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a b s t r a c t

This research presents a new multi-objective nonlinear mixed-integer optimization model to determine
Pareto-optimal preventive maintenance and replacement schedules for a repairable multi-workstation
manufacturing system with increasing rate of occurrence of failure. The operational planning horizon is
segmented into discrete and equally-sized periods and in each period three possible maintenance actions
(repair, replacement, or do nothing) have been considered for each workstation. The optimal maintenance
decisions for each workstation in each period are investigated such that the objectives and the requirements
of the system can be achieved. Total operational costs, overall reliability and the system availability are
incorporated as the objective functions and the multi-objective model is solved using a hybrid Monte Carlo
simulation and goal programming procedure to obtain set of non-dominated schedules. The effectiveness
and feasibility of the proposed solution methodology are demonstrated in a manufacturing setting and the
computational performance of method in obtaining Pareto-optimal solutions is evaluated. Such a modeling
approach and the proposed solution algorithm could be useful for maintenance planners and engineers
tasked with the problem of developing optimal maintenance plans for complex productions systems.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Production scheduling and preventive maintenance planning are
among the most common and significant problems faced in manu-
facturing industries in which workstations (i.e., machines, industrial
robots, etc.) are considered as the main resources to carry out the
production plan. The production plan and maintenance actions
directly affect the workstations' operation schedules. Production
planning is concerned with allocating limited resources to a set of
jobs along with certain objective functions that should to be
optimized, i.e., in order to meet the deadlines by minimizing the
sum of tardiness or makespan. According to the configuration of the
workshop (single workstation, multiple workstations, flow shop, job
shop, open shop and hybrid systems), some critical objectives should
be optimized and certain types of constraints must be taken into
account (preemption, setups, etc.). In real manufacturing systems,
workstations may be subject to some unavailability periods due to
unexpected failures or just because of performing scheduled main-
tenance activities. In maintenance scheduling, the most important
task is to establish an appropriate preventive maintenance plan
which optimizes certain objective functions, like minimizing main-
tenance costs or keeping the workstations in a good condition all the
time. However, most of the studies in maintenance optimization do
not take into account the production requirements encountered in
practice. Considering inherent interdependent relationship between

the manufacturing operations and the maintenance scheduling, the
two activities are generally planned and executed separately in real
systems. The relationship between production and maintenance has
been literally considered as a conflict in optimal decisions. These
conflicts may result in an unsatisfied demand in production due to
the interruptions resulting from the preventive maintenance inter-
ventions or workstation failures.

In this research, we develop a multi-objective model by taking
into account the workstations reliability for preventive maintenance
aspect, the overall availability of the system for production purposes,
and total operational costs for both preventive maintenance and
production planning decisions. This modeling approach allows the
decision maker to achieve compromise solutions meeting at best for
three important criteria by which the Pareto-optimal solutions (also
known as the efficient frontier) are determined. The rest of this paper
is organized as follows. Section 2 reviews the existing literature of
the problem of interest. Section 3 formulates the problem containing
possible preventive maintenance actions, objective functions and
necessary mathematical equations. The hybrid solution method is
presented in Section 4 and Section 5 presents the computational
results in a manufacturing application.

2. Literature review

The effectiveness of the preventive maintenance scheduling
under different conditions such as shop load, job sequencing rule,
maintenance capacity and strategy was studied in several earlier
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studies (Banerjee and Burton, 1990; Burton et al., 1989; Mosley
et al., 1998). These studies tested the effectiveness of simple
preventive maintenance policies using discrete-event simulation,
rather than optimizing them along with production scheduling
decisions. There are also other research that extend the simple
machine scheduling models by considering the maintenance
decisions or constraints (Mannur and Addagatla, 1993). A multi-
criteria approach to find optimal preventive maintenance intervals
of components in a paper factory production line with total
expected costs and reliability as the objective functions was
proposed by Chareonsuk et al. (1997). Gharbi and Kenne´ (2005)
could find an approximation for optimal control policies and
values of input factors by combining analytical formulation with
simulation-based statistical tools such as experimental design and
response surface methodology in a production and preventive
maintenance planning problem. A comprehensive research in the
area of integrating preventive maintenance scheduling and pro-
duction planning was found in Ruiz et al. (2007). In this study,
three different policies for preventive maintenance schedules and
the total manufacturing time were defined for flow shop problems.
The authors applied six different adaptations of heuristic and
metaheuristic algorithms to evaluate the policies over two sets of
problems and concluded that ant colony optimization and genetic
algorithms solve these types of problems effectively overcoming
other types of metaheuristics.

Integrated preventive maintenance and job shop scheduling
problem for a single-machine was tackled in Cassady and
Kutanoglu (2003, 2005), Sortrakul et al. (2005), Leng et al.
(2006), Batun and Azizoglu (2009) and Pan et al. (2010). In these
studies, minimization of total weighted expected completion time
is considered as the objective function. As a comparison, the
obtained computational results of integrated model were com-
pared with the results achieved from solving preventive main-
tenance scheduling and job scheduling problems independently.
Furthermore, Sortrakul and Cassady (2007) tried to improve the
solution procedures by solving a larger version of the integrated
preventive maintenance and production scheduling model using
genetic algorithms. Allaoui and Artiba (2004) proposed an inte-
grated simulation and optimization method to solve a hybrid
flowshop problem under maintenance constraints to optimize
several objectives while considering flow time and jobs due dates
along with setup, cleaning, and transportation times. Allaoui and
Artiba (2006) also explored the non-preemptive two-stage flexible
flowshop scheduling with a single machine on the first stage and
multiple machines on the second stage under minimization of the
makespan. The researchers also presented the complexity analysis
of simultaneously scheduling multiple jobs and preventive main-
tenance scheduling on a two-machine flow shop setting to mini-
mize the makespan (Allaoui et al., 2008). Jin et al. (2009)
presented a single-machine integrated job shop and preventive
maintenance scheduling model in order to find an optimal
sequence of jobs along with an optimal maintenance plans to
minimize the total weighted expected completion time of the jobs.

The theoretical aspects of optimal integrated production and
preventive maintenance plans has been investigated for a single
machine under a cumulative damage process with the goal of
minimizing total tardiness (Kuo and Chang, 2007). In another study,
five objectives functions of maintenance cost, makespan, weighted
completion time of jobs, total weighted tardiness, and machine
availability were considered simultaneously in a multi-objective
integrated production and maintenance planning problem solved
by a multi-objective genetic algorithm (Yulan et al., 2008).
Benbouzid-Sitayeb et al. (2008) employed an ant colony optimization
approach to solve integrated production and preventive maintenance
scheduling problem in permutation flowshops. The obtained results
were also compared to those of an integrated genetic algorithms

developed in previous works. Bi-objective integrated production and
maintenance scheduling models have been presented to determine
the Pareto-optimal front of the assignment of production tasks to
machines along with preventive maintenance activities in a produc-
tion system (Berrichi et al., 2009; Berrichi et al., 2010). These studies
developed and tested series of genetic algorithms to solve the
problem. Hua et al. (2010) developed an integrated optimization
model and showed the advantage and practicality of the optimal
integrated policy over independent optimal production and main-
tenance schedules driven by separate models. The study was further
expanded by considering a flowshop with multiple machines con-
nected in series, aiming to minimize the total weighed system cost
(Miaoqun et al., 2010). In another research, a bi-objective optimiza-
tion model integrating flexible job shop problem with preventive
maintenance scheduling was developed to minimize the makespan
and system unavailability (Moradi et al., 2011). Integrating flexible
flowshops and periodic preventive maintenance policies to minimize
makespan of workstations using genetic algorithm and simulated
annealing were presented in Naderi et al. (2009, 2011).

This research tries to incorporate preventive maintenance
activities introduced in Berrichi et al. (2009, 2010), Moghaddam
and Usher (2011) and develops a multi-objective preventive
maintenance and replacement scheduling model aimed at finding
Pareto-optimal schedules for multi-workstation manufacturing
systems. It is found that none of the reviewed research studies
considered the simultaneous combination of total operational
costs, system reliability and overall availability of the production
system in their modeling approach. In addition, most of these
efforts try to model single-component or single-machine produc-
tion systems which are very uncommon in real and large-scale
applications. Hence the first contribution of this research is to
develop a comprehensive mathematical model to be able to
capture broader aspects of the production and maintenance
scheduling problems in multi-component manufacturing systems
without any predefined user preferences for different criteria of
the system. On the other hand most of the above reviewed
literature employed or developed some sort of heuristic algo-
rithms to solve their proposed models. These algorithms are best
known to their capability of obtaining good or near optimal
solutions. However attainment of the exact optimal solution(s) is
never guaranteed. Therefore, the second contribution of our study
is to develop and test a novel solution procedure to achieve exact
Prato-optimal solutions using combination of simulation and
optimization methods. Computational results confirm that there
are indeed trade-offs among the objectives of total operational
costs, system reliability and availability. Capturing these trade-offs
provides invaluable information to improve systems performance
over the range of designated goals.

3. Problem formulation

Parameters

N : number of workstations
L : length of the planning horizon
T : number of time intervals over the planning horizon
K : number of objective functions
λi : scale parameter (characteristic life) of workstation i
βi : shape parameter of workstation i
αi : improvement factor of maintenance action on workstation i
Fi : unexpected failure cost of workstation i
Mi : maintenance (including inspection and repair) cost of
workstation i
Ri : replacement cost of workstation i
TPMi : time to perform preventive maintenance onworkstation i
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TRi : time to perform replacement on workstation i
S : shutdown cost of the entire system
f k : objective function k
goalk : desired level of achievement for objective function f k
wk : importance weight of deviation of objective function f k
from a desired level goalk
dþ
k : positive deviation of objective function f k from designated

goalk
d�k : negative deviation of objective function f k from designated
goalk

Decision variables

Xi;t effective age of workstation i at the start of period t
X′i;t : effective age of workstation i at the end of period t

mi;t ¼
1 if workstation i at period t is maintained ðinspected or repairedÞ
0 otherwise

�

ri;t ¼
1 if workstation i at period t is replaced
0 otherwise

�

3.1. System specifications

Suppose there is a new repairable and maintainable series
system of N workstations in a newly established manufacturing
system. It is important to note that other system configurations
(parallel, series–parallel, parallel–series, k-out-of-n, linked net-
work, etc.) can be modeled just by adapting different reliability
and availability functions in order to reflect specific system
structure. It is also assumed that each workstation in the system
is subject to deterioration and has an increasing rate of occurrence
of failure, viðtÞ, where t denotes chronological time,ðt40Þ. In this
research because of increasing failure rate and maintainability of
the system under study, it is assumed that workstations failure
correspond to the well-known Non-Homogeneous Poisson Process
(NHPP) expressed by:

viðtÞ ¼ λi Uβi Ut
βi�1 for i¼ 1; :::;N ð1Þ

where λi and βi are the scale (characteristic life) and the shape
parameters of workstation i respectively. The Non-Homogeneous
Poisson Process is similar to the Homogeneous Poisson Process
(HPP) with the exception that the rate of occurrence of failure is
not constant but is a function of time. It would be desirable to find
a schedule of future maintenance and replacement actions for
each workstation over the planning horizon [0, L]. The interval
[0, L] is segmented into T discrete periods, each of length L/T. At the
end of period t, the system may be either, maintained, replaced, or
no action is to be performed. In most manufacturing systems
maintenance activities in period t reduce the “effective age” of the
workstations and subsequently “failure rate” of the system. This
kind of maintenance activities are known as minimal repairs in the
literature since they do not change the failure characteristic of the
system. To account for the instantaneous changes in workstation
age and failure rate, first the initial age for each workstation is set
to zero. Then let Xi;t denote the effective age of workstation i at the
start of period t, and X′i;t denotes the age of workstation i at the
end of period t. It is clear that:

X′i;t ¼ Xi;tþðL=TÞ for i¼ 1; :::;N; t ¼ 1; :::; T ð2Þ

3.1.1. Maintenance actions
Consider the case where workstation i is maintained at the end

of the period t. The maintenance action effectively reduces the
effective age of the workstation at the start of the next period as

follows:

Xi;tþ1 ¼ αi UX′i;t for i¼ 1; :::;N; t ¼ 1; :::; T and ð0rαir1Þ ð3Þ
The term α is an “improvement factor” which allows for a variable
effect of maintenance on the aging of a workstation. When α¼ 0
the effect of maintenance is to return the workstation to a state of
“good-as-new” and when α¼ 1 maintenance has no effect and the
workstation remains in a state of “bad-as-old”. Note that the
maintenance action at the end of period t partially lowers the rate
of occurrence of failure of workstation i, as shown in Fig. 1.
Furthermore, the maintenance action takes TPMi to be done and
a maintenance cost Mi is incurred at the end of that period.

Here, the proposed improvement factor function developed by
Moghaddam and Usher (2010) is adopted in which a function of
maintenance and replacement costs is considered to reflect the
effectiveness of the maintenance activity.

αi ¼ ϕðRi;MiÞ ¼ ðRi�MiÞ=Ri for i¼ 1; :::;N ð4Þ
The above improvement factor function is based on the ratio of

difference of replacement and maintenance costs, which is always
between zero and one. It is designed so that if a costly main-
tenance action is performed on a workstation, the effective age
improves more than when an inexpensive maintenance is per-
formed. That is, more expensive maintenance results in a greater
amount of age reduction and failure rate improvement. For
example, overhauling an engine results in more age reduction
than changing the oil does. Note that if maintenance cost is equal
to the replacement cost, the numerator of the fraction becomes
zero, and the maintenance action will coincide with a replacement
action. On the other hand, if the maintenance cost equals zero, the
ratio becomes one meaning that maintenance does not affect the
effective age so it can be considered as do nothing action
described next.

3.1.2. Replacement actions
If workstation i is replaced at the end of period t with a new

identical workstation, then it is obvious that the effective age of
the workstation at the start of the next period drops to zero as in
Eq. (5) and the workstation failure behavior is returned to a state
of “good-as-new” in which the rate of occurrence of failure of
workstation i drops from viðX′i;tÞ to við0Þ, as depicted in Fig. 2.
In addition, the replacement action needs a specific amount of
time, TRi, to be performed and the system is charged with a
replacement cost of that workstation equals to the initial acquisi-
tion cost of the workstation i, denoted as Ri.

Xi;tþ1 ¼ 0 for i¼ 1; :::;N; t ¼ 1; :::; T ð5Þ

3.1.3. Do nothing
If no action is planned to be taken in period t, then a continuous

increase will be expected on the rate of occurrence of failure for

Fig. 1. Effect of preventive maintenance on workstation's increasing rate of failure.
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workstation i, as formulated as follows:

X′i;t ¼ Xi;tþðL=TÞ for i¼ 1; :::;N; t ¼ 1; :::; T ð6Þ

Xi;tþ1 ¼ X′i;t for i¼ 1; :::;N; t ¼ 1; :::; T ð7Þ

viðXi;tþ1Þ ¼ viðX′i;tÞ for i¼ 1; :::;N; t ¼ 1; :::; T ð8Þ
When a future schedule of maintenance operations for a

production system is planned, the inevitable costs caused by
unexpected workstation failures must be taken into account.
However it is not possible to exactly determine when such failures
occur but it is possible to anticipate that if the production system
carries a high rate of occurrence of failure through a period, then
the system is at risk of experiencing an upcoming failure resulting
to a significant amount of unexpected failures cost. On the other
hand, a low rate of occurrence of failure in period t should yield a
low cost of failure in that period. In order to take into account
these unplanned failure costs, the calculation of expected number
of failures for each workstation in each period is proposed. The
unexpected failure cost for each workstation is defined as Fi (in
units of $/failure event) then Fi;t the cost of failures attributable to
a workstation i in period t can be determined as follows:

Fi;t ¼ Fi U ðexpected number of failures in ½Xi;t ;X′i;t �Þ

¼ Fi U
Z X′i;t

Xi;t

viðtÞdt ¼ Fi UλiððX′i;tÞβi�ðXi;tÞβi Þ

for i¼ 1; :::;N; t ¼ 1; :::; T ð9Þ

3.1.4. System shutdown cost
In a multi-workstation production system with the failure,

maintenance, and replacement costs, the integrated manufactur-
ing operations and maintenance scheduling problem can be
considered to reduce to a simple problem of finding the optimal
sequence of maintenance, replacement, or do-nothing actions for
each workstation, independent of all other workstations over the
planning horizon. As a result one could simply find the best
sequence of operations for workstation 1 regardless of the opera-
tions taken to workstation 2 and so on. This would result to N
independent scheduling problems. In that case, a system of N
workstations over T time periods, has N � 3T possible maintenance
schedules (i.e., N¼10 and T¼12 have 5,314,410 possible sche-
dules). Such a modeling approach seems unrealistic, as there
should be some overall and large penalty cost whenever an action
is performed on any workstation in the system. It would seem that
there should be some logical advantage to combining maintenance
and replacement actions to be executed at the same time. For
instance, while the system is shut down to replace one work-
station it may make sense to perform maintenance or replacement
actions on some other workstations, even if they are not at their
individual optimum point where maintenance or replacement

would ordinarily be performed. Under this scenario, the optimal
time to perform maintenance or replacement actions on individual
workstation is completely dependent upon the decisions made for
other workstations. As such, consideration of a penalty cost of
shutting down the system is proposed to be charged in period t if
any workstation (one or more) is repaired or replaced in that
period. Consideration of this shutdown cost makes the problem
much more interesting and very difficult to solve as the optimal
sequence of dependent maintenance actions must be determined
simultaneously for all workstations from astronomical 3N�T pos-
sible combinations (i.e., N¼10 and T¼12 have 1.79�1057 possible
schedules). Eq. (10) calculates the total shutdown costs charged
whenever any workstation in each period is repaired or replaced
and it is obvious that if more than one workstation in a period is
undertaken to be repaired or replaced the function results to a
single charge.

Shutdown costs¼ ∑
T

t ¼ 1
S 1� ∏

N

i ¼ 1
ð1�ðmi;tþri;tÞÞ

 !" #
ð10Þ

In the above cost function, the condition of mi;tþri;tr1 should be
held for all workstations over the intervals of the planning horizon
stating that either a maintenance or a replacement action should
be carried out for each workstation.

3.2. Objective functions

3.2.1. Total operational costs
From the definitions of each type of cost, the total operational

costs of the system can be found over the T periods of the planning
horizon. Therefore, the objective function of the total operational
cost can be expressed as

f 1 ¼ Total operational costs

¼ ∑
N

i ¼ 1
∑
T

t ¼ 1
Fi UλiððX′i;tÞβi�ðXi;tÞβi ÞþMi Umi;tþRi Uri;t
� �

þ ∑
T

t ¼ 1
S 1� ∏

N

i ¼ 1
ð1�ðmi;tþri;tÞÞ

 !" #
ð11Þ

Note that mi;t and ri;t are binary variables of maintenance and
replacement actions for workstation i in period t and they cannot
be equal to one simultaneously. The last term of the above
function indicates that if a workstation is maintained or replaced
in each period, the whole system encounters with the shutdown
cost.

3.2.2. System reliability
In order to compute the reliability of a series system of work-

stations, the reliability function for a repairable workstation i in
the period t is defined as Eq. (12) and it can be extended to the
reliability function of the entire production system as presented in
(13); see Elsayed (2012) for more details on reliability of repairable
systems.

Ri;t ¼ exp �
Z X′i;t

Xi;t

viðtÞdt
" #

¼ exp �λiððX′i;tÞβi�ðXi;tÞβi Þ
� �

for i¼ 1; :::;N; t ¼ 1; :::; T ð12Þ

f 2 ¼ System reliability¼ ∏
N

i ¼ 1
∏
T

t ¼ 1
exp �λi ðX′i;tÞβi�ðXi;tÞβi

� �� � ð13Þ

3.2.3. System availability
Unavailability of a workstation can be observed due to the

occurrence of unexpected failures in which the failed workstation
should be replaced by new equipment. The replacement action in this
case takes a specific amount of time to be performed denoted by TRi.

Fig. 2. Effect of preventive/corrective replacement on workstation's increasing rate
of failure.
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Therefore, if no preventive maintenance or replacement action is
performed on a workstation, its unavailability increases over time and
subsequently results to manufacturing breakdown due to increase of
occurrence of unexpected failures. On the other hand, a workstation
may become unavailable due to scheduled preventive maintenance or
replacement activity. Therefore, the availability function for a repair-
able workstation i in period t should be defined in away to reflect two
causes of unavailability. Considering these aspects, the availability of
workstation i is formulated as Eq. (14) and the availability function of
the entire series system of workstations can be derived accordingly as
presented in (15).

Ai;t ¼ ðX′i;t�Xi;t Þ
ðX′i;t�Xi;t ÞþTRi U λi ðX′i;t Þβi�ðXi;t Þβið Þþ ðTPMi :mi;t þTRi :ri;t Þ

for i¼ 1; :::;N; t ¼ 1; :::; T
ð14Þ

f 3 ¼ System availability

¼ ∏
N

i ¼ 1
∏
T

t ¼ 1

ðX′i;t�Xi;tÞ
ðX′i;t�Xi;tÞþTRi Uλi ðX′i;tÞβi�ðXi;tÞβi

� �þðTPMi:mi;tþTRi:ri;tÞ

" #

ð15Þ

3.3. Multi-objective optimization model

Based on the configuration of production system and the
formulated equations and objective functions, the multi-
objective nonlinear mixed-integer optimization model with the
total operational costs, overall reliability, and system availability
can be presented as

Min f 1 ¼ ∑
N

i ¼ 1
∑
T

t ¼ 1
Fi Uλi ðX′i;tÞβi�ðXi;tÞβi

� �þMi Umi;tþRi Uri;t
� �

þ ∑
T

t ¼ 1
S 1� ∏

N

i ¼ 1
ð1�ðmi;tþri;tÞÞ

 !" #

Max f 2 ¼ ∏
N

i ¼ 1
∏
T

t ¼ 1
exp �λi ðX′i;tÞβi�ðXi;tÞβi

� �� �

Max f 3 ¼ ∏
N

i ¼ 1
∏
T

t ¼ 1

ðX′i;t�Xi;tÞ
ðX′i;t�Xi;tÞþTRi Uλi ðX′i;tÞβi�ðXi;tÞβi

� �þðTPMi:mi;tþTRi:ri;tÞ

" #

subject to :

Xi;1 ¼ 0 i¼ 1; :::;N
Xi;t ¼ ð1�mi;t�1Þð1�ri;t�1ÞX′i;t�1 i¼ 1; :::;N; t ¼ 2; :::; T

þmi;t�1ððRi�MiÞ=RiÞX′i;t�1

X′i;t ¼ Xi;tþðL=TÞ i¼ 1; :::;N; t ¼ 1; :::; T
mi;tþri;tr1 i¼ 1; :::;N; t ¼ 1; :::; T
mi;t ; ri;t ¼ 0 or 1 i¼ 1; :::;N; t ¼ 1; :::; T
Xi;t ;X′i;tZ0 i¼ 1; :::;N; t ¼ 1; :::; T

ð16Þ
In the above optimization model, the first set of constraints
indicates that the initial age for each workstation is set to be zero
indicating that all workstations are brand new ones at the
beginning. The second set calculates the effective age of work-
stations depending on which action was taken in the previous
period. If a workstation was replaced in the previous period then
ri;t�1 ¼ 1;mi;t�1 ¼ 0, so that its effective age drops down to Xi;t ¼ 0,
if a workstation is minimally repaired then ri;t�1 ¼ 0; mi;t�1 ¼ 1 and
its effective age becomes Xi;t ¼ ððRi�MiÞ=RiÞX′i;t�1. Finally if no
action was taken, ri;t�1 ¼ 0;mi;t�1 ¼ 0, the workstation continues
its normal aging as Xi;t ¼ X′i;t�1.

4. Solution method: hybrid Monte Carlo goal programming
simulation

Most real-life problems are multi-objective problems in which
objectives under consideration have some sort of conflict with

each other. The classic methodology to solve multi-objective
optimization problems is based on preference-based approach in
which a relative predetermined vector of weights is used to
combine multiple objectives into a single objective function. Other
methods such as ε-constraint method reformulate the multi-
objective optimization problems by just keeping one of the
objectives, placing the others into the set of constraints and then
restricting them by user-specified values. Goal programming
methods try to find the optimal solutions that attain a predefined
target values for one or more objectives by minimizing deviations
from these target values. All of these traditional methods then
employ a point-by-point deterministic optimization approach by
finding single Pareto-optimal solution. Since multi-objective opti-
mization problems have equally important Pareto-optimal solu-
tions, an ideal approach would be finding multiple trade-off
optimal solutions at once and let the decision maker choose the
desired solution based on other higher-level information. The
optimal solutions obtained by the ideal approach will be indepen-
dent from the user's predefined parameters. An effective multi-
objective solution procedure should successfully perform three
following conflicting tasks (Zitzler et al., 2000; Deb, 2001):

(1) The obtained non-dominated solutions should be close
enough to the true Pareto front. Ideally, the non-dominated
solutions should be a subset of the Pareto-optimal set.

(2) The obtained non-dominated solutions should be uniformly
distributed over of the Pareto front in order to provide the
decision-maker a true insight of trade-offs.

(3) The obtained non-dominated solutions should capture the
whole spectrum of the Pareto front. This requires investigating
non-dominated solutions at the extreme ends of the objective
functions space.

In the past three decades numerous multi-objective evolution-
ary algorithms have been developed and tested as trustable and
efficient solution methods to solve multi-objective models (Deb,
2001). However, these algorithms are best known to their cap-
ability of obtaining good or near optimal solutions and attainment
of the exact optimal solution(s) is never guaranteed.

In order to solve the multi-objective model (16), we consider
goal programming method as a subroutine of the solution approach.
The major drawback of the standard goal programming method is
that the method can obtain only one non-dominated solution
which is highly dependent to the decision maker's choice of the
goals and the weights of deviation from the predefined goals.
To rectify this dependability and in order to obtain the true Pareto-
optimal front, the following hybrid Monte Carlo simulation model
is proposed in which randomly generated objective goals and
deviation weights are used in the goal programming submodel in
each simulation replication.

Hybrid Monte Carlo goal programming simulation

Begin
Calculate the minimum and maximum values of the objective
function k

fmin
k ; fmax

k for k¼ 1;2;3
Current replication¼1
While (current replicationrdesignated number of
replications)

Read the parameters of the optimization model (16)
wk ¼ rand ð0;1Þ for k¼ 1;2;3
w′k ¼ wk

∑3
k ¼ 1wk

for k¼ 1;2;3 (17)

goalk ¼ rand ðfmin
k ; fmax

k Þ for k¼ 1;2;3 (18)
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Solve the goal programming submodel (19)
Min weighted goal deviations¼w′1d

þ
1 þw′2d

�
2 þw′3d

�
3

subject to :

f normalized
k þðd�k �dþ

k Þ ¼ goalnormalized
k k¼ 1;2;3

Xi;1 ¼ 0 i¼ 1; :::;N
Xi;t ¼ ð1�mi;t�1Þð1�ri;t�1ÞX′i;t�1þmi;t�1ððRi�MiÞ=RiÞX′i;t�1 i¼ 1; :::;N; t ¼ 2; :::; T
X′i;t ¼ Xi;tþðL=TÞ i¼ 1; :::;N; t ¼ 1; :::; T
mi;tþri;tr1 i¼ 1; :::;N; t ¼ 1; :::; T
mi;t ; ri;t ¼ 0 or 1 i¼ 1; :::;N; t ¼ 1; :::; T
Xi;t ;X′i;tZ0 i¼ 1; :::;N; t ¼ 1; :::; T

(19)

Current replication¼Current replicationþ1
End while

End

It is useful to mention that in the goal programming submodel
(19), linear normalization method is adopted to adjust the magni-
tude of the objective functions values and the designated goals.

f normalized
k ¼ f k�fmin

k

fmax
k �fmin

k

for k¼ 1;2;3 ð20Þ

goalnormalized
k ¼ goalk�fmin

k

fmax
k �fmin

k

for k¼ 1;2;3 ð21Þ

5. Manufacturing application and computational results

5.1. Data settings

In order to illustrate the model and show the effectiveness of
the proposed solution method in a real manufacturing environ-
ment, a representative data set is developed as shown in Table 1.
The reliability characteristics of the workstations were determined
from the historical failures of different computer numerical control
(CNC) machines including milling, metalworking lathe, drilling,
surface grinding, cylindrical grinding, and welding in a manufac-
turing setting. In a CNC machine, a failure (also known as crash)
occurs when the machine moves in such a way that is harmful to
the machine, tools, or parts being manufactured, sometimes
resulting in bending or breakage of cutting tools, accessory clamps,
vices, and fixtures, or causing damage to the machine itself by
bending guide rails, breaking drive screws, or causing structural
components to crack or deform under strain. A minor crash may
not damage the machine or tools, but may damage the part being
machined so that it must be scrapped. Since the CNC machines are
repairable systems the scale and shape parameters of the Non-
Homogeneous Poisson Process (NHPP) representing the failure
distribution of the workstations were obtained by fitting an NHPP
function to the observed failure times. In addition to the failure

characteristics of workstations, costs of possible preventive main-
tenance and replacement actions along with unexpected failure
costs were estimated from the recorded previous actions. The
unexpected failure costs are generally considered much higher
than the simple replacement of unfailed but degraded compo-
nents. The shutdown cost of the production system is assumed to
be $10,000 over a planning horizon of 12 months. It is also
assumed that a maintenance action (including inspection and
repair if required) takes a complete working day but a replacement
action can be done in ¼ of a working day of a two 8 hours shifts (i.
e., 16 and 4 hours respectively). Under this setting, the multi-
objective problem (16) has 470 variables, 240 of which are binary
variables, and 360 functional constraints, 110 of which are non-
linear. Visual Basic programming environment is utilized to con-
struct the simulation model and LINGO software is acquired to
solve the goal programming submodel to be all run on a laptop
computer with 1.7 GHz Intel Core Duo CPU and 2 GB RAM.

5.2. Distribution of the non-dominated solutions

Fig. 3 illustrates the obtained Pareto-optimal solutions in
3-dimensional objective functions space of cost, reliability and avail-
ability using the proposed solution method; the detailed computa-
tional results are presented in Table A1 in the Appendix. In Fig. 4, the
trade-off curves of the objective functions and distributions of the
obtained solutions are also graphed using plot-matrix chart. As can be
observed, the non-dominated solutions uniformly cover a broad area
of the objective functions' space being able to capture the existing
trade-off between the total operational cost, reliability, and availability
of the system. As stated in Section 4 the first task in solving a multi-
objective optimization problem is to identify non-dominated solutions
as close as possible to the true Pareto-optimal front. Other necessary
features to be carried are that the obtained non-dominated solutions
must be uniformly andwidely distributed in the Pareto-optimal region
reflecting the existing trade-off among different objective functions.
These tasks are achieved by generating uniform objective goals along
with random weights for the deviations of objective functions in the
simulation process and then by solving the resulting goal program-
ming optimization model in each replication.

In order to investigate of the effect of the uniform probability
distribution used to generate random goals the performance of the
algorithm is also examined by generating random goals from normal
distribution. Therefore Eq. (18) in the algorithm is replaced by Eq. (22)
resulting to a new pattern of Pareto-optimal solutions depicted in
Figs. 5 and 6; refer to the detailed computational results presented in
Table A2 in the Appendix. This modification results to non-dominated
solutions crowded around the mean of the normal distribution,
ðfmax

k þ fmin
k Þ=2, being incapable of capturing the entire trade-off of

Table 1
Characteristics of workstations in the production system.

Workstation Scale
parameter

Shape
parameter

Failure
cost ($)

Maintenance
cost ($)

Replacement
cost ($)

1 0.0022 2.20 5000 625 2500
2 0.0035 2.00 4200 525 2100
3 0.0038 2.05 5600 700 2800
4 0.0034 1.90 3600 450 1800
5 0.0032 1.75 4100 513 2050
6 0.0028 2.10 5100 638 2550
7 0.0015 2.25 3500 440 1750
8 0.0012 1.80 4300 537 2150
9 0.0025 1.85 4200 525 2100

10 0.0020 2.15 5000 625 2500
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Fig. 3. Pareto-optimal solutions using generated uniform random goals.
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the objectives as seen in Fig. 6 so the third task in multi-objective
solution procedure is not fully achieved.

goalk ¼Φ�1ðrandð0;1Þ; ðfmax
k þ fmin

k Þ=2; ðfmax
k �fmin

k Þ=6Þ for k¼ 1;2;3

ð22Þ
Another modification is performed by incorporating deterministic

ideal goals and randomweights as in Eq. (23) that results to another
set of non-dominated solution depicted in Figs. 7 and 8 and in
Table A3 in the Appendix. This alteration results to better trade-off
curves than the trade-offs obtained by normal goals in reaching to
the extreme values of the objectives but having some uncovered
areas in objectives space suffers their uniformity pattern in covering
the entire region.

goal1 ¼ fmin
1

goalk ¼ fmax
k for k¼ 2;3

ð23Þ

The above trade-off curves disclose an important aspect of the
systems optimal operation plans. It can be observed that by
increasing the total operational costs of the production system
(because of performing more frequent preventive maintenance
and replacement actions) the overall reliability improves but the
availability of the system declines mainly due to increase in length
and frequency of the scheduled downtimes. This may look in
contrast with the general understanding of reliability and avail-
ability of systems as increase in reliability always results to
availability improvement. This is true for systems with short
maintenance and repair times but there are many other instances
with long maintenance and repair times in which performing
sequence of preventive maintenance actions in order to improve
the reliability suffers the availability of the system. As a result even
a system with a low reliability could have a high availability if the
time to repair is short. A simple example is taking a car more often,
than it is needed, to a repair shop where overall reliability is
enhanced but the car will subsequently be more unavailable to the
owner especially when the repair times are very long. Therefore,
the direct benefit of obtaining the above trade-off curves is to
provide ability to the decision maker to better understand the
existing interactions among the conflicting objectives of the
system to focus on the areas for large marginal improvements
without significant sacrifice in other performance measures.

5.3. Structure of the non-dominated solutions

Tables 2–4 depict examples of Pareto-optimal schedules using
three versions of the hybrid algorithm. Note that in presented
Pareto-optimal schedules most maintenance and replacement
actions tend to occur in the same period reflecting the effect of
the shutdown penalty cost in the system. It is also interesting to
note that once a maintenance or replacement action occurs,
it is often followed by a period of inactivity. Such observations
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Fig. 4. Trade-off curves and distribution of Pareto-optimal solutions using generated uniform random goals.
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Fig. 5. Pareto-optimal solutions using generated normal random goals.
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Fig. 7. Pareto-optimal solutions using ideal goals.

Table 2
An example of Pareto-optimal schedule with the uniform random goals and
random deviation weights. (w1¼0.4590, w2¼0.3426, w3¼0.1983, goal1¼$100,847,
goal2¼0.3135, goal3¼0.4343) (cost¼$100,253, reliability¼0.3433, availability¼
0.8028).

Workstation Month

1 2 3 4 5 6 7 8 9 10 11 12

1 – – – R – – R – – R – –

2 – – – R – R – – – R – –

3 – – – R – – R – – R – –

4 – – – R – – R – – R – –

5 – – – R – – R – – – – –

6 – – – R – – R – – R – –

7 – – – R – R M – – R – –

8 – – – – – R – – – M – –

9 – – – R – – R – – – – –

10 – – – M – – R – – R – –

Table 3
An example of Pareto-optimal schedule with the normal goals and random deviation
weights. (w1¼0.4017, w2¼0.4587, w3¼0.1396, goal1¼$95,977, goal2¼0.4186,
goal3¼0.6808) (cost¼$111,058, reliability¼0.3680, availability¼0.7731).

Workstation Month

1 2 3 4 5 6 7 8 9 10 11 12

1 – – – R – – R – – R – –

2 – – – R – M M – – R – –

3 – – – R – – R – – R – –

4 – – – R – R M – – R – –

5 – – – R – – M – – M – –

6 – – – R – – R – – R – –

7 – – – R – – R – – R – –

8 – – – – – R – – – M – –

9 – – – R – – M – – R – –

10 – – – R – – R – – R – –

Table 4
An example of Pareto-optimal schedule with the ideal goals and random deviation
weights. (w1¼0.1361, w2¼0.7606, w3¼0.1033, goal1¼$18,207, goal2¼1, goal3¼1)
(cost¼$164,342, reliability¼0.5342, availability¼0.6570)

Workstation Month

1 2 3 4 5 6 7 8 9 10 11 12

1 – R – R – R – R – R – –

2 – R – R – R – R – R – –

3 – R – – – R – R – R – –

4 – R – – – R – M – R – –

5 – M – M – M – R – – – –

6 – R – R – – – R – R – –

7 – R – R – R – R – R – –

8 – M – M – M – R – – – –

9 – – – R – – – R – R – –

10 – R – R – R – R – R – –
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can perhaps lead to the development of simple heuristic solution
procedures for large-scale problems in future research extensions.

5.4. Evaluation of the proposed hybrid algorithm

In order to quantitatively evaluate and compare three different
patterns for generated random objective goals employed in the
proposed hybrid algorithm the hyper volume metric is adopted. The
hyper volume metric calculates an approximation of the hypercube
volume formed by the non-dominated solutions in the objective
functions space (Van Veldhuizen, 1999). This metric can measure the
necessary tasks in solving multi-objective optimization problems;
closeness to the true Prato-optimal front, spread of non-dominated
solutions, and extent of the generated solutions. A volume, vi, can be
constructed by each non-dominated solution and a selected reference
point such as f nadir to form the diagonal corners of the hypercube.
Then the approximate volume of the hypercube can be found as the
union of all these Q volumes as presented in Eq. (24). This perfor-
mance measure has been used and recommended by many research-
ers to evaluate Pareto sets obtained by multi-objective evolutionary
algorithms (Zitzler et al., 2000; Van Veldhuizen and Lamont, 2000).
However the concept can be applied to any type of multi-objective
optimization solution method.

HV ¼ volume [ Qj j
i ¼ 1vi

� �
ð24Þ

In order to calculate the hyper volume metric, a reference point
such as the nadir solution should be selected. In this research, the
nadir solution, f nadir (C¼$356,710, R¼0.0190, A¼0.4003) is
selected as the reference point (the worst obtained values for
each objective function). Because of different order of magnitude
of total operational costs, system reliability and availability, the
normalized values of the non-dominated solutions along with
normalized nadir point f normalized

nadir (C¼1, R¼0, A¼0) are used to
calculate the HVnormalized (with maximum possible value of one).
Then the volume formed by the reference point and the non-

dominated solutions is to be calculated. To prevent overlapping of
the volumes, the non-dominated solutions are sorted so the f 1;1 is
the first value of the first objective function (cost), f 2;1 is the first
value of the second objective function (reliability) and f 3;1 is the
first value of the third objective function (availability). The rest of
the volumes are calculated with respect to the adjacent sorted
non-dominated solutions using the following equation:

HVnormalized ¼ ðf normalized
1;1 �Cnormalized

nadir Þ � ðf normalized
2;1 �Rnormalized

nadir Þ
			

�ðf normalized
3;1 �Anormalized

nadir Þ
			þ ∑

Qj j

i ¼ 2
ðf normalized

1;i �f normalized
1;i�1 Þ

			

�ðf normalized
2;i �Rnormalized

nadir Þ � ðf normalized
3;i �Anormalized

nadir Þ
			
ð25Þ

Table 5 presents the normalized hyper volumes formed by the
non-dominated solutions using random goals generated from
uniform and normal distributions and also by the constant ideal
goals. Observing the hyper volume values, it can be concluded
that the hybrid algorithm using uniform random goals generates
non-dominated solutions that form the largest hypercube, HV¼
0.499016, proving the capability of the uniform distribution in
generating diverse and well-distributed solutions while being
close enough to the true Pareto-optimal front.
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Fig. 8. Trade-off curves and distribution of Pareto-optimal solutions using ideal goals.

Table 5
Evaluating closeness and diversity of the non-
dominated solutions.

Distribution pattern Hyper volume (HV)

Uniform random goals 0.499016
Normal random goals 0.434812
Ideal goals 0.436751
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6. Conclusions and future research

In this research, a new multi-objective nonlinear mixed-integer
optimization model to determine Pareto-optimal preventive main-
tenance and replacement schedules for a repairable production
system is presented. In order to solve the multi-objective model, a
Monte Carlo simulation procedure integrated with goal program-
ming method is proposed. The model and the solution technique is
found to be an effective approach in solving preventive main-
tenance and replacement planning problems encountered in
manufacturing systems. The method identifies non-dominated
solutions close the true Pareto optimal front and uniformly
distributed over the objectives space capturing the existing
trade-off among different objective functions. Such a modeling
approach and proposed solution method will be useful for main-
tenance planners and engineers tasked with the problem of
developing recommended maintenance plans for complex produc-
tions systems.

A direct extension to this research would be incorporation of
probability distributions to some deterministic parameters of the

model such as shutdown cost due to unsatisfied stochastic and
time-varying demands. In addition, the observed patterns of the
optimal schedules can provide a possible venue for developing
simple heuristic solution procedures for large-scale problems in
future research efforts.
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Appendix A. Detailed computational results
of the manufacturing application

See Tables A1–A3

Table A1
Pareto-optimal solutions using generated uniform random goals.

Replication w1 w2 w3 Cost goal Reliability goal Availability goal Cost Reliability Availability

1 0.2923 0.5789 0.1288 332,434 0.8790 0.8379 332,569 0.7059 0.4385
2 0.5080 0.3626 0.1294 121,939 0.4164 0.3142 122,708 0.4078 0.8024
3 0.0830 0.4224 0.4946 26,669 0.0821 0.9653 44,880 0.0912 0.9326
4 0.5597 0.1552 0.2851 94,689 0.4084 0.6234 94,425 0.3348 0.8278
5 0.0484 0.8479 0.1037 302,088 0.6765 0.4387 312,279 0.6765 0.4460
6 0.5693 0.3315 0.0991 106,959 0.7381 0.9179 107,459 0.3504 0.8258
7 0.2904 0.0753 0.6343 104,532 0.7930 0.2387 101,704 0.3482 0.8028
8 0.1694 0.5635 0.2671 69,847 0.9791 0.3222 162,691 0.4791 0.7518
9 0.3176 0.2440 0.4385 234,941 0.7639 0.0475 234,918 0.5863 0.6353

10 0.2044 0.3128 0.4828 185,687 0.0364 0.7844 41,686 0.0434 0.9503
11 0.6343 0.0241 0.3415 37,142 0.6515 0.2680 29,587 0.0243 0.9305
12 0.2939 0.1479 0.5582 63,186 0.9565 0.1019 63,890 0.1546 0.8987
13 0.3486 0.1550 0.4964 80,115 0.3421 0.0112 80,477 0.2648 0.8509
14 0.3237 0.2469 0.4294 383,613 0.6639 0.4836 309,057 0.6647 0.4841
15 0.3475 0.3656 0.2868 307,460 0.9006 0.4188 307,332 0.6719 0.4388
16 0.5486 0.0858 0.3656 64,253 0.2052 0.2199 64,263 0.1796 0.8754
17 0.7919 0.1559 0.0522 86,444 0.1809 0.6924 84,432 0.3014 0.8289
18 0.2820 0.3128 0.4053 149,559 0.4734 0.9146 143,878 0.4505 0.7673
19 0.4969 0.4530 0.0502 258,540 0.6018 0.0183 258,230 0.6025 0.5884
20 0.5570 0.3670 0.0760 155,801 0.9953 0.3344 155,751 0.4892 0.7590
21 0.2860 0.5342 0.1798 111,089 0.2865 0.7488 110,819 0.3978 0.8045
22 0.3917 0.4443 0.1640 374,270 0.9260 0.0257 356,710 0.7311 0.4003
23 0.2725 0.0867 0.6408 256,555 0.8504 0.7481 170,717 0.4834 0.7488
24 0.5877 0.2719 0.1404 110,925 0.4054 0.3394 129,180 0.4201 0.7855
25 0.5467 0.2741 0.1792 293,454 0.7781 0.6534 292,676 0.6493 0.5130
26 0.1439 0.5267 0.3294 183,591 0.6109 0.8040 215,110 0.5507 0.6569
27 0.0148 0.6784 0.3068 145,915 0.9109 0.0205 343,880 0.7072 0.4090
28 0.4325 0.2986 0.2689 20,039 0.9928 0.4494 164,494 0.4972 0.7367
29 0.1314 0.2190 0.6496 264,900 0.7594 0.0466 264,942 0.6294 0.5924
30 0.1026 0.1352 0.7622 160,532 0.4441 0.2160 194,685 0.5294 0.6948
31 0.5074 0.1598 0.3328 36,652 0.0846 0.1117 36,539 0.0851 0.8948
32 0.0537 0.3227 0.6236 221,733 0.7412 0.9599 71,722 0.2488 0.8700
33 0.4289 0.5354 0.0357 47,952 0.8199 0.5476 97,503 0.3403 0.8086
34 0.4705 0.2834 0.2461 103,841 0.8324 0.6384 101,704 0.3482 0.8128
35 0.8242 0.1314 0.0444 49,370 0.1936 0.9587 50,251 0.1167 0.9116
36 0.1111 0.4446 0.4443 42,666 0.8344 0.0566 256,241 0.6227 0.5214
37 0.3299 0.3820 0.2882 230,770 0.8738 0.0958 230,697 0.5452 0.6061
38 0.0157 0.7416 0.2427 282,329 0.2191 0.7843 150,185 0.4682 0.7848
39 0.4538 0.5238 0.0223 164,424 0.7846 0.3716 191,032 0.5196 0.6463
40 0.5339 0.0361 0.4300 330,133 0.5766 0.2763 259,845 0.5774 0.5617
41 0.2101 0.5714 0.2185 364,187 0.8785 0.7775 356,710 0.7311 0.4003
42 0.5347 0.2821 0.1833 276,947 0.6626 0.0963 276,947 0.6105 0.5522
43 0.2777 0.2425 0.4797 117,834 0.5858 0.2428 190,805 0.4822 0.7101
44 0.1083 0.2048 0.6869 181,830 0.9292 0.0661 220,006 0.5473 0.6568
45 0.3098 0.1359 0.5543 130,475 0.3763 0.3130 139,667 0.4278 0.7857
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Table A2
Pareto-optimal solutions using generated normal random goals.

Replication w1 w2 w3 Cost goal Reliability goal Availability goal Cost Reliability Availability

1 0.0870 0.3522 0.5608 98,644 0.6751 0.2692 304,871 0.6753 0.4684
2 0.1309 0.7283 0.1407 226,251 0.5820 0.8637 232,649 0.5823 0.5902
3 0.3167 0.6360 0.0473 137,181 0.5947 0.3075 156,715 0.4749 0.7006
4 0.0068 0.0393 0.9539 192,578 0.4418 0.4517 174,105 0.4728 0.6838
5 0.1929 0.7362 0.0709 127,096 0.6263 0.6613 262,462 0.6254 0.5301
6 0.0718 0.1600 0.7682 222,314 0.5388 0.7353 174,871 0.4879 0.7367
7 0.2406 0.3782 0.3812 201,405 0.3905 0.4820 174,477 0.4637 0.6762
8 0.5920 0.1754 0.2326 231,958 0.6104 0.6454 219,760 0.5358 0.6462
9 0.2496 0.4937 0.2566 161,523 0.6650 0.4898 285,347 0.6488 0.5046

10 0.3071 0.1678 0.5251 180,813 0.6119 0.3884 180,873 0.4954 0.6516
11 0.1839 0.2375 0.5787 227,159 0.5706 0.4315 227,142 0.5709 0.6011
12 0.6956 0.1896 0.1148 182,149 0.3229 0.2877 179,683 0.4841 0.7392
13 0.2442 0.5573 0.1985 306,182 0.4018 0.5750 218,766 0.5505 0.6200
14 0.0149 0.7060 0.2791 156,535 0.6121 0.4474 260,538 0.6121 0.5729
15 0.5928 0.0558 0.3514 94,682 0.6693 0.6240 94,813 0.2940 0.8558
16 0.7062 0.1356 0.1582 105,709 0.5135 0.3998 105,600 0.3401 0.8239
17 0.2981 0.3573 0.3446 199,160 0.5063 0.5599 196,822 0.5147 0.6151
18 0.4656 0.5172 0.0172 161,157 0.6954 0.2384 171,676 0.5094 0.6653
19 0.2020 0.3325 0.4655 248,881 0.6100 0.6625 192,875 0.5227 0.6623
20 0.0664 0.5337 0.3998 173,400 0.3605 0.7040 163,455 0.4758 0.7125
21 0.2435 0.4968 0.2597 180,056 0.5939 0.5749 206,576 0.5696 0.5854
22 0.1519 0.4536 0.3944 268,919 0.5611 0.6583 194,876 0.5350 0.6570
23 0.5268 0.2658 0.2074 157,021 0.3579 0.6847 154,557 0.4689 0.7178
24 0.2453 0.6100 0.1447 280,333 0.4816 0.8396 166,472 0.4857 0.7073
25 0.3608 0.4154 0.2238 151,109 0.3675 0.4314 146,048 0.4659 0.7572
26 0.3614 0.5893 0.0494 198,842 0.3860 0.5008 179,678 0.4875 0.7176
27 0.3280 0.6000 0.0720 173,098 0.3500 0.6492 160,871 0.4563 0.7480
28 0.6117 0.1160 0.2723 247,688 0.6328 0.6935 201,003 0.5089 0.6957
29 0.6173 0.0284 0.3543 175,918 0.1595 0.4120 171,029 0.4894 0.7241
30 0.2549 0.1759 0.5692 189,002 0.4951 0.6342 188,220 0.5045 0.6569
31 0.0665 0.6119 0.3216 272,417 0.7224 0.4224 343,863 0.7222 0.4207
32 0.4017 0.4587 0.1396 95,977 0.4186 0.6808 129,640 0.4182 0.7842
33 0.4093 0.5418 0.0488 212,261 0.4916 0.6870 203,365 0.5221 0.6900
34 0.2472 0.4147 0.3381 185,561 0.6853 0.6420 208,170 0.5372 0.6862
35 0.4475 0.0331 0.5194 251,453 0.3684 0.4737 224,725 0.5289 0.6077
36 0.4577 0.1912 0.3511 191,493 0.7221 0.5764 189,245 0.4959 0.6761
37 0.3447 0.3307 0.3246 233,306 0.4500 0.5845 212,583 0.5433 0.6409
38 0.4184 0.4848 0.0968 286,366 0.4264 0.6414 195,088 0.5275 0.6457
39 0.1436 0.4374 0.4190 326,997 0.6076 0.5309 279,058 0.6104 0.5389
40 0.5110 0.0613 0.4277 68,435 0.7748 0.7259 68,380 0.2186 0.8964
41 0.4922 0.3930 0.1149 243,937 0.4777 0.4450 232,386 0.5777 0.5832
42 0.1200 0.5221 0.3579 150,080 0.1222 0.6816 140,454 0.4311 0.7789
43 0.0421 0.3235 0.6344 208,385 0.4226 0.6462 168,220 0.4850 0.7304
44 0.3130 0.4555 0.2315 217,972 0.5416 0.1597 217,900 0.5417 0.6889
45 0.2890 0.3361 0.3749 151,793 0.6157 0.1128 193,002 0.5278 0.6203
46 0.4929 0.4753 0.0318 247,703 0.6829 0.6869 247,754 0.6052 0.5617
47 0.5025 0.3509 0.1466 140,290 0.3281 0.5262 140,293 0.4585 0.7521
48 0.2431 0.0368 0.7200 223,161 1.0234 0.6610 212,830 0.5287 0.6624
49 0.5444 0.3610 0.0946 293,614 0.6398 0.8434 286,830 0.6407 0.5259
50 0.5085 0.3849 0.1066 81,335 0.4257 0.4898 164,517 0.4628 0.7267
51 0.6362 0.1943 0.1696 179,186 0.5926 0.3357 179,796 0.5271 0.7006
52 0.5637 0.4038 0.0326 153,207 0.6521 0.5343 171,102 0.5210 0.7246

Table A3
Pareto-optimal solutions using ideal goals.

Replication w1 w2 w3 Cost goal Reliability goal Availability goal Cost Reliability Availability

1 0.1681 0.8275 0.0044 18,208 1.0000 1.0000 288,303 0.6562 0.4801
2 0.1525 0.6337 0.2138 18,208 1.0000 1.0000 18,208 0.0190 0.9675
3 0.0625 0.6656 0.2718 18,208 1.0000 1.0000 345,999 0.7246 0.4173
4 0.4029 0.5016 0.0955 18,208 1.0000 1.0000 173,628 0.5068 0.6845
5 0.0677 0.6435 0.2888 18,208 1.0000 1.0000 207,333 0.5703 0.6050
6 0.5024 0.3039 0.1938 18,208 1.0000 1.0000 88,452 0.2679 0.8448
7 0.4891 0.2210 0.2899 18,208 1.0000 1.0000 45,956 0.1107 0.9264
8 0.0062 0.7211 0.2727 18,208 1.0000 1.0000 352,426 0.7285 0.4070
9 0.0077 0.5183 0.4741 18,208 1.0000 1.0000 196,822 0.5096 0.6789

10 0.0417 0.6170 0.3413 18,208 1.0000 1.0000 341,727 0.7199 0.4242
11 0.5052 0.4660 0.0289 18,208 1.0000 1.0000 171,098 0.5001 0.6901
12 0.4816 0.2644 0.2539 18,208 1.0000 1.0000 70,467 0.2232 0.8720
13 0.1177 0.4314 0.4509 18,208 1.0000 1.0000 78,357 0.2736 0.8450
14 0.0414 0.6188 0.3398 18,208 1.0000 1.0000 339,255 0.7158 0.4277
15 0.7614 0.2326 0.0060 18,208 1.0000 1.0000 58,019 0.1126 0.9189
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Table A3 (continued )

Replication w1 w2 w3 Cost goal Reliability goal Availability goal Cost Reliability Availability

16 0.4125 0.3234 0.2641 18,208 1.0000 1.0000 69,114 0.2023 0.8786
17 0.0259 0.4680 0.5061 18,208 1.0000 1.0000 138,292 0.4178 0.7549
18 0.0448 0.6475 0.3077 18,208 1.0000 1.0000 348,141 0.7259 0.4138
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27 0.3375 0.6111 0.0514 18,208 1.0000 1.0000 275,718 0.6212 0.5390
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34 0.2326 0.5773 0.1902 18,208 1.0000 1.0000 220,456 0.5757 0.5951
35 0.0102 0.4232 0.5666 18,208 1.0000 1.0000 140,743 0.4207 0.7488
36 0.4032 0.3927 0.2041 18,208 1.0000 1.0000 140,032 0.4199 0.7487
37 0.2385 0.4051 0.3564 18,208 1.0000 1.0000 142,424 0.4291 0.7427
38 0.3800 0.5027 0.1173 18,208 1.0000 1.0000 166,527 0.4998 0.6788
39 0.1701 0.3803 0.4495 18,208 1.0000 1.0000 107,875 0.3661 0.7861
40 0.3136 0.4863 0.2001 18,208 1.0000 1.0000 189,163 0.4922 0.6958
41 0.7735 0.1871 0.0394 18,208 1.0000 1.0000 46,500 0.0987 0.9255
42 0.2794 0.3967 0.3239 18,208 1.0000 1.0000 120,249 0.3753 0.7797
43 0.0735 0.5006 0.4260 18,208 1.0000 1.0000 134,543 0.4328 0.7366
44 0.1048 0.6455 0.2497 18,208 1.0000 1.0000 130,649 0.4526 0.7188
45 0.5102 0.3288 0.1610 18,208 1.0000 1.0000 138,111 0.4075 0.7548
46 0.0057 0.6972 0.2971 18,208 1.0000 1.0000 345,999 0.7246 0.4173
47 0.3534 0.2907 0.3560 18,208 1.0000 1.0000 91,748 0.2804 0.8382
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52 0.4177 0.5744 0.0079 18,208 1.0000 1.0000 157,972 0.5243 0.6734
53 0.0778 0.3684 0.5538 18,208 1.0000 1.0000 68,328 0.2751 0.8450
54 0.1884 0.7099 0.1017 18,208 1.0000 1.0000 70,386 0.2811 0.8382
55 0.0853 0.6499 0.2648 18,208 1.0000 1.0000 236,011 0.5975 0.5663
56 0.3489 0.4178 0.2332 18,208 1.0000 1.0000 163,932 0.5106 0.6845
57 0.4551 0.3941 0.1508 18,208 1.0000 1.0000 159,798 0.4969 0.6958
58 0.1023 0.7236 0.1741 18,208 1.0000 1.0000 192,132 0.5592 0.6150
59 0.2782 0.4198 0.3019 18,208 1.0000 1.0000 153,855 0.5082 0.6845
60 0.3231 0.3799 0.2970 18,208 1.0000 1.0000 151,815 0.5009 0.6901
61 0.0145 0.2803 0.7052 18,208 1.0000 1.0000 70,779 0.2246 0.8721
62 0.0156 0.2975 0.6869 18,208 1.0000 1.0000 69,359 0.2053 0.8787
63 0.0237 0.5322 0.4440 18,208 1.0000 1.0000 97,013 0.3785 0.7863
64 0.3446 0.2968 0.3586 18,208 1.0000 1.0000 93,070 0.3560 0.7990
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