional layers. Therefore, the input of the
convolutional GRU are feature tensors instead of flattened feature
vectors. Thus, the spatial structure of the input can be better
preserved in the memory of the unit, and better performance
can be obtained compared with [20]. Recently, vanilla recurrent
unit has also been applied for face alignment [21]. However,
the vanilla RNN suffers the the vanishing/exploding gradient
problem. Therefore, the vanilla RNN can only be trained with
limited recurrences while our convolutional GRU unit has no such
restriction and can be trained with more recurrences. Moreover,
it has been shown that using a CNN for feature extraction and
an RNN for classification bring extra advantages [22], [23]. This
discussion naturally brings us to the main contribution of this
work. We present a unified face alignment framework that features
end-to-end learning starting from raw pixel values. Our framework
consists of two modules, which are the recurrent module and the
convolutional module.

The benefit of using RNN: As shown in Fig. 1, the CRMs
learn the sequential regressors {R1(·),R2(·), ...} independently.
Once the regressors are obtained, they will be fixed rigidly. On
the contrary, instead of learning a sequence of fixed regressors,
our RCSR framework learns a model to generate the regressors
dynamically. In other words, our framework can generate spe-
cific regressors {Ri

1(·),Ri
2(·), ...} adaptively with respect to the

specific input image i and the memory of the recurrent module.
Besides, the traditional CRMs have the pre-mature problem, i.e.,
in the testing phase, the predicted shape might have already been
accurate after the first several regressions, and the following redun-
dant regressors may harm the accuracy. However, the predicted

landmarks have to go through all the regressors learned in the
training phase. Different from [20], we propose a new stopping
criterion based on the shape increment. Thus, our model is able
to automatically decide when to terminate the recurrence and it is
also capable of generalizing beyond the fixed number of recurrent
steps in the testing phase.

The benefit of end-to-end learning: Most traditional regres-
sion methods use hand-crafted features directly, such as HOG and
SIFT [3], [5], and few of them try to learn the discriminative
features jointly with the regressor [10]. Instead of splitting the
feature and the regressor learning processes, we design an end-
to-end unified framework by replacing the manually hand-crafted
feature descriptor Ft(·, ·) by learning a patch-based CNN and
plug it into the RNN module. One advantage of using CNN is
that it can learn task-specific features automatically. In addition,
it has been proved that the features extracted by CNN have the
state-of-the-art performance in various tasks. Usually, the CNN
model learned from one task can be transferred to other tasks by
fine tuning the model with the new domain data. In this paper,
we take the super resolution CNN (SRCNN) and plug it into our
framework. The reason why we use SRCNN is because of its light
structure (it contains only 3 convolutional layers) and its good
performance in dealing with image patches. Thus, we can obtain
an end-to-end learning framework. The parameters of both the
CNN module and the RNN module are learned jointly. Thus, the
end-to-end learning strategy can encourage the system to learn
the task specific features which are dedicated for face alignment.
The experimental evaluation we detailed in Section 4 proves that
learning a task-specific end-to-end model brings higher accuracy
than that of the available state-of-the-art.

2 RELATED WORK

In this section we review the works in face alignment as well as the
recent advances in the convolutional and recurrent neural networks
which are the main bricks to formulate our recurrent convolutional
shape regression (RCSR) framework.

2.1 Face alignment
Face alignment and registration are very important for face analy-
sis, such as face aging [24], [25] and smile video generation [26].
According to the widely accepted classification, face alignment
methods can be grouped into three broad categories [27]: Active
Appearance Models (AAMs), Constrained Local Models (CLMs)
[28], and Cascaded Regression Methods (CRMs). Initial works
on face alignment such as ASMs [1] and AAMs [2], build a
parametric statistical shape and appearance models from a set of
training faces. These methods show reasonable accuracy when the
testing image is close to the training distribution. However, they
fail to generalize to any unseen subject. Although such methods
still attract the attention of researchers, the more recent CRMs
have shown higher accuracy at impressive frame rates [9], [10]. In
the following, we focus on this latter group of works.

Initially CRMs were introduced in the medical image pro-
cessing community for anatomic structure prediction [29]. Since
then they have been extensively exploited by the computer vision
community with many seminal works proposed in the literature.
Currently this avenue of research represents the mainstream direc-
tion of the deformable shape fitting. In [11], a method for cascaded
pose regression was introduced. The authors used pose-indexed
features and learned a sequence of weak-regressors (random ferns



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Fig. 2: The overview of the proposed approach. Top: the RNN with gated recurrent units unrolled in time. Bottom: the CNN architecture
used for feature extraction. Note that feature extraction is performed at every recurrent step.

in their case) to regress a deformable shape from an image. In
order to compute pose-indexed features, one has to provide the
current belief regarding the shape. This naturally brings some
form of pose invariance to the framework. Later, these ideas were
extended to regress the whole face shape [30]. Importantly, it was
shown that regressing the whole shape imposes the result to lie in
the space constructed by all the training images. Recently, multiple
CRM-based 3D methods have been proposed [7], [8], [31].

The supervised descent method (SDM) [3] further extends the
cascaded framework to generic non-linear optimization problems:
face alignment, template tracking and camera calibration. SDM
learns a sequence of descent directions that are applied sequen-
tially to solve the optimization problem. The authors replace the
feature extraction method with SIFT [32] and achieve impressive
results by using linear regressors in the layers of the cascade. A
downside of SDM is its inability to generalize well to non-frontal
poses, requiring to train separate regressors depending on the
detected head pose. This constraint is relaxed in [6] by introducing
a global SDM to automatically learn several descent maps at
every layer of the cascade to handle complex cost-functions.
These ideas were extended in [4], where the authors learn both
the Jacobian and the Hessian matrices, in a manner inspired by
the Gauss-Newton optimization method. Similar to the original
SDM, the authors use hand-crafted SIFT features extracted around
the keypoints. A different strategy for feature extraction is used
in [7], [8], [9], [10]. Instead of employing manually hand-crafted
features, they perform feature selection using a framework of
regression trees. Alleviating the need to compute hand-crafted
features, these works reach impressive processing speed.

From a higher perspective, the aforementioned methods have
two independent steps: (i) feature extraction and (ii) applying a
sequence of regressors. Typically the first step is performed by
using some hand-crafted features such as SIFT [3], [4], HOG [6].
Some form of feature learning is employed in [7], [8], [9], [10],
while each cascade layer in the second step remains independent.
This requires a researcher to use a trial-and-fail approach in
selecting which features and which regressors work the best. In

contrast, the method presented in our study is end-to-end. By
learning convolutional filters, RCSR does not require manual
supervision in defining feature extraction functions. Additionally,
our method replaces a cascade of independent regressors by a
single recurrent model, where all recurrent regressors are leaned
jointly. This formulation merges the two steps of the typical CRM
pipeline into a single unified framework and they are trained
simultaneously. Different from our previous work [20], we apply a
convolutional GRU instead of the traditional GRU as the recurrent
unit. The convolutional GRU combines the strengths of both the
CNN and RNN. The input to the convolutional GRU are feature
tensors, instead of flattened feature vectors. Therefore, the spatial
information is preserved in the memory of recurrent unit. Besides,
we have also explored the appropriate depth of the convolutional
layers in the feature extractor. Moreover, a new stopping criterion
has been designed by analyzing the derivative of the shape incre-
ment. The framework could iterate beyond the fixed recurrence
steps in the training phase, and the extra recurrences can improve
the performance further. We also study the effect of the number of
recurrent iterations during training on the performance of the final
model. We then, evaluate different feature extraction models and
show how they affect the performance. Finally, we visualize the
learned CNN filters and feature maps.

2.2 Recurrent and convolutional neural networks
Recurrent Neural Networks (RNNs) have become increasingly
popular to learn complex dynamic systems, because of their
impressive capability to recurrently operate with sequential inputs.
During the last decade, we have seen a lot of successes in applying
RNNs to various application domains, such as machine translation
[17], face aging [24], [25] and speech recognition [33]. Usually,
the input and the output of the traditional convolutional neural
networks have a fixed size. For example, AlexNet [14] takes a
batch of images with the same size as the input, and its output is
a probability matrix whose entry denotes the class probability of
the input image. Most of the RNN architectures (e.g., LSTM [34],
GRU [19]) do not have such constraint. Their inputs and outputs



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

can either be sequences with different lengths or the fixed-size
vectors or matrices.

The most significant feature of RNN is its capability to capture
the dependencies. The underlying reason why RNN is capable
of processing sequential signals is attributed to its hidden state.
During each recurrence of the traditional RNN [35], an input
signal is mapped to the hidden state, which is passed forward
to the next recurrence. In this way, the information of the previous
states is memorized and persists during the whole process, and the
hidden state is always considered as the memory of the network.
The output of the network is calculated based on the new input
and the memory. Therefore, RNNs have been proved to have an
advantage in modeling sequences with long-term dependencies.
LSTM and GRU are better at capturing long-term dependencies
than the traditional vanilla RNNs as vanilla RNNs have the
vanishing/exploding gradient problem [36].

In the traditional deep neural networks, each layer has its
unique parameters. On the contrary, the recurrent module in a
RNN shares the same parameters across all the recurrent steps.
Thus, this setting reduces the amount of parameters that need to
be learned. Given the success of RNNs, a lot of RNN variants
have been explored, such as the LSTM [34], GRU [19], and
Clockwork RNN [37]. All these architectures consist of a chain
of repeated modules, where each module contains several gates,
controlling the information flow in the network and states, memo-
rizing the necessary information for future recurrences. Although
the combination of gates/states varies depending on the selected
architectures, each subsequent recurrence is performed in the same
way, by processing a new input using the information of the hidden
state. These architectures show varying performances for different
tasks. In [38] it was shown that, in general, GRU-based models
feature superior performance compared with other architectures.

Convolutional Neural Networks (CNNs) have recently demon-
strated notable success in multiple tasks, such as image classi-
fication [14] and image super-resolution [39]. One of the main
advantages of CNNs, is that they do not require human supervision
to design feature transformation. Their feature representations
have shown to provide significantly higher performance, compared
with the commonly adopted hard-crafted features, in numerous
application domains. Thus, it is very promising to combine the
RNN together with the CNN into a hybrid architecture. This
hybrid architecture has been successfully applied to many tasks,
such as scene labeling [22] and object recognition [23].

Our framework is different from these tasks [22], [23]. First,
the main recurrent module in our model is GRU which is free
of the vanishing/exploding gradient problem. Second, the input
for each recurrence is dynamic. The locations of the new input
patches are determined by the predicted shape from the previous
recurrence. In addition, the supervised descent method can be
formulated as a special case of GRU.

3 METHOD

The overview of the proposed Recurrent Convolutional Shape
Regression (RCSR) framework is given in Fig. 2. The framework
mainly consists of two parts, the recurrent module and the con-
volutional module. During the t-th recurrence in the RNN, the
current shape estimate ht is imposed onto the image and the CNN
is applied to the patches centered at the landmarks. The output
of the last layer of the CNN is passed to the RNN as an input.
During the first recurrence, the average shape of all the images in
the training set is employed as the initial shape estimate: ĥ0 = S̄.

3.1 Recurrent module
In the current study we use an RNN with a convolutional GRU
module for its simplicity and superior performance as compared
with other RNN types [38]. The convolutional GRU replaces all
the product operations in the original GRU with convolutional
layers. The convolutional GRU takes as input the feature tensors
and process these tensors with convolutional layers while the tradi-
tional GRU takes as input the flattened feature vectors. Therefore,
the convolutional GRU can preserve the spatial structure of the
features in the memory compared with the traditional GRU. The
structure of the recurrent module is given in Fig. 2. A GRU
contains two gates (i.e., the reset gate and the update gate) and one
state (i.e., the hidden state). The hidden state Ht is the memory of
the RNN and ht represents the overall shape increment after the
adjustment in the t-th recurrence. Then the predicted shape after t
recurrences is ĥt=ĥ0+ht.

As shown in Fig. 2, the reset gate rt controls whether the
memory of the features from the previous recurrence should be
ignored, i.e. if rt is close to 0, the information of the previous
landmark features will be forced to be discarded. Then the unit
will focus on its current features without referring to the previous
features. To sum up, the reset gate allows the unit to remember or
drop the landmark features from the previous operation.

The update gate zt has two functions. The first one is to control
what to forget from the previous memory which is implemented
by the term zt, and the second one is to control the acceptance of
the new input features which is implemented by the term 1 − zt.
As shown in Eq. 4, zt is the output of a sigmoid and takes
values from 0 to 1. If zt is close to 0, the memory from the
previous recurrence will be kept and the new input features will
be discarded. Thus, the new shape increment will be exactly the
same as the previous one. However, if zt is close to 1, 1− zt will
be close to 0, and the next shape increment will be mainly based
on the new input features without referring to the memory.

The described process is schematically presented in Fig. 2.
The feature extraction function ft=F(I, ĥt) is performed using
a super resolution convolutional neural network, described in
Section 3.2. Given ft, a single recurrence is governed by the
following equations:

zt = σ(WzH ∗Ht−1 + Wzf ∗ ft + bz) (4)

rt = σ(WrH ∗Ht−1 + Wrf ∗ ft + br) (5)

ct = tanh(WcH ∗ rt �Ht−1 + Wcf ∗ ft + bc) (6)

Ht = (1− zt)�Ht−1 + zt � ct (7)

where � represents element-wise multiplication, and ∗ represents
convolution operation. ct denotes the new feature candidate cre-
ated by the tanh layer that could be merged into the current
memory using Eq. (7). If the reset gate is always activated, the
system will only have the short-term memory. If the update gate
is always deactivated, the system can have the long-term memory
and the previous features will be memorized. After fusing the
current features with the memory of the previous features, an
updated memory Ht can be obtained. By feeding the memory
to a fully connected layer (fc in Fig. 2), we can calculate the shape
increment ht in t-th recurrence.

3.1.1 Progressive Recurrent Regression
Within this framework, the RNN acts as a refinement process
which tries to find the optimal shape increment by changing the
shape progressively. We use T recurrent steps to train the RCSR.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Fig. 3: The architectures of different regressors: (a) convolutional recurrent GRU Regressor (b) traditional recurrent GRU regressor (c)
the traditional linear regressor. The linear regressor is a degenerate version of the traditional GRU regressor.

As a progressive refinement process, we expect the system
to focus more on the latter recurrences. To achieve this target, we
define a series of weights w=[w1, w2, ..., wt, ..., wT ], each one of
which corresponds to a single recurrence. These weights increase
monotonically, therefore forcing the recurrent network to adjust
the shape progressively and penalizing the model more for the
error during the later recurrent steps. For simplicity, the weights
can be designed as wt = 10

t
T . Formally, the loss writes as:

J =
n∑

i=1

T∑
t=1

wt‖(ĥ0 + hi
t)− hi

∗‖2F , (8)

where ĥ0 is the initial shape estimate, i.e. the average shape, hi
t

is the predicted shape increment after t recurrent steps, hi
∗ is the

target shape, the superscript i defines the i-th image in the mini-
batch of n images. The final shape after t steps is obtained as
ĥ0 +hi

t. During training, for each face image Ii, the initial shape
ĥ0 is sampled several times by adding noise to the mean shape.

3.2 Convolutional module
We employ the super resolution convolutional neural network
(SRCNN) for feature extraction [39]. We apply the SRCNN to
the pixel values around the landmarks position as shown in Fig. 2.
We denote the patch around a landmark as Y, and use it as an
input for the SRCNN. The SRCNN consists of three convolution
layers, formulated as the following operations:

F1(Y) = max(0,W1 ∗Y + B1)

F2(Y) = max(0,W2 ∗ F1(Y) + B2)

F3(Y) = W3 ∗ F2(Y) + B3

(9)

where W1, W2, W3 and b1, b2, b3 represent the filters and
biases respectively. The Rectified Linear Unit (ReLU) is employed
as the activation function for the first two convolution layers. The
dimensions of W1 are set to c×f1×f1×n1 = [1×9×9×64],
where c is the number of channels of the input image, f1
is the filter size, and n1 is the number of filters which also
corresponds to the number of feature maps. W2 is of the size
n1 × 1 × 1 × n2 = [64 × 1 × 1 × 32] and W3 has the size of
n2×f3×f3×c = [32×5×5×1]. The first layer can be regarded
as PCA where each filter works as a basis and projects the input
Y to a high-dimension vector. The second layer has the filter size
of 1×1, and this layer can be understood as a non-linear mapping

operation which maps a n1 channel feature map to a n2 channel
feature map. Originally, the last layer in the SRCNN works as
an averaging filter which projects a n2 channel feature map to a
high-resolution patch and take the average of the overlapping high-
resolution patches. However, instead of projecting a n2 channel
feature map to a high-resolution patch, the last layer in our
network will project a n2 channel feature map to a feature space
which can be then passed to the recurrent module directly.

3.3 Supervised descent method as GRU
In this section we show that the traditional GRU [20] as shown
in Fig. 3 (b) is a generalization of the widely adopted Supervised
Descent Method [3] as shown in Fig. 3 (c). Given a set of images
[I1, I2, ...Ii, ..., In], hi denotes the shape of image Ii. F is a
feature extraction function, and F(hi) represent the extracted
features. Let yi

∗=F(hi
∗) be the ground-truth features extracted

at the manually labeled shape hi
∗. Then we have the following

objective function for face alignment with respect to image Ii,

min ‖F(hi)− yi
∗‖22. (10)

SDM applies the gradient descent rule to Eq. 10, and yields the
following discrete update equation:

hi
t = hi

t−1 −Rt−1(F(hi
t−1)− yi

∗)

= hi
t−1 −Rt−1F(hi

t−1) + Rt−1y
i
∗,

(11)

where Rt−1=αF′(xi
t−1), and Rt−1 is regarded as a regressor.

Thus, instead of calculating the derivatives, the SDM learns a
descend direction from the available training data.

However, Eq. 11 has an inconsistency problem, i.e. yi
∗ is

only available in the training phase and it is unknown in the
testing phase. Therefore, Eq. 11 could not be used to calculate the
position of the landmarks. To solve this inconsistency problem, yi

∗
is replaced by y∗ = (

∑
i y

i
∗)/n. By defining bt−1 = Rt−1y∗

we obtain the new update equation:

hi
t = hi

t−1 −Rt−1F(hi
t−1) + bt−1, (12)

which solves the inconsistency problem. During the training
phase, hi

t is set to hi
∗ as our goal is to make hi

t equal to the
target hi

∗. The loss is defined as:∑
i

‖hi
∗ − hi

t−1 + Rt−1F(hi
t−1)− bt−1‖2 (13)



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

where hi
0 is obtained using Monte Carlo integration. Thus, Eq. 13

can be considered as a special case of Eq. 8, making the SDM a
special case of our GRU network.

Actually, the traditional linear regressor is equivalent to tradi-
tional GRU if the update gate and reset gate are removed. Finally,
if we replace the tanh layer with the regressor R, we obtain the
formula for the shape increment ht for the image Ii, as follows:

hi
t = hi

t−1 −Rt−1F(hi
t−1) (14)

Eq. 14 is a recurrent version of Eq. 12 except for the term bt−1
which can be implemented by expanding the feature space by
several columns set to 1.

After replacing the product operations in the traditional GRU
with convolutional layers, we obtain the convolutional GRU shown
in Fig. 3 (a). The inputs of the convolutional GRU are feature
tensors while the inputs of the traditional GRU are the flattened
feature vectors. Therefore, the spatial structure of the features can
be well preserved in the memory of the convolutional GRU, while
the traditional GRU totally discards it. The traditional regressors
at different time steps (R1, R2, ... ) are trained independently,
relying only on the input features while totally lacking the memory
regarding previous states, as it is shown in Eq. 13, every step has
a separate loss function. In contrast, for our model the overall
loss over all the recurrent steps is defined and the regressors are
learned jointly by summing up the losses from all the steps (Eq. 8).
Another way of thinking about our recurrent module, is to treat
it not as a regressor, but rather as a way of generating unique
regressors at every recurrent step with respect to the memory and
the input features.

4 EXPERIMENTS

Datasets: In this section, we first evaluate the performance of our
algorithm using the 300-W dataset [40] with 68 landmark setting.
We also evaluate our RCSR framework on the HELEN [41] and
the LFPW [42] datasets with 49 landmark setting.

300-W dataset [40]: This dataset is a combination of several in-
the-wild datasets, including AFW [43], LFPW [42], HELEN [41]
and XM2VTS [44], that are annotated with 68-point marks in a
consistent manner. Similar to previous works [5] [10], for training
the model we use the training samples from LFPW, HELEN
and the whole AFW dataset, which makes 3148 images in total.
Testing is performed on three different sets of images: (i) the
common set which includes the testing images from the LPFW and
HELEN, (ii) the challenging set which includes recently released
135 images also known as the IBUG set, and (iii) the full set which
is a combination of the first two.

HELEN [41]: This dataset contains 2,330 high resolution face
images which are downloaded from Flickr. 2,000 images are used
for training and 330 images are used for testing. We conduct
detection for both 68 and 49 landmark settings provided by [40].

LFPW [42]: The Labeled Face Parts in the Wild (LFPW)
dataset originally contains 1000 training images and 300 test
images. As only URLs are provided and some of them are invalid,
only 811 training and 244 test images are available in [40].
We perform both 68 and 49 landmark detection on this dataset.
These images are collected from internet search sites, and they
are unconstrained: The images have different resolutions, various
illumination conditions, and various facial expressions and poses.
Some images have occlusions (e.g. eyes being occluded by glasses

and hairs, face parts being occluded by hand or cellphone). Some
images have artistic rendering effects.
Evaluation Metrics: To evaluate the performance, we follow
the widely adopted evaluation metric [5], [7], [8], [10], which
is the average error of the point-to-point Euclidean distance,
normalized by the distance between the outer corners of the eyes.
This metric has been adopted for the 300-W challenge.

4.1 Implementation

To augment the size of the training data, we duplicate the images
by adding the mirrored examples, and we also replicate the
training data 3 times by adding noise to the bounding boxes. In the
training phase, the batch size is set to 204 images. The learning
rate is set to 0.01. The decay rate is set to 0.5, and the learning
rate will be decayed after every 10 epochs and the training process
is terminated after 200 epochs. After we obtain the model, we
generate another three replicates in the same manner and fine tune
the network with the new replicates for another 200 epochs. We
also rely on these replicates to design our stopping criterion.

4.2 Deep CNN module for feature extraction

This module extracts features for all the image patches. It is
suggested in [45] that CNN could benefit from deeper structures
by adding more non-linear layers. Here we also explored deeper
CNN modules. In [39], Dong et al. tried a 3-layer architecture for
super resolution, but they did not observe superior performance
even after weeks of training. Kin et al. in [46] proposed a much
deeper CNN model (i.e., 20 layers) than the one in [39] (i.e., 3
layers), and conclude that the deeper CNN model is beneficial for
super resolution task.

Fig. 5: Comparison between different combinations of the depth
of the augmented CNN layers and fully connected layers: running
time vs. error for the 300W dataset.

To see if the deeper CNN model is beneficial for our task,
we exploit architectures detailed in [39], [46]. First, the SRCNN
framework from [39] is adopted as our basic CNN module.
SRCNN has three convolutional layers W1, W2 and W3. The
dimensions of W1 are set to c×f1×f1×n1 = [1×9×9×64],
where c is the number of channels of the input image, f1 is
the filter size, and n1 is the number of filters. W2 is of the
size [64×1×1×32] and W3 has the size of [32×5×5×1]. It
is suggested in [39] that larger filter size is better as it could
grasp richer structural information. Following [39], we fixed the
bottom and top layers (W1,W3) as they have large filter sizes. In



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 4: Landmark localization for 5 recurrent steps. On the left, we show some examples, for which 5 recurrences are sufficient, while
the examples on the right require additional recurrences.

front of the middle layer W2, we added compound convolutional
layers [W2,1, ..,W2,i, ...,W2,n] proposed in [46] with the depth
of n. The dimension of W2,i, (i=1, 2, ..., n) is [64×3×3×64].
We have tested with different depths n=0, 5, 10, 15, 20. After
obtaining the feature maps from the CNN module for each image
patch, we stack the feature maps of the 68 landmarks and feed the
feature tensor to the RNN module. For the RNN module, we set
the total number of recurrent steps T to be 5. We have also tested
a different number of fully connected layers on top of the RNN
module. The number of fully connected layer is set in the range of
[1, 2, 3].

Fig. 5 shows the performance and running time of different
combinations of CNN module and fully connected layers. From
Fig. 5, we can observe that the smallest error is obtained when the
depth is set to 10 with one fully connected layer (i.e. depth-10-fc-
1). Compared with the case where the depth is set to 0 with one
fully connected layer (i.e., depth-0-fc-1), the error stays almost the
same, however, the computation time increases dramatically from
0.44 to 5.22 seconds. Therefore, depth-0-fc-1 should be a good
choice as it has a good trade-off between accuracy and speed.
In addition, we also observe that adding more CNN layers and
fully connected layers does not always bring better performance.
Similar behavior was reported in [39].

4.3 Understanding when to stop iterating

One of the further advantages of our RCSR is that the model
can be easily extended beyond the learned number of recurrent
steps without the need of retraining the whole pipeline. More
importantly, there is no upper bound on the number of recurrent
steps one can perform. This, however, requires a stopping strategy
which knows when to stop for a testing image. Fig. 4 shows
several qualitative examples of different number of recurrent steps
required for different testing examples. The examples on the left
show that 5 steps are sufficient to localize the landmarks, as one
can easily see that the landmarks on the jawline in the first row fit
perfectly after the fifth recurrence. A similar observation can be
made for the subject shown in the second row. The examples on the
right show cases when 5 recurrences are insufficient, due to dif-
ficult illumination conditions and extreme head poses. Therefore,
for the images shown on the left of Fig. 4, the iteration should be
stopped as the predicted landmarks have already converged while

the images shown on the right of Fig. 4 require more iterations.
To explore the appropriate number of iterations, we have studied
the relation between the error and the number of iterations. The
results are plotted in the first row of Fig. 6.

Fig. 6 shows the convergence curve of the algorithm. The first
row shows the average error against the recurrent steps. We can
observe that for challenging cases the error continues to decrease
when the recurrence number is greater than 13, while for the
easy ones it remains stable between 5-th and 9-th recurrences and
then goes up. This observation demonstrates that for easy images
from the common set, the redundant recurrences actually harm
the performance, while the hard cases from the challenging set
benefit from more recurrences (Fig. 6, top middle). For the full set,
the average error curve is similar to the common set (Fig. 6, top
right). Therefore, the model should require less recurrences for an
image with frontal face which has no expressions, while difficult
examples which have extreme poses or challenging expressions
may need more recurrences. We can observe that more iterations
do not always bring better performance. This is especially true for
the easy cases with frontal poses and good lighting conditions.
During the testing phase, the regressor behaves normally and the
error decreases if the number of iterations is the same as during
the training phase. However, if the number of iterations is larger,
the behavior of the regressor can be unpredictable as it goes far
beyond the learned number of iterations.

During training we set the number of recurrent iterations to 5.
As shown in Fig. 4, this is sufficient to regress the shape from an
initial coarse shape to a shape which is closer to the ground truth,
but the regressor has limited ability to further fine-grain the shape
to make it more accurate. The regressor does not know what to
do when the predicted shape becomes closer to the ground truth.
Therefore, the error raises with more recurrences. One solution to
this problem is to design a stopping criterion for the recurrence.
Another solution to prevent the error from raising is to train
the regressor with more recurrences. With more recurrences, the
regressor will have the chance to be closer to the ground truth
and as such will be able to learn what to do when the predicted
shape is closer to the ground truth. The experiments of training
the regressor with more recurrences are available in Section 4.4.

In many works (e.g., [33], [47]) the early stopping criteria are
heuristic and they are learned from the data. In other words, the



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Fig. 6: Average error & normalized shape increment vs the number of recurrent steps.

stopping criterion is a data-driven approach. How to design a stop-
ping criterion with a sound theory is still an open problem. Similar
to [33], [47], we also rely on a heuristic method to design the
stopping criterion. Even though there is no theoretical guarantee
to be perfect, in practice, it is a satisfactory solution. From Fig. 4,
we can observe that when the predicted shape ht is far away from
the ground truth, the predicted shape increment ht−ht−1 will
be very large in the next recurrence. When the predicted shape
is close to the ground truth, the shape increment will be very
small and will oscillate around the ground truth. In this paper,
we rely on the shape increment to design the stopping criterion.
The second row in Fig. 6 shows the normalized shape increment
against recurrent steps. After t-th recurrence, we can obtain the
updated shape ht. The shape increment from the (t−1)-th to the
t-th recurrence is defined as ∆ht=ht−ht−1. We normalize the
shape increment by dividing the l2 norm of the shape increment
with the distance between the outer corners of the eyes. In the first
row in Fig. 6, we can observe that when the average error reaches
its minimum, the normalized shape increment in the second row
also becomes stable and remains as a small value. Therefore, if the
normalized shape increment is smaller than a certain threshold and
close to 0, we can say that the prediction difference is stable. Then
we stop iterating. To set the threshold value, one simple option
is to take the normalized shape increment when the minimum
error is achieved. We observe that for the common, challenging
and full test set, the value of the normalized shape increment
is around 0.01 when the minimum error is reached. Therefore,
we set the threshold γ to 0.01. In case the normalized shape
increment is always greater than the threshold, we also set the
maximum recurrence number. The maximum recurrence number
is set to 13. This simple stopping strategy allows our model to
automatically decide when to terminate the recurrence. Table 1
shows the performance of the proposed method and the baselines
on the 300W dataset. We can observe that this simple stopping
criterion can decrease the error by 3.10% from 4.10 to 4.01 on the
common subset, by 2.39% from 8.79 to 8.58 on the challenging
subset, and by 2.40% from 5.02 to 4.90 on the full subset.

4.4 Training with more recurrent iterations
Alternatively to designing a stopping criterion we train the RNN
with varying number of recurrent iterations. We explored different
recurrent steps n which are [5, 10, 20, 30]. The weight for the
loss of i-th recurrence is set to 10wi . wi is obtained by evenly
sampling n values between -2 and 2. The weights of the loss
in each recurrence are set following Section 3.1.1. The whole
framework focuses more on the rear recurrences as the weights
increase monotonically. We test different recurrent steps on the
complete 300-W dataset [40].

Fig. 7: Performance of RCSR trained with different recurrent steps
(i.e., 5, 10, 20, 30) on the full test set of the 300-W dataset.

Fig. 7 shows the results of the 4 models which are trained
with 5, 10, 20, and 30 recurrent steps. For convenience, we
name the 4 models as RCSR5, RCSR10, RCSR20 and RCSR30.
We note that the models which are trained with more recurrent
steps converge slower than those trained with less recurrent steps.
However, the models which are trained with more recurrent steps
are more stable. As shown in Fig. 7, the RCSR5 reaches its
best performance around 9 steps and more recurrences harm its
performance. On the other hand, RCSR10, RCSR20 and RCSR30
reach their best performance after more than 17 steps and then



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

their performances remain stable, and more recurrences do not
harm their performances. We can also observe that RCSR20
has slightly better performance than RCSR30, and has marginal
improvement compared with RCSR10. Therefore, more recurrent
steps improve the performance and give a more stable behavior,
but the performance gain is limited and is not monotonic with
respect to the number of iterations. More importantly, the perfor-
mance of the regressor trained with 10, 20 and 30 iterations are
more stable, compared to 5 recurrent iterations.

4.5 Experimental results

We report evaluation results on the three subsets of the 300-
W dataset in Table 1. It compares three different results of
the same RCSR model against best performing state-of-the-art
methods. The reported RCSR results are obtained using 5, 10
recurrent steps and the proposed stopping strategy. We would like
to highlight, that due to the end-to-end structure, our model shows
better performance than the up-to-date face alignment methods
regardless of the number of recurrences for the common set and
the full set. Notably, when the proposed stopping strategy is used,
the proposed method outperforms other works by a large margin
for all three testing sets.

TABLE 1: Landmark localization results on the 300-W dataset.

Method Common Challenging Full

Zhu et al. [43] 8.22 18.33 10.20
DFMF [48] 6.65 19.79 9.22
ESR [49] 5.28 17.00 7.58
RCPR [50] 6.18 17.26 8.35
SDM [3] 5.57 15.40 7.50
Smith et al. [51] - 13.30 -
Zhao et al. [52] - - 6.31
GN-DPM [53] 5.78 - -
CFAN [54] 5.50 - -
ERT [9] - - 6.40
LBF [10] 4.95 11.98 6.32
LBF fast [10] 5.38 15.50 7.37
CFSS [5] 4.73 9.98 5.76
CFSS Practical [5] 4.79 10.92 5.99
RCFA [20] 4.03 9.85 5.32

RCSR 5 recurrences 4.05 9.74 5.15
RCSR 10 recurrences 4.10 8.79 5.02
RCSR adaptive 4.01 8.58 4.90

We can observe from Table 1 that RCSR sharply reduces the
error of CFSS [5] by of 15% on the full test set. Besides, we
only use the mean-shape computed from the training set as the
initial shape while CFSS [5] applies the multiple-shape-searching
strategy. This observation validates the robustness of our RCSR
method compared with other methods. We believe, the multiple-
shape-search strategy may further improve the performance of our
method. Fig. 8 shows the qualitative results for the images taken
from the full set. Clearly, due to the end-to-end learning, our
framework handles even challenging face images, such as facial
expressions, extreme head poses, difficult lighting conditions. It is
also very interesting to observe that RCSR can handle faces with
severe occlusions, including sun-glasses, hands and hats.

We also test our methods on HELEN and LFPW datasets. The
results are shown in Table 2 and 3. For the 68 landmark setting,
we reduce the error by 10% and 19% compared with CFSS [5].
For the 49 landmark setting, we reduce the error by 10% and 6%
compared with CFSS [5].

TABLE 2: Landmark localization results on the HELEN dataset.

Method 68 landmarks 49 landmarks

Zhu et al. [43] 8.16 7.43
DFMF [48] 6.70 -
RCPR [50] 5.93 4.64
SDM [3] 5.50 4.25
GN-DPM [53] 5.69 4.06
CFAN [54] 5.53 -
CFSS [5] 4.63 3.47
CFSS Practical [5] 4.72 3.50
RCFA [20] 4.65 3.45

RCSR adaptive 4.16 3.13

TABLE 3: Landmark localization results on the LFPW dataset.

Method 68 landmarks 49 landmarks

Zhu et al. [43] 8.29 7.78
DFMF [48] 6.57 -
RCPR [50] 6.56 5.48
SDM [3] 5.67 4.47
GN-DPM [53] 5.92 4.43
CFAN [54] 5.44 -
CFSS [5] 4.87 3.78
CFSS Practical [5] 4.90 3.80
RCFA [20] 4.74 3.69

RCSR adaptive 3.93 3.57

In the current implementation, a single forward pass through
the pipeline takes around 10ms on average on Tesla K40, making
it possible to apply the proposed model for real-time video
processing at 100 frames per second. We would like to note that no
specific performance optimizations were used. Our framework can
work better than the other approaches for these images not only
because our RNN network can learn the dependencies between
each regressor, but also because it learns the location dependencies
between the landmarks. Thus, even though parts of the face
are occluded, our framework can still predict with reasonable
accuracy the location of the occluded landmarks based on other
landmarks. As shown in some examples in Fig. 8, even if some
faces are partially occluded by the hands and glasses, the occluded
landmarks can still be roughly estimated based on the features
from the other non-occluded landmarks.

5 SELECTING RECURRENT-CONVOLUTIONAL AR-
CHITECTURE

The proposed framework consists of two parts: the convolutional
part, that learns a feature mapping centered at the predicted
landmarks and the recurrent part, that performs localization and
refinement of these landmarks. In the following we show that such
combination is advantageous. First, we demonstrate the effect of
the recurrent module, by learning it on conventional computer
vision features. Second, we show that the convolutional module
brings further advantages by improving the performance. Third,
we report evaluation results of three different architectures of the
convolutional part, supporting the selected architecture.

5.1 Effect of the recurrent module
As discussed in Section 3.3, SDM is a degenerate case of the
traditional GRU. To show the advantages of the recurrent regressor
over the classical SDM cascade, we employ the same feature de-
scriptor for both of them. We remove the convolutional part of the



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Fig. 8: Selected qualitative examples taken from the full set of the 300-W dataset.

TABLE 4: Evaluation of the effect of various recurrent-
convolutional architectures (best results in bold). The last row
shows the framework presented in the current paper. The third
row shows the framework in the earlier work [20].

Method Common Challenging Full

Linear Regressor + HOG (SDM [3]) 5.70 15.77 7.68
Traditional GRU + HOG 4.61 9.94 5.63

Traditional GRU + SRCNN [20] 4.03 9.85 5.32
Convolutional GRU + LeNet 4.63 9.48 5.59
Convolutional GRU + FAUC 4.32 8.96 5.24
Convolutional GRU + SRCNN 4.01 8.58 4.90

proposed framework and replace it with HOG features extracted
at patches centered at the landmarks’ locations. Similarly, we also
use HOG features in the SDM pipeline. Thus the only difference

between the two pipelines is the recurrent module.

Comparison results are reported in the first two rows of
Table 4. Clearly, the recurrent module offers significantly better
performance, as compared to SDM. The classical SDM is known
for performing poorly on hard examples, i.e., those having non-
frontal faces, facial expressions and with difficult illumination
conditions. Therefore, the performance gain of the recurrent
module is especially evident on the challenging set of the 300-
W dataset, which contains these hard cases.

We further compare the performance of our newly introduced
convolutional GRU and the traditional GRU presented in the
earlier work [20] to show the effectiveness of combining con-
volutional neural network and the recurrent unit. We do not report
the performance of convolutional GRU with HOG features, as the
hand-crafted HOG features do not contain any spatial information,
which is required when spatial convolutions are employed.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Fig. 9: Different convolutional modules for feature extraction which are (1) the super resolution convolutional neural network (SRCNN);
(2) the LeNet (3) the facial action unit classification (FAUC) neural network.

Fig. 10: The first-layer filters trained on the image batches. The filters are organized in the descending order of their respective variances.
The size of each filter is 9× 9.

Table 4 shows the error for each method evaluated on the
300W dataset. Since convolutional GRU combines the advan-
tages of both convolutional and recurrent neural networks its
performance is superior to the traditional GRU. Compared with
the traditional GRU, the Covolutional GRU decreases the error
by 0.50% from 4.03 to 4.01 on the common subset, 12.89%
on the challenging subset from 9.85 to 8.58 and 7.89% on the
full subset from 5.32 to 4.9. As the convolutional GRU is more
computationally expensive, inference time increases from 0.44
seconds to 0.50 seconds. Depending on the application, increased
inference time can be considered acceptible, as performance gain
of the convolutional GRU is significant.

We visualized the feature maps of the output tensors of the
convolutional GRU in Fig. 11. From Fig. 11, we can observe that
the feature maps contain clear geometric meanings (e.g. wrinkles
and shadings) demonstrating that the convolutional GRU can
preserve the spatial structures of the input.

Fig. 11: Feature maps of the output of the convolutional GRU.

5.2 Effect of the convolutional module

If we use the convolutional module instead of HOG feature
descriptor, performance improves even further (row 3), as com-
pared to the version with HOG features. This supports that end-
to-end learning is beneficial, since the features can be learned
adaptively for the landmark localization task. To study the effect



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

of the selected SRCNN architecture, we explore several different
convolutional architectures, widely adopted by the community.
Since very deep neural networks require large amounts of training
data, a key criterion for evaluating a particular architecture is its
size. Faces do not have much variability as compared to more
general computer vision tasks, such as object detection, therefore
the capacity of a light neural network is sufficient. To this end, we
select two neural networks as baselines, which are Facial Action
Unit Classification (FAUC) Network [55] and LeNet [56]. The
details of the network structures are shown in Fig. 9.

Facial Action Unit Classification (FAUC) network [55] has
been originally designed for facial expression classification using
as inputs 96×96 gray scale images. With the help of visualization
technique introduced in [57], the image region which has the
strongest activation towards the neurons can be reconstructed by
deconvolutional neural network. It is observed that the learned
convolutional filters in the learned FAUC network correspond to
different facial action units. As shown in Fig. 9, FAUC network
consists of 3 convolutional layers with 64, 128, 256 filters, and
each filter has the size of 5 × 5. Each convolutional layer is
followed by the ReLU activation function, and a pooling layer.
The first two pooling layers are max-pooling layers, while the
last pooling layer is the quadrant pooling layer [58]. We follow
the same network settings as in [55], where the bias terms of
the convolutional filters are removed. Since we are not dealing
with the facial expression classification problem, we removed the
fully connected layer which is used for classification, leaving only
feature extraction layers.

LeNet [56] has been originally designed for digit recognition
using as inputs 28 × 28 gray scale images. It consists of two
convolutional layers with 20, 50 filters, and each of the filter
has the size of 5 × 5. Each convolutional layer is followed by
a max-pooling layer as shown in Fig. 9. The last four layers are
the fully connected layer, ReLU, the fully connected layer and
the loss layer. Similar to the FAUC network, the last four layers
are removed as we are not interested in the digit classification
problem. Thus, we can obtain the feature extraction layers.

The details of the SRCNN are illustrated in Section 3.2. Com-
bining the convolutional GRU module with different convolutional
modules (SRCNN, LeNet, and FAUC network), we can obtain
three different structures. Table 4, shows that the SRCNN has the
best performance. The reason why LeNet has inferior performance
is because the max-pooling layer loses the information during
feature extraction process. The architecture of LeNet is also the
simplest among all the convolutional modules which is another
reason for its poor performance, as it is not powerful enough
to learn powerful feature representations. The FAUC has slightly
better performance compared with the LeNet, but it is worse than
SRCNN. The structure of FAUC is more complex than SRCNN,
and it has more parameters which makes it much easier for FAUC
to overfit the data.

6 ANALYSIS OF LEARNED REPRESENTATIONS

In this section, we first visualize the filters of the convolutional
module learned in the network. Then we analyze the connections
between the convolutional module and the local binary feature
descriptor which has very good performance among the hand-
crafted feature descriptors. Finally, the benefit of stacking the
features of all the landmarks is discussed.

6.1 Visualization of the convolutional module

Fig. 10 shows the learned first-layer filters of the SRCNN module
which are quite different from the filters trained for the super-
resolution task [39]. We can observe that most of the filters, such
as a, b, and c in the first row focus more on regions while the
rest of the filters focus more on some selected pixels. It is also
very interesting to observe that many filters are symmetric with
respect to the diagonals. For example, d, f , g and h are symmetric
with respect to the principle diagonal while e, i, and j are nearly
symmetric with respect to the counter-diagonal with a tilted angle.
The reason for the tilted symmetry is probably because most of the
edges in which the facial landmarks lie are tilted and the pixels
on both sides of the edges are required to be activated in order
to judge whether the pixel is a landmark or not. It is also very
interesting to notice that the last filter k has all its pixels activated.
This filter takes the sum of all the pixels, and this is equivalent to
capturing the illumination information.

Among the hand-crafted features, the local binary feature
descriptor has very good performance for landmark detection.
Even though the convolutional module (SRCNN) and the local
binary feature descriptor are quite different, they share a lot in
common. First, both extract features based on the local patches
instead of the whole image. Second, they utilize the features of all
the landmarks to learn a global feature mapping function.

6.2 Why using local patches?

The reason why the local features are preferable is well illustrated
in [10] where the local binary features are designed as the input
to the regressor. The task is to predict the offset ∆s between the
current landmarks and the target landmarks. The intuition is that
the size of the local patches should depend on the distribution
of the ∆s. Let σ denote the standard deviation of ∆s, it is
revealed in [10] that the optimal size of local patches has a linear
relationship with σ, which is roughly twice as large as σ. Either
too large or too small patch size will lead to inferior performance,
and the optimal patch size should gradually shrink from the early
stage to the later stage as the predicted landmarks becoming closer
to the ground truth [10]. Thus, different local binary feature
descriptors need to be trained at different stages. However, in our
convolutional module, the image patch size is fixed and remains
the same at different stages, but we can achieve similar shrinkage
effect with the help of convolutional layers. As shown in Fig. 10,
many filters have very sparse values so that these filters will focus
on very small regions of the patches, and very few pixels will
be employed to generate features. For example, only 3 pixels are
activated for filters h, i and j. This is very similar to [9] [10] where
they take the pixel pair differences as features. With the help of
the filters, the local feature learning is self-adaptive in different
stages.

6.3 Why using global feature mapping?

In our pipeline, the outputs of the convolutional module are the
features of the patches which are centered at the predicted land-
marks. Instead of considering features of each patch individually,
we stack all feature maps to form a global feature representation
and feed it into the recurrent module. Then there is only one
single recurrent regressor trained to predict the offsets for all the
landmarks. One main reason to use the global features is that the
global information can enforce the global shape constraint and



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

make the predictions robust to the local errors caused by occlu-
sions. As shown in Fig. 8, even though some faces are occluded by
the hands and glasses, the shape can still be maintained well and
the positions of the occluded landmarks can be roughly estimated
based on the features from the other non-occluded landmarks.

7 CONCLUSIONS

In this paper, we reformulate the classical cascaded regression
face alignment problem as a recurrent process, alleviating the two
major limitations of the CRMs. The proposed recurrent framework
features end-to-end learning, starting from the raw pixel data,
removing the previously used hand-crafted features. Replacing a
standard cascade of independently learned shape regressors by
a single recurrent regressor brings further advantage of iterating
beyond the learned limit, making it possible to automatically
decide when to stop. The presented RCSR method employs a
convolutional GRU as the recurrent unit instead of the traditional
GRU. This allows the spatial structure of the features to be better
preserved in the memory and thus leads to better performance.

The proposed RCSR method still has room for further im-
provements. In our experiments an average shape is used to
initialize the pipeline, while it has been shown that selecting a
proper starting shape brings extra benefits [5]. Additionally, more
rigorous data augmentation can alleviate the bias of the training
set and can make the data more uniform. Furthermore, we believe
similar recurrent convolutional shape regression models can be
employed to various other tasks such as human pose estimation.

REFERENCES

[1] T. F. Cootes and C. J. Taylor, “Active shape models - ’smart snakes’,” in
British Machine Vision Conference, 1992.

[2] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,”
IEEE Trans. Pattern Analysis and Machine Intelligence, no. 6, pp. 681–
685, 2001.

[3] X. Xiong and F. De La Torre, “Supervised descent method and its
applications to face alignment,” in IEEE Int. Conf. on Computer Vision
and Pattern Recognition, 2013.

[4] G. Tzimiropoulos, “Project-out cascaded regression with an application
to face alignment,” in IEEE Int. Conf. on Computer Vision and Pattern
Recognition, 2015.

[5] S. Zhu, C. Li, C. Change, and X. Tang, “Face alignment by coarse-to-
fine shape searching,” in IEEE Int. Conf. on Computer Vision and Pattern
Recognition, 2015.

[6] X. Xiong and F. D. Torre, “Global supervised descent method,” in IEEE
Int. Conf. on Computer Vision and Pattern Recognition, 2015.

[7] S. Tulyakov and N. Sebe, “Regressing a 3d face shape from a single
image,” in IEEE Int. Conf. on Computer Vision, 2015.

[8] S. Tulyakov, S. L. Jeni, J. Cohn, and N. Sebe, “Viewpoint-consistent 3d
face alignment,” IEEE Trans. Pattern Analysis and Machine Intelligence,
2018.

[9] V. Kazemi and S. Josephine, “One millisecond face alignment with an
ensemble of regression trees,” in IEEE Int. Conf. on Computer Vision
and Pattern Recognition, 2014.

[10] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 fps via
regressing local binary features,” in IEEE Int. Conf. on Computer Vision
and Pattern Recognition, 2014.

[11] P. Dollar, P. Welinder, and P. Perona, “Cascaded pose regression,” in
IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2010.

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for human de-
tection,” in IEEE Int. Conf. on Computer Vision and Pattern Recognition,
2005.

[13] D. G. Lowe, “Object recognition from local scale-invariant features,” in
IEEE Int. Conf. on Computer Vision, 1999.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Int. Conf. on Neural
Information Processing Systems, 2012.

[15] N. Wang and D.-Y. Yeung, “Learning a deep compact image representa-
tion for visual tracking,” in Int. Conf. on Neural Information Processing
Systems, 2013.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv, 2014.

[17] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint language and
translation modeling with recurrent neural networks.” in Conference on
Empirical Methods in Natural Language Processing, 2013.

[18] X. Peng, R. S. Feris, X. Wang, and D. N. Metaxas, “A recurrent
encoder-decoder network for sequential face alignment,” in Eur. Conf.
on Computer Vision, 2016.

[19] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” arXiv, 2014.

[20] W. Wang, S. Tulyakov, and N. Sebe, “Recurrent convolutional face
alignment,” in Asian Conference on Computer Vision, 2016.

[21] G. Trigeorgis, P. Snape, M. A. Nicolaou, E. Antonakos, and S. Zafeiriou,
“Mnemonic descent method: A recurrent process applied for end-to-end
face alignment,” in IEEE Int. Conf. on Computer Vision and Pattern
Recognition, 2016.

[22] P. H. O. Pinheiro and R. Collobert, “Recurrent convolutional neural
networks for scene parsing,” arXiv, 2013.

[23] M. Liang and X. Hu, “Recurrent convolutional neural network for
object recognition,” in IEEE Int. Conf. on Computer Vision and Pattern
Recognition, 2015.

[24] W. Wang, Z. Cui, Y. Yan, J. Feng, S. Yan, X. Shu, and N. Sebe,
“Recurrent face aging,” in IEEE Int. Conf. on Computer Vision and
Pattern Recognition, 2016.

[25] W. Wang, Y. Yan, Z. Cui, J. Feng, S. Yan, and N. Sebe, “Recurrent face
aging with hierarchical autoregressive memory,” IEEE Trans. Pattern
Analysis and Machine Intelligence, 2018.

[26] W. Wang, X. , Alameda-Pineda, X. Dan, E. Ricci, and N. Sebe, “Every
smile is unique: Landmark-guided diverse smile generation,” in IEEE Int.
Conf. on Computer Vision and Pattern Recognition, 2018.

[27] N. Wang, X. Gao, D. Tao, and X. Li, “Facial feature point detection: A
comprehensive survey,” arXiv, 2014.

[28] X. Yu, J. Huang, S. Zhang, W. Yan, and D. N. Metaxas, “Pose-free facial
landmark fitting via optimized part mixtures and cascaded deformable
shape model,” in IEEE Int. Conf. on Computer Vision, 2013.

[29] S. K. Zhou and D. Comaniciu, “Shape regression machine,” in Int. Conf.
on Information Processing in Medical Imaging, 2007.

[30] X. Cao, “Face alignment by explicit shape regression,” in IEEE Int. Conf.
on Computer Vision and Pattern Recognition, 2012.

[31] C. Cao, Q. Hou, and K. Zhou, “Displaced dynamic expression regression
for real-time facial tracking and animation,” in SIGGRAPH, 2014.

[32] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[33] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in International Conference on Acous-
tics, Speech, and Signal Processing, 2013.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[35] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Trans. Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[36] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE trans. on neural networks, vol. 5,
no. 2, pp. 157–166, 1994.

[37] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, “A clockwork rnn,”
in Int. Conf. on Machine Learning, 2014.

[38] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Int. Conf. on Machine Learning,
2015.

[39] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution
using deep convolutional networks,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 38, no. 2, pp. 295–307, 2016.

[40] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “300 faces
in-the-wild challenge: The first facial landmark localization challenge,”
in IEEE Int. Conf. on Computer Vision Workshops, 2013.

[41] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang, “Interactive facial
feature localization,” in Eur. Conf. on Computer Vision, 2012.

[42] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar, “Localiz-
ing parts of faces using a consensus of exemplars,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 35, no. 12, pp. 2930–2940, 2013.

[43] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark
localization in the wild,” in IEEE Int. Conf. on Computer Vision and
Pattern Recognition, 2012.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2810881, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[44] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre, “Xm2vtsdb: The
extended m2vts database,” in Second international conference on audio
and video-based biometric person authentication, 1999.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Int. Conf. on Computer Vision and Pattern
Recognition, 2016.

[46] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in IEEE Int. Conf. on Computer
Vision and Pattern Recognition, 2016.

[47] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv, 2014.

[48] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Robust discrimina-
tive response map fitting with constrained local models,” in IEEE Int.
Conf. on Computer Vision and Pattern Recognition, 2013.

[49] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by explicit shape
regression,” International Journal of Computer Vision, vol. 107, no. 2,
pp. 177–190, 2014.

[50] X. Burgos-Artizzu, P. Perona, and P. Dollár, “Robust face landmark
estimation under occlusion,” in IEEE Int. Conf. on Computer Vision,
2013.

[51] B. Smith, J. Brandt, Z. Lin, and L. Zhang, “Nonparametric context
modeling of local appearance for pose-and expression-robust facial
landmark localization,” in IEEE Int. Conf. on Computer Vision and
Pattern Recognition, 2014.

[52] X. Zhao, T.-K. Kim, and W. Luo, “Unified face analysis by iterative
multi-output random forests,” in IEEE Int. Conf. on Computer Vision
and Pattern Recognition, 2014.

[53] G. Tzimiropoulos and M. Pantic, “Gauss-newton deformable part models
for face alignment in-the-wild,” in IEEE Int. Conf. on Computer Vision
and Pattern Recognition, 2014.

[54] J. Zhang, S. Shan, M. Kan, and X. Chen, “Coarse-to-fine auto-encoder
networks (cfan) for real-time face alignment,” in Eur. Conf. on Computer
Vision, 2014.

[55] P. Khorrami, T. Paine, and T. Huang, “Do deep neural networks learn
facial action units when doing expression recognition?” in IEEE Int.
Conf. on Computer Vision Workshops, 2015.

[56] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[57] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Eur. Conf. on Computer Vision, 2014.

[58] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Int. Conf. on artificial intelligence
and statistics, 2011.

Wei Wang received the master degree from the
University of Southern Denmark. He is currently
a PhD student in Multimedia and Human Under-
standing Group with the Department of Informa-
tion Engineering and Computer Science (DISI) in
the University of Trento, Italy. His research inter-
ests include computer vision and deep learning.
In particular, he is interested in face and human
pose analysis.

Sergey Tulyakov, PhD is a Senior Research
Scientist at Shap Research. His research fo-
cuses on computer vision, machine learning and
face analysis, including 2D and 3D detection,
tracking, pose estimation, heart rate estimation
from videos, 3D face alignment techniques, with
particular emphasis on realistic capturing condi-
tions. He has co-organized the 3D Face Align-
ment in the Wild workshop held in conjunction
with ECCV in 2016. He received his PhD degree
from the University of Trento, Italy.

Nicu Sebe is with the Department of Information
Engineering and Computer Science, University
of Trento, Italy, where he is leading the research
in the areas of multimedia information retrieval
and human behavior understanding. He was GC
of FG 2008 and ACM Multimedia 2013, and PC
of ACM Multimedia 2007 and 2011, ECCV 2016
and ICCV 2017. He is a Senior Member of ACM
and IEEE and a fellow of IAPR.


