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Cognitive Cellular Networks: A Q-Learning
Framework for Self-Organizing Networks

Stephen S. Mwanje, Lars Christoph Schmelz, and Andreas Mitschele-Thiel

Abstract—Self-Organizing Networks (SON) aim at simplifying
Network Management (NM) and optimizing network capital
and operational expenditure through automation. Most SON
Functions (SFs) are rule-based control structures which evaluate
metrics and decide actions based on a set of rules. These rigid
structures are, however, very complex to design since rules must
be derived for each SF in each possible scenario. In practice
rules only support generic behavior which cannot respond to
the specific scenarios in each network or cell. Moreover, SON
coordination becomes very complicated with such varied control
structures. In this paper, we propose to advance SON towards
Cognitive Cellular Networks (CCN) by adding cognition that
enables the SFs to independently learn the required optimal
configurations. We propose a generalized Q-learning framework
for the CCN functions and show how the framework fits to
a general SF control loop. We then apply this framework to
two functions on Mobility Robustness Optimization (MRO) and
Mobility Load Balancing (MLB). Our results show that the MRO
function learns to optimize handover performance while the MLB
function learns to distribute instantaneous load among cells.

Index Terms—SON; Cognitive Cellular Networks; MRO; MLB

I. INTRODUCTION

OPTIMAL cell sizes in cellular networks are continuously
decreasing, increasing the number and density of cells

especially with the introduction of LTE. This has resulted
in higher capital and operational expenses, and increased
complexity of network operation. Self-Organizing Networks
(SON) promise to minimize these challenges through automa-
tion of network operations. SON Functions (SFs) have been
defined, e.g., in the LTE SON standard [1], with each SF
representing a function that can be automated. Examples are
Mobility Robustness Optimization (MRO), Mobility Load Bal-
ancing (MLB), Coverage and Capacity Optimization (CCO) or
Inter-Cell Interference Coordination (ICIC). These functions
have traditionally been developed as rule-based controllers
which require the designers to have full understanding of
the function’s behavior. We propose to advance SFs to CCN
functions and implement them as cognitive, Q-Learning (QL)
based agents that act in the network and use the network’s
feedback to learn the effects of their actions.

The paper is organized as follows: Section II briefly sum-
marizes the related works, Section III discusses QL and its
application to CCN functions while Section III describes the
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simulation scenario and environment. We apply the CCN con-
cept to two candidate functions on MRO and MLB presented
in sections IV and V, and conclude with a summary of the
presented work in Section VI.

II. SON FUNCTIONS: THE STATE OF THE ART

Each SF is characterized by a trigger that initiates the execu-
tion of an associated SON algorithm, which in turn configures
a set of network parameters in order to optimize a particular
metric. The basic SF (in Fig. 1a) is a control agent that: 1)
observes the network to evaluate trigger conditions, 2) takes an
action to optimize its metrics and 3) gets feedback on the effect
of that action on the network. Accordingly, most SFs have
been developed as rule-based controllers which select actions
by applying defined rules on the observed metrics. Examples
controllers are [2]–[5] for Handover (HO) optimization; [6],
[7] for tilt optimization and [8], [9] for load balancing. Such an
implementation, however, requires that the rules include all the
possible scenarios, and that the rule designer fully understands
the effects of each action in each of these scenarios. In reality,
this is not possible even for a system expert. The biggest
challenge is that these control loops create rigid structures
that are very complex to design and hard to evolve as more
functions are deployed in the network. Furthermore, they only
allow for generic behavior which cannot respond to specific
contexts in each network or cell.

To counter these challenges, we advance SON to Cognitive
Cellular Networks (CCN) by adding cognition to SFs. The
CCN concept advances SON beyond the rule based control
loops towards artificial-intelligence based cognitive functions
that autonomously learn the optimal configurations. Specifi-
cally, we propose to design CCN functions as QL agents that
act and, using network’s feedback, learn from the effects of
their actions. QL has been applied in some SFs with positive
results, e.g., in [10] [11] [12], but we advance this and propose
a QL framework that is applicable to all optimization func-
tions. We demonstrate the benefits of applying the framework
with extended versions of the results in [13], [14].

III. Q-LEARNING FRAMEWORK FOR SON FUNCTIONS

A. Q-Learning (QL)

Multiple approaches have been used to develop SFs. Re-
inforcement Learning (RL), mainly QL [15], offers the best
promise as it allows the network to learn and improve its
solutions through experience. QL is a model-free RL algo-
rithm which, using Temporal Difference (TD), solves learning
problems even without models. A QL problem is the triple
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Fig. 1. (a) The abstract SON Controller and (b) the QL process

(X;A; r), where, X,A are respectively the sets of all possible
states and actions and r :X·A·X ′→ R is the reward function.

Assume the learning agent (Q-learner) in Fig. 1b, which
applies an action at ∈ A at time t when the environment is
in state xt∈X . The environment undergoes a transition into
a new state xt+1 ∈X and the Q-learner receives an (quasi)
immediate reward rt∈R. The learner wishes to choose actions
that maximize its discounted cumulative rewards over time.

Assuming π a policy of choosing actions, we define a value
function (the Q-value, Qπ(x, a)) for every state action pair, as
the expected total discounted reward received when starting
with action a in state x and following the policy π thereafter.

For the optimal policy π∗ [16]:

Qπ
∗
(xt, at) = E

[
r(xt, at)+γ ·max

at+1

{Qπ
∗
(xt+1, at+1)}

]
(1)

where γ ∈ (0, 1) is the discount factor that balances between
the immediate and future rewards. QL maintains estimates
of the Q-values, denoted as Q̂, and adjusts them based on
received rewards using the TD error e(xt, at) [16]. e(xt, at)
is the difference between the actual Q-value (Q(xt, at)) and
its current estimate (Q̂(xt, at)). Thus the estimate at time t+1
is updated by adding a small portion (i.e. α) of the error
(difference) to the current estimate as:

Q̂t+1(xt, at) = Q̂t(xt, at) + αt ·
{
Q(xt, at)− Q̂(xt, at)

}
= (1− αt)Q̂t(xt, at) + αt ·

{
r(xt, at)+

γ ·max
at+1

Q(xt+1, at+1)
}
. (2)

α ∈ (0, 1] is the learning rate that balances new information
against previous knowledge. α= 0 implies no learning while
α=1 means that only the latest information is considered and
the old knowledge completely disregarded.

B. QL Process and the Exploration of Actions

QL does not specify the exact actions taken in each state.
But if each Q-value is updated infinitely often, Q̂∗ converges
to Q∗ with probability 1, provided that α is reduced to 0
at a suitable rate [17]. Multiple approaches for finding the
compromise between exploration and exploitation of the state-
action space exist, the most common being ε-greedy [16]. We
use here the ε-first strategy which is a special form of ε-greedy.

With ε-greedy, at each iteration i, the agent takes the
optimal action ai = argmax

a
Q̂∗(xi; a) with probability 1− ε,

otherwise it takes a random action. Initially, ε must be huge
(near 1), but must reduce to ε= 0 when Q̂∗ ≈Q∗, so as to
always use the optimal policy. ε-first is similar to ε-greedy but
with a step change between exploration and exploitation. It
begins by exploring all the actions without exploiting until all
actions have been tested a given number of times. At that point

Algorithm 1: The Q-Learning Algorithm

initialize: Q-value estimates as Q̂(xt, at) := 0 ∀x ∈ X, a ∈ A
1. Observe the current state x = xt
2. Select and execute an action at
3. Receive immediate reward rt
4. Observe new state x = xt+1

5. Update estimate Q̂(xt, at) according to Equation 2
6. update time t← t+ 1 and current state x← xt+1

7. Repeat steps from 2 to 6
until the terminal condition is fulfilled
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Fig. 2. Distributed learning strategies

it changes to exploitation of the learned knowledge. The naive
(ε, δ) algorithm [18] explores all the actions at least N times
before exploiting giving, with probability 1− δ, an ε-optimal
action for each state, with

N =
2

ε2
ln

2n

δ
. (3)

n is the number of actions; δ the probability that an action is
non-optimal; and ε is the greed or desired speed of conver-
gence with small ε values giving more accuracy at the cost of
delayed convergence. In this work, we have selected ε=0.4 and
optimality probability of 80% (δ = 0.2) which represent mid
ground greed while allowing good accuracy. The step-by-step
flow of activities is summarized by Algorithm 1.

C. Multi Agent Q-Learning

The above QL algorithm focused on a single learning agent,
yet distributed SON is a Multi-Agent System (MAS) even
for one SF, since optimization must be done for each cell
individually. Therein, we must decide whether to apply coop-
erative or fully-distributed learning. For a given QL problem,
if an observed state at one agent A will, at some other time,
be observed by another agent B, then A and B should share
their observations and learn a shared policy instead of learning
independent policies. This results in Cooperative QL where the
agents independently select actions but update a single Q-table,
as shown in Fig. 2a. The alternative is Distributed QL where
each agent learns and updates an independent Q table (as in
Fig. 2b) with, as expected, the reverse merits and demerits.

Besides the benefit of enabling cells to share experience,
Cooperative QL also speeds up the learning processes. Given
the access to the common policy learned by all cells, each
cell does not necessarily need to experience each state on its
own for it to learn the best action in that state. The challenge
here is that the single policy may not be optimal for all agents
in all states. Nevertheless, where the QL states are defined
in a way that they are fairly consistent across agents (cells),
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TABLE I
MAPPING SFS TO QL FRAMEWORK

SF States Solution: QL agent
adjusts ..

Action to learn QL agent
rewards ..

QL agent pe-
nalizes

MRO Mobility state, e.g., average
UE speed in cell

Hys, TTT Hys-TTT tuple, e.g.,
(2.5,0.64); ?.. (dB,s)

change in no. of RLFs and
ping-pong HOs

MLB serving & neighbor cell load,
user distribution

CIO by δ sizes of δ, e.g., [δ =0.5,1.0,
..]

change in load HO effects

CCO serving & neighbor cells’
spectral efficiency, Tx Power

Antenna Tilt or Tx
power by δ

sizes of δ, e.g., [δ =0,1,2, ?] change in spectral
efficiency

User dissatis-
faction

ICIC serving & neighbor cells’
spectral efficiency, Tx Power

Tx Power, spectrum
allocation policy, ..

absolute or change in Tx
power, spectrum allocation, ..

Mean throughput,
interference level

HO and Load
effects

: : : : : :
Legend: Hys - Hysteresis TTT - Time to Trigger CIO - Cell Individual Offset RLF - Radio Link Failure

Cooperative QL should improve the convergence speed. MRO
and MLB are example SFs where similar states are observed
in different cells. This makes MRO and MLB good candidates
for cooperative QL, the challenges above notwithstanding.

D. Generalization of QL for SON functions

As stated earlier, RL has been applied in a number of
SON related works, e.g., on CCO [19] [10], Interference
Management [11] [12], Load Balancing [20], [21] and HO
management [22]. This paper generalizes this approach by
considering all SON functions as QL problems some of which
are presented in the subsequent sections. As can be seen in
Fig. 1, the structure of a typical SF (Fig. 1a) is the same as
that for a learning agent (Fig. 1b). As such we consider each
SF to be a Q-learning agent given the appropriate elements.

Essentially, with the radio network as the environment for
each SF, we define the state(s) for which actions are required.
These must be related to the observations that trigger the SFs,
e.g., MLB states should consider the degree of cell overload
since MLB is triggered by cell overload. Given the states, we
define the action set as the different possible parameter values
that can be applied in such states. Then, owing to the need
to quantify the quality of the actions, a feedback mechanism
in form of a reward system for the actions is added. For
each action taken, a reward is derived for the SF QL agent
from which the agent learns the best actions over multiple
interactions with the network. Table I summarizes how some
common SFs can be mapped to the QL framework.

The biggest benefit of the framework is that each SF can be
designed to learn based on all metrics influenced by its actions.
As such each SF will learn not only to optimize its metrics
but to also minimize its effects on peers’ metrics. In table I,
e.g., with knowledge of the dependence of MRO from MLB,
the MLB QL agent can be designed to learn based on MLB’s
metrics (load; user dissatisfaction; ..) and on HO metrics (ping
pongs; Radio Link failures; ..). Sections V and VI respectively
show the application of the framework to MRO and MLB.

E. Convergence and complexity:

QL converges with probability 1 under the condition of
bounded rewards and using, for each update t, a step size
αt so that

∑
t αt = ∞,

∑
t αt

2 < ∞ [17]. In our studies
we ensure bounded rewards by design and maintain a small

learning rate α. However, due to the use of a non reducing
rate, we then forced termination of the algorithms after a
long enough learning period as described in section III-B.
Authors in [35] state that ”although QL performs undirected
exploration, its worst-case complexity is polynomial in the
number of states n”, specifically a sample complexity of
O(nlogn) [36]. In our studies, the states are independent to
the extent that any action does not change the environment
into another state but only responds to it. This translates the
state space into a set of distinct QL problems each of space
size 1 and k actions, resulting in a sample complexity O(k)
per individual QL problem. Then, without loss of generality,
the sample complexity of QL on the global problem will be
O(nk). Meanwhile, since each cell observes exactly one state
at each point in time, the learning agent has to update each of
the cells independently.

IV. SIMULATION SCENARIO AND ENVIRONMENT

The QL framework was evaluated using a C++ LTE system-
level simulator (tool) based on libraries from Nokia Bell Labs,
Germany and the Institute of Communication Networks and
Computer Engineering at the University of Stuttgart, Germany
(IKR) [23]. The tool simulates the down-link of a 3GPP-
compliant LTE radio network with the parameters described
in [24]. It was extended with classes that define the required
SON functionality, i.e., a separate class is added for MRO
and for MLB. Similarly, a separate class RLagent that defines
a generic QL agent is added so that each SF can instantiate its
own QL agent as an object of RLagent. Meanwhile, to maintain
its local state of the optimization, each cell instantiates its own
local object of each SF.

A. Radio Conditions, User Throughput and Cell Load

As shown in Fig. 3, we assume a network with 7 tri-cell
LTE base stations (eNBs), with the cell as the coverage area of
a single transceiver (Tx). The eNBs are deployed in a regular
hexagonal structure with a 500 m inter-site distance and wrap-
around implemented for better interference calculation. User
throughput defined as the maximum transmission data rate
that the user can achieve on a given channel depends on the
user’s Signal to Interference and Noise Ratio (SINR). For a
given SINR S, we use the approximate function in [25] that
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(b) Network with wraparound

Fig. 3. Simulation network structure with and without wraparound

estimates NB the number of bits that can be carried per symbol
using realistic Modulation and Coding Schemes (MCS) as:

NB=


0 ; S < 7.04

−0.0001S3 + 0.0074S2

+0.1397S + 0.6218
; −7.04 < S < 20.2

NB(20.2) ; S > 20.2

(4)

We consider the Guaranteed Bit Rate (GBR) traffic model
where, as a minimum, a user must be allocated resources
ensuring it achieves the specified rate. Then, the number of
Physical Resource Blocks (PRBs), NPRB , required for data
transmission per scheduling interval Ts will be the ratio of the
total data to be transmitted during Ts to the user’s achievable
rate per PRB. Consequently, the cell’s offered load ρ is the
ratio of the required PRB count for all the cell’s users to the
number of available PRBs. Given that the PRB has 7 symbols
in a bandwidth BPRB of 180 kHz [24], the offered load is

ρ =
BPRB
Bsys

·
∑ GBR · Ts

7NB
(5)

Cell overload occurs when the offered load ρ exceeds a
preset threshold ρmax. Accordingly, ρ can be greater than
1, which represents the case where the total required PRBs
exceed the available maximum PRBs within Bsys. Each
cell allocates PRBs to its associated UEs using a simple
round robin scheduler. The scheduler continuously allocates
resources to users ensuring that each achieves the desired rate
before allocating the next user, and this continues either until
all resources are exhausted or until all users are allocated.

B. Mobility and Handover Management

HOs between a serving cell s and a target cell t are triggered
according to the A3 condition [26], which, using the Reference
Signal Received Power (RSRP) for HO from s towards t, is

Ft +Ot
s,t −Hys > Fs +Os

s,t. (6)

Ft,Fs are respectively the user’s RSRP in dBm in t and s
cells, without any offsets; Ots,t, Ost,s are the respective Cell
Individual Offsets (CIOs) while Hys, which is uniform for the
serving cell, is the Handover Hysteresis (Hys) in dB.

If A3 is fulfilled for a critical time called Time To Trigger
(TTT), the UE initiates HO by sending a measurement report
of the values Fs and Ft after being filtered by a Layer 1
averaging filter (L1) and a Layer 3 Infinite Impulse Response
(IIR) filter (L3). L3 is implemented as specified in the LTE
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Fig. 4. Initial Network with deployed users colored according to serving cell

Radio Resource Control (RRC) specifications [26] with a
filter coefficient of 6. Meanwhile, L1 averaging which is not
standardized and can be vendor-specific, is implemented as
a simple moving average of the most recent values. The
averaging window, which must be updated every 200ms and
is required to be long enough to average fast fading yet not so
long to affect the results of L3, is selected to be 100 samples.

It is evident that HO outcomes mostly depend on Hys and
TTT both having the effects of either delaying or advancing
HOs. The possible outcomes are either a HO success, a Ping-
Pong HO (PP) or a Radio Link Failure (RLF). These are
modeled according to the timers defined by 3GPP in [26].

C. Simulation Model

The simulation starts with cell deployment. It then executes
multiple ”batches” starting each with user deployment. This
redeployment ensures that users experience as many of the
prevalent radio conditions as possible, since in each batch,
each user is placed at a different location and follows a
different path during the execution of the batch.

Mobile devices are deployed following a random distribu-
tion, in a way that the average number per cell is the ratio of
the total number of users to the number of cells. For MLB
studies, a hot-spot-induced overload is artificially added by
deploying static users (i.e. UEs with velocity = 0 m/s) in a
”center cell”, specifically, cell 12 in Figure 3a. An example
distribution of the users after deployment is shown in Fig. 4.

Test studies showed that statistics for HO events are stable
after at most 80 batches of 200 s each. MRO related results are
therefore based on simulations of 120 batches each simulating
200 s of operation. Load statistics are, however, stable after at
most 20 batches, and so MLB results are based on simulations
of 30 batches each simulating 200 s of operation. The crucial
simulation parameters are summarized in Table II. The next
sections will show performance results of the two CCN based
SFs when simulated with the described simulation tool.
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TABLE II
SIMULATION PARAMETERS

Parameter value
System bandwidth 10 MHz
Inter-site distance 500 m
Snapshot interval 50 ms
Number of users 240 mobile, 40 static

User velocity
variable, mean =3, 10, 30, 60 or
120 kmph

Mobility Model random walk

Pathloss A+B·log10[max(d[km], 0.035)];
A=128.1 and B=37.6

Shadowing Standard deviation = 6 dB;
Decorrelation distance = 50 m

eNB Tx power 46 dBm

eNB Tx antennas
1 per sector, gain 15 dBi,
at height = 32 m

UE antennas 1 Omni, gain 2 dBi, at height = 1.5m
Data rate 512 Kbps

V. QL FOR MOBILITY ROBUSTNESS OPTIMIZATION

A major activity in network operations is determining the
optimum HO settings, with Hys and TTT as the main control
parameters. These need to be configured according to the
prevailing user speeds in the cell or network, which translates
into both a large state-space and a large parameter-space. Such
large spaces can not be effectively evaluated manually which
MRO seeks to mitigate. This section discusses our proposed
Q-Learning based MRO (QMRO) solution.

For each HO, depending on the Hys-TTT tuple, hereafter
called the Trigger point (TP), either a HO success, a Ping-
Pong (PP), or a RLF occurs. MRO seeks to optimize the radio
link robustness amidst the User Equipment (UE)’s mobility
and subsequent HO, i.e. to minimize RLFs and concurrently
reduce PPs and unnecessary HOs [1].

Multiple studies have been done on MRO with the major
results being reported in [27]–[31]. Virtually all these studies
relied on expert knowledge control loops to search through
the parameter space. These approaches make two fundamental
assumptions that do not hold in real networks:

1) that the mobility profile in the network is static to the
extent that a single search is adequate to get the best
settings. This is never the case, while the alternative of
re-initiating the parameter search each time the velocity
profile changes is also impractical;

2) that, when designing rules, the designer understands the
underlying dependence of HO metrics on the control
parameters. Besides being prone to error in case of
wrong assumptions about this dependence, the required
rules would be very complex even with the right model.

To counter these challenges, QMRO does not rely on expert
knowledge or rules, but learns the Optimum Trigger Points
(OTPs) as would be derived from the perfect dependence
model. It abstracts UE velocities into a set of mobility states,
so as to learn the OTP for each state.

A. HO Performance Metrics

Increase in Hys and/or TTT delays HO triggering, subse-
quently reducing HOs and PPs. However, when the HO is
over delayed, the SINR degrades so much that a RLF occurs,
specifically the RLF due to Late HOs (RLFLs). The reverse
happens when the Hys and/or TTT are reduced in a bid to
trigger the HO earlier. In that case the HO is made to a cell
whose signal is not consistently good that the UE re-initiates a
HO back to the original cell resulting into a PP. In the extreme
case, the SINR in the new cell is so poor that the UE loses its
link before or during the reverse HO resulting in a RLF due
to Early HO (RLFE). Three metrics should thus be considered
for HO performance, i.e., 2 RLF rates and the PP rate.

1) Radio Link Failure Rate (F): A RLF occurs if the UE
SINR stays below a threshold for a duration of the critical
time (T310) [26]. The RLF rate (denoted by F), due to either
a too early HOs (FE) or a too late HOs (FL), is the per second
number of RLF events evaluated for the cell or the network.

2) Ping-Pong rate (P): A PP or HO oscillation is registered
for a user if a HO success from a cell B to another cell A
occurs in a time less than the ?PP-Time? after a previous
successful HO from A to B. The PP rate (P ) is thus the rate of
occurrence of PPs per second in the cell or network. The PP-
Time is not standardized. In this work, it has been set to be ap-
proximately equal to the longest TTT (i.e. PP −Time = 5s).

3) Number of HO Candidates (NH): During learning, all
rates are normalized to NH in the cell to ensure that all cells
use comparable statistics in evaluating their actions. This is
not required for the network-wide statistics, since in that case
we consider the same number of users and mobility patterns.
Meanwhile, the actual NH (those who are ready for HO)
depends on the two HO parameters, i.e., the Hys and TTT
will determine if a UE is due for HO or not. This creates
a cyclic dependence as Hys and TTT determine NH yet we
need NH to evaluate the right Hys and TTT. To overcome this,
we redefine a HO candidate as one who has either initiated a
HO or experienced a RLF within the evaluation time interval,
ensuring that each user is counted only once even where a
single user experiences multiple events within the interval.

4) The HO Aggregate Performance (HOAP): In order to
effectively compare trigger points so as to select the best one,
a single metric is needed and any comparison using the 3
metrics would be impractical. As such, we translate the 3
metrics P, FE and FL into an aggregate metric, the HOAP,
as a weighted combination given by Equation 7.

HOAP = w1P + w2FE + w3FL;
∑

wi = 1 (7)

The following should be noted regarding the HOAP:
1) HOs and HO successes are not directly included in the

HOAP since minimizing PPs also minimizes unneces-
sary HOs and HO successes

2) HO failures being RLFs that occur during the HO
process, they are also not directly included, but are
assumed to be counted under RLFs.

3) In addition to inappropriate HO settings, RLFs could be
due other causes, e.g., coverage problems. We assume
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here however, that such do not exist or their effects are so
small and can be ignored. This is a justified assumption
based on test results which showed that if HO are
triggered adequately early (Hys=0 dB and TTT=0 s),
RLFs will be eliminated (with excessively high PPs).

4) The selection of weights wi is subjective. They have
here been selected so as to equally balance effects of
early HOs (P, FE) against effects of late HO (FL), i.e.,
w3 equal to w1 and w2 combined. Then, since RLFs
are less desirable compared to PPs, w2 should be larger
than w1. The correspondingly selected weight vector is
w = (0.2, 0.3, 0.5) and is the one used in all cases where
HO performance is evaluated.

B. HO Control Parameters Sensitivity

The core MRO goal is to dynamically select the optimum
settings (OTP) even for a network with a dynamic mobility
profile. To design an adaptive learning strategy, we investigate
the sensitivity of the parameters to UE velocity. We do so
by sweeping a selected range of the parameter space for four
velocity scenarios. With UEs moving at constant velocity in
each scenario, we observe that the OTP changes with velocity
as shown in Fig. 5. Fig. 5a gives the linear variation of the
HOAP with both Hys and TTT while Fig. 5b describes the
detailed variation with TTT using a TTT log scale.

We observe in Fig. 5a that a very high Hys is unacceptable
at all velocities, although a combination of moderately high
Hys and low TTT could be acceptable. Similarly, a high TTT
is only acceptable at low velocities and only in combination
with low to medium Hys. Even then, the best settings at low
velocity should be medium Hys with low-to-medium TTT, i.e.,
HOs can moderately be delayed without great penalty since
the risk of RLF is low yet even the possibility of PPs is low
owing to the low velocity. This is evident in the 10 kmph case
where for most TTTs the performance is good at Hys = 2dB.

As the velocity increases, the HO delay needs to reduce
especially using the TTT. The HOAP is more susceptible to
change in TTT, to the extent that the OTP continuously grazes
the Hys axis, i.e., the performance changes with TTT but is
fairly constant with Hys. At high velocity, even the Hys has
major effect and so both parameters should be low. This is
evident in the 60 and 90 kmph environments in Fig. 5a where
the OTPs are restricted to the lower left corners of the grid,
i.e., the part where TTT are within the range of 0-0.64 s. In
Fig. 5b we observe that within this small range, although there
is major variation in the HOAP with TTT for most Hys, this
variation is blurred at points near the optimum point. In that
case adjacent TTTs will have practically similar performance.

The most obvious conclusion from Fig. 5 is that the OTPs
do not lie along any one diagonal for the different velocities
as was assumed in [28] and [29]. Any MRO algorithm must
thus scan the entire parameter-space or at least more than half
the space in order to determine the required trigger point.

C. QMRO: Q-Learning based MRO

QMRO wishes to determine the optimum Hys-TTT action
that minimizes the HOAP in any mobility state in a cell.

(a) Linear variation of HOAP with Hys and TTT

(b) Detailed (log scale) variation of HOAP with TTT for 30 and 60 kmph

Fig. 5. Handover Control Parameter Sensitivity

We note here that the actions only affect the performance
of the cells and do not change the UEs’ mobility states.
Consequently, it is adequate to learn an action a in state x that
maximizes the expected instantaneous reward r at time t. As
derived in Equation 2, the corresponding Q-update algorithm
for instantaneous rewards is Equation (8)

Qt+1(xt, at) = (1− α)Qt(xt, at) + α[rt(xt, at)] (8)

where α is the learning rate previously defined in section III-A.
The components of the QMRO algorithm are described below.

1) QMRO State Space: The required HO settings in a cell
depend on the mobility of the UEs in the cell as showed in
the parameter sensitivity analysis in section V-B. Thus, the
states x are defined to be the degree of mobility in the cell
evaluated as the average velocity over the SON interval. The
average velocity being a continuous variable, we discretize the
states x into bands for which the appropriate HO settings must
be learned. Table III describes how velocities are grouped into
mobility states and, based on the results in Fig. 5, the estimates
of the likely default settings that would be used in a manual
optimization process. We assume that the velocities are known
or at least can be estimated by the cells. A simple estimate
can be obtained as the ratio of the approximate cell size to the
average time that a UE stays in the cell. It can also be more
accurately estimated using the UEs Doppler power spectrum
as proposed in [32]. Either way, with a good estimate, QMRO

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



1932-4537 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2016.2522080, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, MONTH 201X 7

TABLE III
QMRO MOBILITY STATES AND THEIR DEFAULT ACTIONS

Average
Velocity (kmph)

State (x) Default
Hys (dB)

Default
TTT (s)

0-4 0 3.0 0.0-5.2
4-8 1 2.5 0.0-2.56

8-12 2 2.0 0.0-1.25
12-17 3 2.0 0.0-1.02
17-22 4 1.5-2.0 0.0-0.64
22-28 5 1.5-2.0 0.0-0.48
28-34 6 1.5-2.0 0.0-0.256
34-41 7 1.5 0.0-0.52
41-48 8 1.0 0.0-0.52
48-56 9 0.5 0-0.48
56-65 10 0.5 0.0-0.256
65-75 11 0.0-0.5 0.0-0.16
75+ 12 0.0-0.5 0.0-0.16

can then learn the best configuration for the given cell.

2) QMRO Action Space: Actions are the Hys-TTT tuples
signaled by the cells to their associated UEs. Without a SON
solution, an operator configures a cell with default parameter
settings obtained through trial and error, while with a local
search based SON solution, a fixed set of settings similar
to those shown in Table III are applied. However, with the
observation that OTPs depend on speed, we need to change
the settings based on the instantaneous speed in the cell.

It is evident from the parameter-sweep results in Fig. 5 that
for all practical speeds, performance at Hys>5 dB is almost
always sub optimal. We thus consider Hys values only up to
6 dB. Meanwhile differences in HOAP for some TTT settings
are unresolvable especially at low TTT values. For example for
most Hys values at all velocities, the performance at TTT =
0.08s, 0.1s, 0.16s is practically the same. As such not all TTT
values are considered, i.e., the possible TTT actions are the 11
values 0.04, 0.10, 0.128, 0.256, 0.32, 0.48, 0.512, 0.64, 1.02,
1.28, 2.56, 5.12 in s. The resulting action space (total number
of actions) for each state is 143 possible combinations of the
considered Hys and TTT.

3) QMRO Reward function: We desire to minimize RLFs
without excessively increasing PPs and HOs. Since the learner
is a rewards-maximizing agent, the reward rx,t should be the
negative HOAP evaluated over the SON interval. As stated
earlier, the individual rates are normalized to the number of
HO candidates, NH as given in Equation 9.

rx,t = −(w1P + w2FE + w3FL)/NH; (9)

Meanwhile, the weight vector applied during learning may
need to be adjusted to enforce particular results especially
given the small evaluation period (the SON interval). For
example, there may be instances in which no RLFEs are
observed during the SON interval which could tilt the result
in favor of too many PPs. The vector is thus maintained as
w = (0.2, 0.3, 0.5) for the typical results and changed to
w = (0.4, 0.0, 0.6) when no RLFEs are observed.
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Fig. 6. QHO action space within the three learning regimes R1, R2, R3

4) QMRO Cooperative Learning: HO triggering could be
affected by channel conditions that dictate the respective
RSRP. However using A3 minimizes this dependence on the
absolute RSRP values, since decisions are made based on
RSRP differences among the cells. In that case, HO perfor-
mance depends only on user mobility and the control parame-
ter values. With mobility-based HO states, it is possible that a
state observed in one cell reoccurs in another cell at some other
time. As such, cells do not need to learn independent policies
but can learn a single policy function based on the abstract
mobility states. The result is a cooperative QL problem in
which individual cells take actions but update a single Q-table
that represents the shared learned policy.

The cooperative learning solution holds if all other crucial
parameters are comparable among the cells. For example the
cells in the considered network are assumed to be of similar
size and applying comparable transmit powers. Other than this,
the RSRP profiles at the cell edges may be different resulting
in differing behaviors for different cells or cell pairs. Simi-
larly if individual cells concurrently have users with differing
behavioral patterns, the solution may fail. For example, the
assumption that a state in one cell will be observed in another
will not hold for a cell which covers a highway crossing
through an office park. Such a cell concurrently has 2 user
groups - the slow-moving office users and the fast-moving
highway users, each of which will require different settings.
Nevertheless, for the majority of networks that do not have
such special conditions, cooperative learning as considered in
these studies would be fully applicable.

D. Parameter Search Strategy and Optimization Algorithm

As earlier stated, each cell has up to 143 possible actions to
consider for each velocity state. Thus even with cooperative
learning, evaluating each action multiple times, would still
require a long time to converge to the desired solutions.

1) The Parameter Search Strategy: To accelerate conver-
gence, we subgroup the 143 actions so that for any state, we
execute 3 learning regimes R1 − R3 (shown in Fig. 6) that
start with a global exploration and gradually move to a local.
For R1, actions are selected from different regions of the grid
in order to determine the area in which the desired action lies.
From the parameter sensitivity analysis, combinations of low
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Hys and high TTT are never optimal. As such this region is
excluded from the possible candidates denoted by ”R1 actions”
in Fig. 6. The outcome trigger point of R1 (TP1) specifies the
region in which the optimum point lies. This outcome is thus
used to define the search space for the next regime R2.

During R2, actions along the diagonal that goes through
TP1 are explored to obtain the approximate delay that is
acceptable for the observed mobility state. In this case, subse-
quent actions differ in Hys by 1 dB to enable a large enough
action space to be explored. As an example, if TP1 is obtained
as TP1 = (2.0dB, 0.256s), at R2 the agent explores the region
marked R2 Actions in Fig. 6. The obtained TP (TP2) is then
used to define the search space for the next regime R3.

R3 refines the learned TP2 by exploring points near TP2. It
compares TP2 with its four neighbor points to the left, right,
top or below. In Fig. 6, ’R3 Actions’ shows the exploration
region for R3 assuming that TP2 = (5.0dB, 0.128s).

2) The SON Interval: Each setting that is applied in a cell
is monitored over a period of a SON interval. With different
number of users in each cell and in the HO regions, different
cells may have different counts of events within the same time
period. Consequently, instead of setting the SON interval based
on a fixed time period, it is based on a minimum number of HO
events that must occur following the application of any action
or configuration. This minimum number is the sum of the
disjoint HO related events (i.e. HOs, RLFEs and RLFLs). This
number is set to 100 events although any value that ensures
that comparable counts of all the necessary statistics (i.e. for
NHs, PPs and RLFs) are observed would be appropriate.

3) The QMRO Optimization Algorithm: Given the QL
elements as discussed above, the optimization algorithm is
given in the procedure of Algorithm 2, i.e: For each possible
state, the action set is initialized with R1 actions and the Q-
table entries initialized to 0. Learning is then triggered to be
executed after every SON interval t. Each cell c observes its
environment over the interval t and at the end of t, the cell
determines if an optimization is necessary, i.e., if the cell’s
velocity state has changed. During the learning phase, c selects
an action as described in section V-D1, otherwise it selects
the best action that would have been learned. It then signals
that action to all its associated UEs and starts collecting the
necessary performance statistics for the next interval(t + 1).
At the end of interval t+ 1, c evaluates its HOAP and derives
the reward rt for the action at t. It then updates the learning
agent (the Q-table) before repeating the process.

E. Simulation Results and Discussion

MRO wishes to adjust the HO parameters in line with vary-
ing mobility states. We evaluate performance in the 5 different
velocity scenarios in Table IV to prove that the algorithm is
applicable to any network. The 3 ’normal’ scenarios (10, 30,
60 kmph), for example, represent 3 typical city districts - a city
center, city edge and residential suburb. We then consider two
extreme scenarios (3 & 120 kmph) which could respectively
represent an office park and a highway.

In each mobility scenario, all UEs have independent ran-
domly varying velocities. We implement this by allocating

Algorithm 2: QMRO - The Q-Learning MRO Algorithm

Require: UE velocities during SON interval, action set a
1. Set Ri=R1; initialize action set Ax,R1 for regime 1 in all states x

Repeat for each SON interval t
2. if HO action was taken at SON interval t− 1 do
3. determine HOAP and derive reward rt−1(xt−1, at−1)
4. update Q-table according to Equation 8

end if
5. determine current mobility state xt (from table III)
6. if learning complete for state x do
7. select ax,t = aoptx , the best action for state x
8. else if regime Ri exploration is incomplete do
9. select ax,t (sequentially after ax,t−1) from Ax,Ri
10. else do
11. select ax,t = aoptx,Ri, the optimum value for state x at Ri
12. if all learning regimes complete for state x do
13. record all regimes complete for state x
14. record ax,t as best action in state x
14. end learning, indefinitely use ax,t in state x
15. else do
16. Ri← Ri+ 1
17. use ax,t to set Ax,Ri i.e. reconfigure A for Ri

end if
end if

18. Signal selected action ax,t to all UEs in the cell.
19. t← t+ 1 , monitor, collect statistics, continue at step 2

end loop
TABLE IV

QMRO VELOCITY SCENARIOS

City Area
Initial velocity (kmph)
Mean range

Office park 3 2 - 4
City Center 10 6 - 14
City Edge 30 18 - 42
City Suburb 60 36 - 84
Highway 120 72 - 168
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Fig. 7. Typical velocity profile in 3 cells in the 60kmph scenario

random velocities to the UEs at the start of the simulation
and also randomly adjusting the velocities at the start of and
during every batch, in each by up to ± 40%. For example, each
of the 240 users in the city suburb (60 kmph) network has an
individually assigned and continuously changing velocity, as
shown in Fig. 7 for the average velocities in three selected
cells over a period of 10 batches.

1) Performance in terms of HOAP: To evaluate QMRO, we
compare its performance in each velocity scenario against the
reference network, Ref. This represents the case when all the
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Fig. 9. QMRO Performance: Variation of average rates for all 3 core metrics in 30 and 120 kmph environment

cells in the network apply the best static settings as obtained
from table III in the parameters sensitivity analysis in section
V-B. The performance is evaluated in terms of the averages
of the metric(s) values throughout the network although cell-
specific results would demonstrate the same trends.

Fig. 8 summarizes the results in the different scenarios. Fig.
8a shows the comparison of the average HOAP values for
QMRO and Ref in two typical cases, while Fig. 8b describes
the differences in performance between QMRO and Ref for all
the five velocity cases. We observe in both figures that QMRO
initially performs poorly as it executes the first learning regime
R1. The performance then improves in regimes R2 and R3
as QMRO focuses around the OTP, to the extent that it is
eventually equivalent to that of Ref. Where user velocities are
widely spread, QMRO actually performs better since it is able
to set the right setting for each velocity range as opposed
to a single setting for all velocities. This is evident for the
120 kmph case in Fig. 8b where, after learning, QMRO is
consistently better than Ref. Also, in a given time interval,
each user undertakes more HOs as the velocity increases,
with the effect that cells have a shorter SON interval at a
higher velocity i.e the cells reach the minimum event count
much faster. This results into shorter convergence times as the
velocity increases which is evident in Fig. 8b.

2) QMRO Learning Trend: Fig. 9 evaluates the time varia-
tion of the individual metrics (P , FE and FL) when applying
QMRO in two velocity scenarios (30 and 120kmph). We
observe in both cases, that the agent learns to minimize RLFLs

(FL) by trading them with Ping-pongs (PPs), which have
less effect on the user’s quality of experience. This is all
while ensuring that RLFEs (FE) remain low. In both velocity
scenarios, QMRO suffers from many RLFs at the beginning
as it considers settings across a large parameter space. Over
time however, the agent continuously reduces FL by trading
such reduction with increase in PP . It then stops this trend
as soon as it registers decreasing returns, i.e., when each extra
reduction in FL translates into an excessive increase in PPs or
if it instead causes RLFEs to occur.

The foregoing results demonstrate that given a good defini-
tion of states that appropriately capture the UEs’ mobility and
also given adequate learning time, a Cognitive function, e.g.,
the QL based MRO algorithm is able to learn the appropriate
Hys-TTT settings for a given mobility environment.

VI. QL FOR MOBILITY LOAD BALANCING

Users are rarely uniformly distributed in cellular networks,
but this is critical if a serving cell s is overloaded at a time
when free resources exist in neighbor cells. A solution is
required to automatically redistribute the load among cells -
thus Mobility Load Balancing (MLB). MLB seeks to minimize
the number of users who would otherwise not be satisfied, in
terms of their data rate, owing to the overload in the serving
cell s, i.e., to reduce the ?Number of unsatisfied users? (Nus).

To lower the serving cell’s load ρs, MLB moves some of
the edge users in s towards one or more neighbor cells or so
called target cells. Let us denote the set of all target cells as
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T, any one cell in the set as t and all cells together as T-cells.
Then consider the A3 HO entry condition earlier defined in
Equation 6. MLB re-distributes the load by virtually shrinking
s while concurrently expanding the T-cells. As proposed in the
LTE SON standard [1], this can be achieved by adjusting the
relative HO margins of the respective cells s, t (and thus the
applicable HO boundary between the two cells) using the CIOs
(Ots,t and Oss,t;∀t ∈ T in Equation 6).

The set T for which CIOs are adapted may contain all s’s
neighbor cells, a subset of them or only a single neighbor.
Considering all neighbors, as is done in the network wide
Load Balancing (LB) solution in [33], is straightforward. In
case of a subset of neighbors, the set could be selected as those
cells that fulfill a certain condition, e.g., the neighbors with
very low load. Selecting a single neighbor is, however, not as
obvious since we would require to select the best candidate
among the neighbors. Such a neighbor, as proposed in [34],
could be the one that achieves the highest reduction of load
in s, without itself getting overloaded. This requires s to have
access to load information in all neighbors and also be able to
predict the resulting load after users have been transfered to
any selected target. Moreover, in a highly dynamic network,
such a prediction would very quickly change with the mobility
of the users. Consequently, a simple decision to adapt CIOs
for all neighbor cells or a subset may achieve better results.

We described here a Reactive MLB algorithm (RLB) that
symmetrically adjusts the CIO by a value φ between s and
all low loaded neighbor cells. However, for a fully Self-
Organization (SO) solution, a distributed automated approach
that learns the required adaptation of the CIOs would be
preferred. We thus apply the QL framework on top of RLB
for a distributed fully self organized MLB algorithm. The
resulting solution, called QLB learns the best φ required for
the particular load conditions in the serving cell’s environment.

A. Evaluation Parameters and Performance Metrics

When a cell is overloaded, its users are unsatisfied since they
are allocated fewer PRBs resulting in lower than expected data
rates. We consider a user to be unsatisfied (an un-satisfaction
event occurs) if the user’s total achieved data rate in a
continuous 1 second period is less than the GBR. Thus besides
load variations, we evaluate the degree of undesirability of the
overload situation, in a cell or the network, in terms of the
?Number of unsatisfied users? (Nus). This is defined as the
average number of un-satisfaction events in the cell/network
per second over the evaluation period. Such an evaluation
period could be 5s for the quasi-instantaneous performance in
the cell or network or a batch period for the long-term results
evaluating the improvements achieved by the optimization
algorithm(s). Meanwhile, where actions are taken to reduce
overload, we evaluate the effectiveness of the actions in terms
of their change in the serving-cell’s offered load.

B. RLB: The Static, Reactive MLB Solution

Although it is not so obvious, the minimum MLB action is
to select an edge user of cell s for HO to a cell t and then
appropriately reducing the offset Oss,t. To avoid the user from
moving right back to s, an opposite value (to Oss,t) is applied

on Ot
s,t. This shifts the specific s − t HO boundary which,

however, does not guarantee that overload will not quickly
reoccur due to a user at a boundary to another cell.

To manage the general load in the cell, the proposed
RLB approach adjusts the generic boundary with all low-load
neighbor cells. This excludes higher load neighbors as shown
in Fig. 10, where boundaries are adjusted for all cells except
t4 which is highly loaded. Adapting boundaries for multiple
neighbors ensures that overload does not quickly re-occur in s.
Cell s applies the RLB algorithm to adjust CIOs to all T-cells
(the low load neighbors) by a fixed value as in Equation 10.

all t ∈ T .Ot
s,t = Ot

s,t − φ
Os
s,t = Os

s,t + φ
(10)

In the simplest form, CIOs could be gradually changed, each
time by a small step over multiple iterations. Although this
avoids unnecessary load transfer to the T-cells, it takes too long
to remove the s overload. To improve convergence speed, CIOs
are adjusted in a single precise step φ that removes overload
in s without overloading the T-cells. Large CIO changes may,
however, cause oscillations, where after load transfer from s
to t, t gets overloaded and also initiates LB towards s, causing
s to restart the process once again. RLB does not explicitly
control this LB induced overload. Instead, we mitigate it using
an oscillation control timer Toc, which, following the s-t LB
action, has to expire before a LB HO can be triggered from t
to s. The size of Toc is set equal to the SON interval although
higher values could also be applicable.

Note, however, that minimal T-cell overload after LB HO
may be a good result, as it allows the extra load to propagate
outwards from the ?center? to outer cells over subsequent
LB actions in different cells. This applies particularly when
combined with Toc, where the new s (original T-cell) does
not move load back to the original s. Instead it moves the
load to its other neighbors further away from the original s.

C. Dependence of RLB Gains on Load

As a manual solution, the optimal φ could be determined
by applying different step sizes and selecting the best. The
achieved change in ρs, ∆ρs for any applied φ is, however,
dependent on ρs (the load in s) as well as ρn (the average
load in t). This would make a single φ value inapplicable for
the different load conditions. To investigate this dependency,
we define a set of load scenarios and evaluate E[∆ρs], the
expected change in s’s load for each combination of scenario
Γ and applied CIO change φ. Each load scenario Γ is a
combination of ranges of ρs and ρn as shown in Table V,
e.g., Γ=3 is the tuple [0.9≤ ρs<1.1; ρn<0.45]. Meanwhile,
∆ρs is not deterministic for each combination of φ, ρs and
ρn. The dependence can as such only be expressed in terms
of the expected outcome E[∆ρs].

For each φ in a given Γ, if ∆ρs is observed, E[∆ρs] is
updated according to

E[∆ρs] = γ · E[∆ρs] + (1− γ)∆ρs (11)

where the forgetting factor γ is set as 0.95 to ensure that any
single observation does not unexpectedly skew the average.
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Fig. 10. Reactive change of CIOs

TABLE V
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Fig. 11. Dependence of RLB gain on cells load

Fig. 11 shows the dependency of E[∆ρs] on Γ for different
φ values, evaluated in the network in Fig. 3a with 240 mobile
users, and the ?centre cell? initially having 40 static users. We
observe that the best φ, φopt, is different for each Γ, e.g., φopt
is 0.6, 1.0 and 0.4 for the three load scenarios Γ3, Γ4 and Γ7
respectively. This justifies the need for a learning solution that
learns the required φopt for each of the load scenario.

D. QLB: Learning the Optimum Actions

With RLB, a fixed φ is found that guarantees good average
performance, but not the best in each load scenario. For
optimal performance, different φ values would be required for
the different scenarios. Moreover, for any change in CIO, ∆ρs
also depends on the user distribution (uD) in cell s, i.e., more
load can be offloaded from s if there are more cell edge users.
We thus apply Q-Learning based Load Balancing (QLB) in
order to learn the required CIO change for each combination
of ρs, ρn and uD. Here, uD describes the fraction of cell s
users that are close to the cell edge, such that with more edge
users, only a small CIO change is needed for these users to
be handed over to neighbor cells.

QLB learns the action that instantaneously removes over-
load while ensuring that target cells are not overloaded as
a result of its actions. Its Q-update algorithm is similar to
Equation (8) with the corresponding components as follows:

1) State-space: Since φ depends on ρs, ρn and uD, each
state is a vector [ρs, ρn, uD]. We defined 27 states as the 9
load scenarios in Table V for each of 3 uD cases: uD < 20%;
uD = [20−35]% and uD ≥35%. Since the idea is to change
the border to all neighbors, uD is evaluated generically within
cell s and not specific to any one neighbor.

2) Action-space: Actions are the possible values that φ can
take, i.e., the values in dBs by which the CIO should be
changed. Guided by RLB results, actions are selected as the
discrete φ values [0.2, 0.4, ?.. 1.0] dB.

3) Rewards: The rewards, as set in Equation 12, consider
∆ρs (the achieved reduction in the serving cell load, ρs) and
the extra load created in neighbor cells.

r =

 ∆ρs + 1 ; ∆ρn = 2 and Γ < 3
∆ρs ; ∆ρn < 1

∆ρs − 1 ; otherwise
(12)

Positive ∆ρs represents reduction in the offered ρs that results
from users having moved to neighbor cells. Positive ∆ρs is
thus rewarded while the reverse is penalized. Since ρn is

Algorithm 3: QLB - The Q-Learning MLB Algorithm
Require: T-List(the list of s neighbors) and action set A

1. if LB action taken in previous SON interval i do
2. determine ∆ρs and derive reward
3. update Q-table according to Equation 2

end if
4. evaluate ρs
5. if overloaded do
6. determine load state l = [ρs, ρn, uD]
7. if exploration complete do
8. select φ = aoptl , the best value for state l
9. else do

10. from A, select φ = ai+1
l , i.e., in sequence of

last selected value ail in state l
end if

11. for each cell t in T-List with timer TOC expired
12. reduce Ots by φ and increase Ost by φ
13. start timer TOC for t LB HO towards s

end for
end if

14.Restart SON interval timer , i.e., t← t+ 1

expected to increase as a result of adding users at the very edge
of the cells, only ∆ρn of more than 1 is penalized. In general,
larger ∆ρs values receive greater reward, but are accompanied
by penalties for unrestrained actions taken in LB-states with
high ρn. This allows high load t cells to overload just enough
to propagate the load outwards but not too much to counter-
productively cause further un-satisfaction after LB. However,
special consideration is taken in cases where a large reduction
in ρs can be achieved without overloading the target cell. In
such cases, e.g., the change from scenario 9 to scenarios 1 or
2, the reward is increased by 1.

4) QLB algorithm: Each load state that is observed in one
cell can reappear in any of the other cells in the network. As
such, cells do not need to learn independent policies but learn
a single shared policy in a cooperative learning process with
a single Q-table which is updated by all cells.

During operation, each cell s observes its environment and
at the end of a SON interval τ = 5s, s applies the procedure
in Algorithm 3 to either take actions that reduce overload,
learn from previous actions, or both. If overloaded, s selects
an action according to Section VI-D2 and signals the new
HO settings (with the revised CIOs) to all its associated UEs.
Since CIO changes are symmetric for each s − t boundary,
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Fig. 12. QLB and RLB load redistribution (load moved from cell 12 to
neighbor cells, e.g., 14 and 6)

s also sends the new CIOs to its affected neighbor cells via
the X2 interface. At the end of interval τ + 1, s evaluates the
changes in load, derives the reward and updates the Q-table
before repeating the process.

E. QLB Simulation Results

QLB was evaluated using the LTE simulator of section
IV. The results, shown in Figs. 12 and 13, consider two
perspectives - load variation in individual cells to evaluate
the dynamic performance of the solution, and the number of
unsatisfied users (Nus) which evaluates the global effect of the
algorithm and its impact on user satisfaction. We compare the
performance of QLB and RLB against Ref, the default scenario
where the network is operated without any SON function.

1) Learning towards load redistribution: Fig. 12 shows
the dynamic behavior of the load balancing solutions in
terms of variations of cell load during the simulation, with
the load evaluated every second for each cell. For clarity,
the figure considers simulations at 3 kmph for which the
dynamic behavior is slow enough to be analyzed. Otherwise,
performance results at higher velocities are similar but only
with much faster variations.
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Fig. 13. Effect of QLB on user satisfaction

We observe that both solutions RLB and QLB lower the load
in cell 12 by transferring it to neighbors cells (e.g., cell 14)
and eventually to the outer cells (e.g., cell 6). After learning
however, QLB responds better to overload compared to RLB.
This can be seen for the period after 3000 s where cell 12
consistently has slightly lower load for QLB than for RLB.
This is the direct consequence of QLB having learned the best
CIO change for each load state, which is not the same with
RLB. The drawback here is that in a low mobility network,
the extra load added to the neighbor cells may take long to
move outwards. In that case we need to evaluate performance
in terms of the Number of unsatisfied users, Nus.

2) QLB Effect on User satisfaction: Fig. 13 compares the
performance of RLB and QLB against the reference case (Ref)
in terms of the Nus in the network for different velocity sce-
narios. Subfigure 13a shows the quasi-instantaneous variation
of network-wide Nus in the 3 kmph network scenario for
the same period considered in Fig. 12. With user satisfaction
evaluated every 15s and each point capturing the total un-
satisfaction events over the 15s interval, we see that both RLB
and QLB reduce the Nus through the load redistribution.

Subfigure 13b evaluates the global benefit of the solutions
for two velocity scenarios across the simulation. Considering
the solutions over different batches of the simulation, we
evaluate the gains of each of the two solutions measured in
terms of the percentage reduction in Nus when compared
to Ref. We observe that for both mobility scenarios, both
RLB and QLB improve user Quality of Experience (QoE)
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by reducing the Nus. The reduction in user dissatisfaction is
comparable at low velocity since there is not much dynamism
to be exploited by varying the CIO change. At higher velocity
however, by adjusting CIOs for each instantaneous state that
is observed, QLB achieves better user satisfaction.

The results above prove that a cognitive solution, in this a
Q-learning based agent, can easily and successfully be applied
towards a dynamic autonomous solution for MLB.

VII. CONCLUSION

In this paper, we have proposed the Cognitive Cellular
Networks (CCN) concept as a fully autonomous approach
to Self-Organizing Networks (SON). Our contributions and
results can be summarized as follows:

Contributions: We (1) proposed a Q-Learning (QL) frame-
work as the method for implementing cognitive SON Func-
tions (SFs); (2) justified how the QL framework can be
used for any generic SF; and (3) discussed the application
of this framework to two selected SFs: Mobility Robustness
Optimization (MRO) and Mobility Load Balancing (MLB).
We showed that, although all SFs use the same framework,
special adjustments are required for each SF as dictated by its
specific constraints, e.g., each SF required a different strategy
on how to explore its action space. In general, however,
the positive performance results for the developed solutions
proved the benefit of cognitive approaches to SON and that
QL provides a good framework for developing such functions.

In particular, Q-Learning based MRO (QMRO) is able to
learn the best Handover Hysteresis (Hys) and Time To Trigger
(TTT) settings for particular mobility states in the network.
Applying cooperative learning, the cells learned a single policy
function (single Q-table) that is thereafter exploited. Such an
approach is applicable in any environment as demonstrated
by the positive performance results obtained in the realistic
network scenarios with User Equipments (UEs) having distinct
and dynamically varying velocities.

Similarly, Q-Learning based Load Balancing (QLB) learned
the best Cell Individual Offset (CIO) settings needed to reduce
overload in different load conditions. Starting with Reactive
Load Balancing (RLB) which adjusts the Handover (HO)
boundary through the CIO, we observed that the required
CIO change depends on the load state, characterized by the
load in the serving and neighbor cells as well as the user
distribution in the serving cell. QLB then learns the different
CIO changes that are required for the different load states.
Evaluating the solutions in multiple velocity environments
showed that QLB achieves better results compared to the rule
based reactive RLB. This is especially true in more dynamic
environments, e.g., where users move at higher velocities. The
subsequent effect of the load re-distribution is that the number
of users, which would otherwise be unsatisfied as a result of
low-data-rate induced overload, is reduced. Convergence and
complexity: We have described in section III-E that with the
same cost for each Q-update, the corresponding computational
complexity is linear in the number of cells. In real systems,
however, complexity may be a moving target which requires
careful consideration of the specific case, i.e. the dynamics

of the environment. There will always be a trade-off between
speed of adaption and complexity of computation. In the end,
it is the deterioration of the system performance during the
learning phase that stops us from employing too much learning
rather than the complexity of any algorithms.

Future works and extensions: In both SFs, the learning
strategy applied the simple approach of trying all the avail-
able actions a number of times and thereafter indefinitely
applying the learned best action. Although, its convergence
was improved by the combination of distributed exploration
and centralized cooperative learning, some other variant of
the approach would in practice be required since in a large
network, cells operate in diverse environments that require
specific handling. It may also be necessary to find methods
through which states and actions can be automatically derived.
This would reduce the design time and possibly the human
subjectivity that is typically included in the solutions. On the
contrary human intelligence could improve the performance,
e.g., by limiting the applicable learning-time parameter space
to a range known to have good performance.

In general, however, the results presented here confirm that
the cognitive cellular network approach, and specifically QL,
provides an outstanding approach to developing SON solutions
especially where the dependence of metrics to the control
parameters is not perfectly known.
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