
A method for testing software systems based on
state design pattern using symbolic execution

Cristina Tudose, Radu Oprişa
Department of Computer Science and Mathematics

University of Piteşti
Str. Targu din Vale 1, 110040 Pitesti, Romania

cristina ferent@yahoo.com, oprisa radu@yahoo.com

Abstract—The paper reports a new testing method working
with state pattern designed software systems. The tests are
performed in terms of symbolic execution aiming to identify
conditions and values of some input parameters that violate
assertions at runtime. The state based architecture of such
systems allows a direct mapping of the methods to the transi-
tions of the underlying finite state machine (FSM). In order to
identify the methods that contain failing assertions, the Java
PathFinder Symbolic Execution framework extension (JPF-SE)
is used for an out of context execution of each method. We
propose a new algorithm to compute a transition path from
the initial state of the system to each faulty transition. The
computation is carried out using a backward traversal scheme
of the FSM support graph where the JPF-SE symbolically
executes each transition of the path. The transition execution
performed by JPF-SE yields to the backward propagation of
the conditions imposed on the input parameters. The overall
capabilities of the proposed algorithm are illustrated with an
example.

Keywords-finite state machine; Java PathFinder; software
testing; state design pattern; symbolic execution.

I. INTRODUCTION

Symbolic execution [1] is a well-known static program
analysis technique and its application to software testing was
proposed by J. C. King in [2]. A symbolic execution of a pro-
gram is an execution where input parameters have symbolic
values instead of concrete ones and the values of the program
variables are represented by symbolic expressions over the
input symbolic values. A symbolic state is represented by
the values of the program variables, a path condition and a
program counter. The path condition is a boolean formula
defined on the symbolic inputs. The program counter defines
the next statement to be executed.

If a path condition is unsatisfiable, meaning that there
are no concrete values associated with the inputs that
satisfy the path condition, then the associated symbolic
state becomes unreachable. The outputs resulted from the
symbolic execution of a program are conditions on the
input variables corresponding to each execution path. The
obtained conditions are used to generate concrete values to
the input variables. Therefore the obtained test cases cover
each execution path of the program.

Symbolic execution was initially used for checking se-
quential programs with a fixed number of integer variables.
There are approaches, like [3], that implement dedicated
tools that performs program analysis based on symbolic
execution. The Java PathFinder model checker [4] does not
require a dedicated tool but instead uses a model checker [5]
to explore the symbolic execution tree and other forms of
nondeterminism, taking advantage of the model checker’s
built-in space-exploration capabilities: partial order reduc-
tion, symmetry reductions, different search strategies such
as depth-first, breadth-first, random search. The approach
used by this tool handles complex inputs, such as recursive
data structures or arrays of unspecified length via ”lazy
initialization” as well as concurrency. A similar tool is the
Bogor software model checking framework [6] that uses the
same initialization strategy.

The JPF-SE framework [7] does not require the code
transformation, as Java PathFinder does. It performs sym-
bolic execution of Java bytecodes.

Some of the main limitations of the symbolic execution
such as handling native code or availability of decision pro-
cedures could be overcome by combining the symbolic with
concrete execution. A tool example that uses this technique
is PEX [8]. Scalability is another problem due to the infinite
execution tree or to the large number and the large size of the
paths that need to be explored. Some techniques mentioned
in [9] that try to overcome this problem are: abstraction,
compositional reasoning, path merging.

Symbolic execution has many applications in areas like:
test case generation, test sequence generation, proving pro-
gram properties, static detection of runtime errors. This
paper uses symbolic execution for generating test sequences
that lead to a fault.

Related work regarding the generation of method call
sequences belonging to a class includes [10], [11]. Test
sequences are generated by enumerating all the possible
method sequences, up to some specified size. In this paper
we consider a particular set of software systems: the state
pattern designed software systems [12], [13]. We try to
generate a sequence of method calls that yields to an assert
violation by starting from the method in which a fault is

2010 Software Engineering and Formal Methods

978-0-7695-4153-2/10 $26.00 © 2010 IEEE

DOI 10.1109/SEFM.2010.20

113

2010 Software Engineering and Formal Methods

978-0-7695-4153-2/10 $26.00 © 2010 IEEE

DOI 10.1109/SEFM.2010.20

113

detected and then using a backward traversal scheme of the
FSM support graph, until the initial state is reached. We use
JPF-SE framework for this purpose.

The paper is structured as follows. Section II presents our
algorithm for test cases generation, an example is given in
Section III and the conclusions are drawn in Section IV.

II. A NEW METHOD FOR GENERATING TEST SEQUENCES

The state design pattern has the main advantage due to its
architecture that the internal state of the system is known at
each moment of the execution. An other advantage is that
the software system implementation must contain a different
method for each transition from the associated FSM. The
state of the system is changed only after the execution of a
method will be completed. Due to these considerations, the
execution of a software system designed with state pattern is
a sequence of method calls and the order is determined by
the associated FSM support graph. In the execution flow,
some of the output values of each method are used as
input values for the following method. Several execution
paths can be identified for a system. Each method can have
preconditions and postconditions implemented in the source
code. Further we consider preconditions and postconditions
implemented as assert instructions at the beginning and at
the end of the method body.

By using the symbolic execution, we have the opportunity
to analyze each method of the system by out of context
symbolic executing it. The out of context execution of a
method has the advantage of testing it in all the possible
use cases and all the possible input values which is more
general than executing the method in the context using
the restricted set of values provided only by the previous
methods output values from existing sequence method calls.
The out of context execution of a method with input values
that will never be provided during usual system execution
could be considered useless, but there are some advantages
on doing this. One of them is the opportunity to check if
the implemented preconditions are strong enough for the
method. If they are not strong enough, then the symbolic
execution will reveal input values that are not handled
correctly inside the method and will produce errors. An other
advantage is a long term one and it concerns the future
extension of the software system. By adding new states
and new methods in the system, we observe that some of
the old methods can deal with new input values, produced
by the new methods. Avoiding further errors is done by
implementing the right precondition in the source code from
the early stages of the system development. In the next
section, we search the methods containing errors by using
out of context symbolic execution. Using an algorithm, we
select only those methods capable of prodicing errors when
the system is executed in the usual way starting from the
initial state. For each error, input test values for the system
and execution path are revealed.

The testing method starts by executing symbolic each
method from the software system using JPF-SE. For some
methods, JPF-SE will identify the values of the input pa-
rameters that generate assert violations. All these methods
are stored in a collection in order to be analyzed.

Let 𝑀𝑇 be a method in which a fault is detected
corresponding to transition 𝑇 in the underlying FSM and
let 𝑃𝑇 be the precondition of 𝑀𝑇 , if defined. By default
𝑃𝑇 = 𝑇𝑟𝑢𝑒. We try to find an execution path from the
initial state of the system and a set of values for the input
parameters that will generate at runtime the expected assert
violation in 𝑀𝑇 . The approach is to use a backtracking
algorithm starting from 𝑀𝑇 to traverse the FSM support
graph 𝐺 in reverse transition orientation order, looking to
reach the node corresponding to the initial state of the FSM.
The selection of the edges is conditioned by the result of
the symbolic execution on the corresponding method in the
following way. After 𝑀𝑇 is symbolic executed, a condition
on input values 𝐶𝑇 is determined in order to violate an
assertion in 𝑀𝑇 . The preceding transition method 𝑀𝑇 2 is
determined together with a condition 𝐶𝑇 2 on the values
of the input parameters values such as, at the end of its
execution, 𝐶𝑇 will be satisfied. In this way, when 𝐶𝑇 2

is satisfied and path {𝑀𝑇 2 ;𝑀𝑇 } is executed, we enforce
that the intermediate 𝐶𝑇 is satisfied, which will lead to
assert violation in 𝑀𝑇 . In practice, in order to find 𝐶𝑇 2

we instrument the source code by adding at the end of 𝑀𝑇 2

an assert with the negation of 𝐶𝑇 . The instrumented 𝑀𝑇 2

is executed using the JPF-SE and 𝐶𝑇 2 is determined so that
the assertion !𝐶𝑇 is violated. If the condition 𝐶𝑇 2 violates
the assertion !𝐶𝑇 , then 𝐶𝑇 2 enforces 𝐶𝑇 . The preconditions
of 𝑀𝑇 are appended in the condition 𝐶𝑇 . The path search
is continued until the start state is reached or no path is
found as the following algorithm presents. During the search,
all possible paths are practiced, including cycles, but no
more than one time. Symbolic execution requires only one
traversal of the code in order to explore all the execution
paths and compute the path conditions.

1: 𝑇 1 ← 𝑇 , 𝑃𝑎𝑡ℎ← {𝑇 1}, 𝑘 ← 2
2: Execute symbolic 𝑀𝑇 1 to find condition 𝐶𝑇 1 that

violates assertion in 𝑀𝑇 1

3: while 𝑘 > 1 do
4: while (∃)𝑇 𝑘

𝑖 preceding 𝑇 𝑘−1 in 𝐹𝑆𝑀 do
5: 𝐴𝑇𝑘

𝑖
←!(𝐶𝑇𝑘−1 ∧ 𝑃𝑇𝑘−1)

6: Add assertion 𝐴𝑇𝑘
𝑖

at the end of 𝑀𝑇𝑘
𝑖

7: Execute symbolic 𝑀𝑇𝑘
𝑖

to find condition 𝐶𝑇𝑘
𝑖

that
violates 𝐴𝑇𝑘

𝑖

8: if 𝐶𝑇𝑘
𝑖
∕= 𝐹𝐴𝐿𝑆𝐸 and {𝑇 𝑘

𝑖 ;𝑃𝑎𝑡ℎ} do not con-
tains any cycle more than one time then

9: 𝑇 𝑘 = 𝑇 𝑘
𝑖

10: 𝑃𝑎𝑡ℎ← {𝑇 𝑘;𝑃𝑎𝑡ℎ}
11: if 𝑃𝑎𝑡ℎ contains 𝑆𝑡𝑎𝑟𝑡 state then
12: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛← 𝐶𝑇𝑘 , STOP

114114

13: else
14: 𝑘 ← 𝑘 + 1
15: end if
16: end if
17: end while
18: Remove 𝑇𝑘 from 𝑃𝑎𝑡ℎ
19: 𝑘 ← 𝑘 − 1
20: end while

If a solution is found, the algorithm generates a condition
on the values of the input parameters and an execution path
that reveals the expected assertion failure in the system.

III. EXAMPLE

We consider a simplified class Calculator that contains the
following methods: Clear(), EnterTerm (int T), DoubleIt(),
EnterMinus(), EnterPlus(), Compute(). A Calculator object
can be in one of the several different states. The associated
finite state machine is given in Figure 1. For simplicity, the
𝐸𝑟𝑟𝑜𝑟 state and all the incoming and outgoing transitions,
that make the FSM completely specified, are not displayed
in the figure. When a Calculator object receives the method
invocation calls, it responds differently depending on its
current state. For example, a Compute request depends on
whether the object is in its Acc2Minus state or Acc2Plus
state. The State pattern describes how the Calculator can
exhibit different behavior in each state.

Implementing the state pattern requires:

∙ Context (Calculator) - Defines the interface of the
interest to the clients and maintains an instance of a
ConcreteState subclass that defines the current state.

∙ State (CalculatorState) - Defines all the methods that
depend on the state of the object.

Figure 1. Calculator Finite State Machine

Figure 2. Calculator class diagram

∙ ConcreteState subclasses:

– CalculatorStateStart
– CalculatorStateAcc1
– CalculatorStateAcc2Plus
– CalculatorStateAcc2Minus
– CalculatorStateError

Each subclass implements a behavior associated with a
state of the Context.

The state based architecture of such systems allows a
direct mapping of the methods to the transitions of the
underlying FSM.

The class diagram for our state pattern implementation is
given in Figure 2. We use StarUML [14] tool to draw it.

In our example, the method in which a fault is de-
tected is 𝑀𝑇 1 = DoubleIt() from CalculatorStateAcc1 class.
Figure 4 illustrates its implementation. It is easy to see
that DoubleIt() computes the double value of 𝑇𝑒𝑟𝑚1 but
the result is mathematically correct only for the positive
integers input values. This is easily revealed by the JPF-SE
when the method is executed symbolically and assertion is
violated. The algorithm is applied for 𝑀𝑇 1 and an execution
path, from the initial state, is found together with a set
of input values which reveal assert violation at runtime.
The corresponding method call sequence is: EnterTerm();
EnterMinus(); EnterTerm(); Compute(); DoubleIt().

The methods, the obtained conditions and the precondi-
tions (where they are specified) at each execution step are
given in Figure 3.

The generated concrete input values for 𝑇1 and 𝑇2 that
produce the assert violation in 𝑀𝑇 are 𝑇1 = 0 and 𝑇2 = 1.

115115

𝑀𝑇 1 DoubleIt() from CalculatorStateAcc1 class
𝑎𝑠𝑠𝑒𝑟𝑡(𝐴𝑇 1) 𝑎𝑠𝑠𝑒𝑟𝑡(𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1 == 𝑇1 + 𝑇1);
𝐽𝑃𝐹 𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]! = (𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000] + 𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000])&&

𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000] <= 𝐶𝑂𝑁𝑆𝑇 0
𝐶𝑇 1 𝑇1 ∕= (𝑇1 + 𝑇1) && 𝑇1 ≤ 0
𝑀𝑇 2 Compute() from CalculatorStateAcc2Minus class.
𝑎𝑠𝑠𝑒𝑟𝑡(𝐴𝑇 2) 𝑎𝑠𝑠𝑒𝑟𝑡(!((𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1! = (𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1 + 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1))&&(𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1 <= 0)));
𝐽𝑃𝐹 (𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [−9999]) <= 𝐶𝑂𝑁𝑆𝑇 0&&

(𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [−9999])! =
((𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [−9999])+
(𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [−9999]))

𝐶𝑇 2 (𝑇1− 𝑇2) ≤ 0 && (𝑇1− 𝑇2) ∕= ((𝑇1− 𝑇2) + (𝑇1− 𝑇2))
𝑀𝑇 3 EnterTerm(T2) from CalculatorStateAcc2Minus class.
𝑃𝑇 3 𝑇2 ≥ 0
𝑎𝑠𝑠𝑒𝑟𝑡(𝐴𝑇 3) 𝑎𝑠𝑠𝑒𝑟𝑡(!((𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2 <= 0)&&((𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2)! =

(𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2) + (𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2))));
𝐽𝑃𝐹 (𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [−9999])! =

((𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [−9999])+
(𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [−9999]))&&
(𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [−9999]) <= 𝐶𝑂𝑁𝑆𝑇 0

𝐶𝑇 3 (𝑇1− 𝑇2) ∕= ((𝑇1− 𝑇2) + (𝑇1− 𝑇2)) && (𝑇1− 𝑇2) ≤ 0
𝑀𝑇 4 EnterMinus() from CalculatorStateAcc1 class.
𝑎𝑠𝑠𝑒𝑟𝑡(𝐴𝑇 4) 𝑎𝑠𝑠𝑒𝑟𝑡(!((((𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2)! =

((𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2) + (𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2)))&&
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2 <= 0))&&(𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2 >= 0)));

𝐽𝑃𝐹 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [0] >= 𝐶𝑂𝑁𝑆𝑇 0&&(𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [0]) <=
𝐶𝑂𝑁𝑆𝑇 0&&
(𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [0])! =
((𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [0])+
(𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [−10000]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [0]))

𝐶𝑇 4 𝑇2 ≥ 0 && (𝑇1− 𝑇2) ≤ 0 && (𝑇1− 𝑇2) ∕= ((𝑇1− 𝑇2) + (𝑇1− 𝑇2))
𝑀𝑇 5 EnterTerm(T1) from CalculatorStateStart class.
𝑃𝑇 5 𝑇1 ≥ 0
𝑎𝑠𝑠𝑒𝑟𝑡(𝐴𝑇 5) 𝑎𝑠𝑠𝑒𝑟𝑡(!((𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2 >= 0)&&(𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2 <= 0)&&

((𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2)! = ((𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2)+
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚1− 𝑐𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑒𝑟𝑚2)))));

𝐽𝑃𝐹 (𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [0]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [1])! =
((𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [0]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [1]) + (𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [0]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [1]))&&
(𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [0]− 𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [1]) <= 𝐶𝑂𝑁𝑆𝑇 0&&
𝑇2 2 𝑆𝑌𝑀𝐼𝑁𝑇 [1] >= 𝐶𝑂𝑁𝑆𝑇 0&&𝑇1 1 𝑆𝑌𝑀𝐼𝑁𝑇 [0] >= 𝐶𝑂𝑁𝑆𝑇 0

𝐶𝑇 5 (𝑇1− 𝑇2) ∕= ((𝑇1− 𝑇2) + (𝑇1− 𝑇2)) && (𝑇1− 𝑇2) ≤ 0 && 𝑇2 ≥ 0
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐶𝑇 5 ; (𝑇1 = 0, 𝑇2 = 1)

Figure 3. Step by step symbolic execution

116116

public void DoubleIt()
{
int T1 = context.Term1;
int T2 = context.Term2;
if (context.Term1 > 0)
{
context.Term1 = context.Term1 + context.Term1;
}
assert(context.Term1 == T1 + T1);
context.SetState(new CalculatorStateAcc1(context));
}

Figure 4. DoubleIt() method source code

By following the generated method call sequence, an unit
test can be produced:

Calculator c = new Calculator();
c.EnterTerm(0);
c.EnterMinus();
c.EnterTerm(1);
c.Compute();
c.DoubleIt();
A consideration for using the proposed method is the well

known issue of the big amount of computing resources,
especially the computer memory used by the symbolic
execution process. Symbolic execution needs to store for
further investigation all the branches from the execution
path, together with the corresponding path conditions. For
medium and large systems, the symbolic execution of the
whole source code might become impossible. The current
approach uses the symbolic execution only at the method
level fact that requires less resources for the symbolic
execution process.

IV. CONCLUSIONS AND FUTURE WORK

The paper presents a new method for generating test
cases using symbolic execution for the state pattern designed
software systems. In contrast with other approaches, where
the error search is started from the initial state of the system,
this new method for generating test sequences identifies the
methods in which a fault is detected from the system and
computes, using a backtracking algorithm, a path back to the
initial state of the system. The problem is reduced to a graph
traversal assisted by the results of the symbolic execution at
each step. JPF-SE is used to execute the methods and to
determine the values of the input parameters that are able
to violate the assertions in the source code at runtime. If an
execution path is found, JPF-SE generates conditions on the
input parameters and concrete values for them, that can be
used to define unit tests.

For future work, we plan to generalize the study over
software systems implementations, other than those based
on the state design pattern. For this purpose, we will try
to use call graphs as support instead of the FSM support

graph and to instrument the methods source code with proper
assertions before each method call.

REFERENCES

[1] C. S. Pasareanu and W. Visser, “A survey of new trends in
symbolic execution for software testing and analysis,” Inter-
national Journal on Software Tools for Technology Transfer
(STTT), vol. 11, no. 4, pp. 339–353, october 2009.

[2] J. C. King, “Symbolic execution and program testing,” Com-
munications of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[3] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze, “Us-
ing symbolic execution for verifying safety critical systems,”
in Proceedings of ESEC/FSE, 2001.

[4] “Java PathFinder.” [Online]. Available: http://babelfish.arc.
nasa.gov/trac/jpf

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking.
Cambridge, MA, USA: MIT Press, 1999.

[6] “Bogor.” [Online]. Available: http://bogor.projects.cis.ksu.
edu/

[7] S. Anand, C. S. Pasareanu, and W. Visser, “JPF-SE: A sym-
bolic execution extension to Java PathFinder,” in Proceedings
of TACAS, 2007.

[8] “PEX.” [Online]. Available: http://research.microsoft.com/
en-us/projects/pex/

[9] C. S. Pasareanu and W. Visser, “A survey of new trends in
symbolic execution for software testing and analysis,” Int. J.
Softw. Tools Technol. Transfer, vol. 11, no. 4, pp. 339–353,
2009.

[10] W. Visser, C. S. Pasareanu, and R. Pelanek, “Test input gener-
ation for java containers using state matching.” in Proceedings
of ISSTA, 2006.

[11] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra:
A framework for generating object-oriented unit tests using
symbolic execution.” in Proceedings of TACAS, 2005.

[12] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

[13] S. Stelting and O. Maassen, Applied Java Patterns. Upper
Saddle River, New Jersey: Prentice Hall, 2002.

[14] “StarUML.” [Online]. Available: http://staruml.sourceforge.
net

117117

