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a b s t r a c t

Contrast enhancement of hazy image, or known as image dehazing has always been a practical and
challenging topic in image processing and analysis field. Quite a number of strategies have been pro-
posed to determine the depth information, which reflects the thickness of haze over the captured natural
images. However, as for remote sensing imagery, too high satellite orbit makes the depth information

contrast of satellite imagery. In this paper, we present a simple but effective method to remove the haze
from single satellite image. This method is developed with the linear intensity transformation (LIT) and
local property analysis (LPA). Considering the difference between impacts of depth information on hazy
natural image and hazy satellite image, we firstly employ classical degradation model to demonstrate the
rationality of utilizing LIT to enhance the visibility of hazy satellite imagery. And then, we propose to
adaptively estimate parameters of LIT by analyzing the local image properties of luminance, chromatics
and texture. Experimental results on hazy satellite imagery, obtained from Google Earth and NASA Earth
Observatory websites, illustrate that compared with state-of-the-arts, the proposed method can more
efficiently and effectively on enhancing the overall contrast of hazy satellite imagery.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Owing to their high spatial resolution, optical satellite ima-
geries acquired, (e.g., by SPOT-5, Quickbird-2, Pleiades-1, World-
view-2, and GeoEye-1), have increased the possibility of accurate
observations of Earth [1]. They have been widely used for scene
analysis [2], precision agriculture [3], city planning [4], and land
surveillance [5,6]. The existence of haze often seriously decreases
image contrast in terms of poor content visibility, bad detail per-
ceptibility and heavy color saturation. Fig. 1 shows two examples
of hazy satellite images. It can be seen that the useful information
in such images has been greatly reduced. Since necessary and
appropriate contrast is of great importance for many applications
to extract image features from a collection of satellite imagery,
how to enhance the contrast of hazy satellite imagery has already
been one urgent research topic [7].

In the past decades, several methods, including histogram
equalization (HE) [8] and intensity transformation (IT) [9], have
been developed to enhance image contrast. However, for HE-based
methods, they restore images with uniformly distributed histo-
grams by spreading out those values that occur more frequently
and compressing those values that occur less frequently. The gray
levels cannot be well maintained, resulting in either under- or
oversaturation in the processed image. For the IT-based methods,
they strongly depend on prior knowledge of image degradation
model. To avoid these problems, many substitute methods have
been developed.

Some methods, including the well-known homographic filter
(HF) and Retinex theory, have been proposed based on the
assumption that a hazy image is the product of illumination and
reflectance [10]. These methods commonly extract reflectance by
removing the illumination. Since the illumination, actually
necessary to represent ambience, is impossible to precisely
remove, these methods often fail to present satisfying results. For
satellite imagery, the haze optimized transformation (HOT) was
proposed to detect and remove the haze under the condition that
the blue and red bands are highly correlated [11]. However, this
correlation does not always hold, and the results strongly depend
on the pre-selection of haze-free regions.

Recently, some other methods, benefiting from the sig-
nificant progresses in natural image dehazing, have also been
developed [12–16]. For these methods, the Koschmieder's law-
based model is often used to describe the degradation proce-
dure of haze image. Fattal proposed to dehaze natural images
under the assumption that surface shading and transmission are
locally uncorrelated [14]. This method is physically reasonable,
but it is invalid to handle heavily hazed regions. Tan et al. [15]
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Fig. 1. Example of hazy satellite images. As can be seen that poor contrast makes target detection and image interpretation difficult.
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dehazed images by maximizing the local contrast of the restored
image. Due to the possible overestimated haze concentration,
his results showed more visibility for dense haze regions, but
tended to be over-saturated for haze-free regions. The results
may not be physically valid. He et al. [16] proposed to dehaze
the natural images using the dark channel prior (DCP) method
on high cost of calculation. Although, it is currently one of the
most effective dehazing methods, it may be invalid when the
scene object is inherently close to the airlight. Meng et al. [17]
sped up DCP with boundary constraints and contextual reg-
ularization (BCCR-DCP). Long et al. [18] directly conducted DCP
on hazy satellite images. For the difference of imaging mode
between satellite sensors (downward-looking) and outdoor
cameras (forward-looking), the lack of relative depth variation
of downward-looking at high orbit, actually destroys the foun-
dation of DCP-based dehazing for satellite images. Accordingly,
local properties and priors have been used to enhance the
contrast of hazy images [19–22]. Huang. et al. [23] proposed to
remove haze from single image using the change of detail prior.
Lee et al. [24] utilized brightness analysis and adaptive intensity
transformation to enhance contrast in satellite images. Tarel
et al. [25] presented to enhance the visibility of outdoor images
with prior scene. Besides contrast enhancement, most existing
methods suffer from color saturation, detail distortions and
complicated calculations.

In this paper, we propose a novel method to dehaze single
satellite image using linear intensity transformation (LIT) and local
property analysis (LPA). Based on the analysis about degradation
model of hazy satellite image and the observations of the intensity
distribution of each RGB color channel, we demonstrate the
rationality of LIT for hazy satellite image. Then LPA, which is
concerned with localized luminance, chromatic nature and tex-
ture, is used to estimate the LIT parameters. Finally, with images
obtained from Google Earth and NASA Earth Observatory websites,
the performance of our method was evaluated by comparison with
other methods, including the classical and state-of-the-arts.

This paper is organized as follows. In Section 2, the appro-
priateness of LIT to dehaze single hazy satellite image is dis-
cussed. Section 3 presents parameter estimations for LIT via
LPA. The experimental results and comparisons with other
methods are given in Section 4. Finally, conclusions are drawn
in Section 5.
2. Rationality demonstration of linear intensity transforma-
tion for hazy satellite image

2.1. Physical model of hazy image

According to Koschmieder's law [8], the model widely used in
computer vision and computer graphics to describe the formation
of a hazy image is

I xð Þ ¼ J xð Þt xð ÞþA 1�t xð Þ½ �; ð1Þ
where x is a two-dimensional (2D) spatial location, I xð Þ is the
observed image, J xð Þ is scene radiance, A is global atmospheric
light, and t xð Þ is transmission associated with not only the scat-
tering of atmosphere, but also the distances between observed
scene and imaging sensors. Enhancing the contrast of hazy image
is actually to recover J xð Þ from I xð Þ.

In Eq. (1), the first term J xð Þt xð Þ on the right-hand side is the
direct attention related to the media transmission coefficient. It
describes the scene radiance, and diminishes with t xð Þ. The second
term A 1�t xð Þ½ � is called the airlight. It increases as t xð Þ decreases.
The main reason for the reduction of image quality is that the
scene radiance is depleted by haze and far-away objects.

2.2. Linear intensity transformation

If the haze is homogenous, t xð Þ can be estimated as

t xð Þ ¼ e�βd xð Þ; ð2Þ
where β is the medium extinction coefficient, and d xð Þ is the scene
depth related with the distance between object and camera. For
natural image, d xð Þ is of importance for t xð Þ, whereas for satellite
image, considering the high orbit in space, the distances between
objects in a given scene and the imaging sensor are approximately
changeless. Thus, t xð Þ mainly depends on the characteristics of
atmosphere or haze. Since the haze over a small local region is
usually homogenous, t xð Þ can be noted as a constant t0:

I xð Þ ¼ J xð Þt0þA 1�t0½ �; ð3Þ
Obviously, the observed image formally consists of two parts:

the desirable scene image transmitted through haze and the
undesirable haze overcastting. The former could reduce the
dynamic range of image intensity, and the latter may change the
image intensity into high values. For dense haze, the low trans-
mission results in that the airlight term nears to the highly-valued
global atmospheric light. Meanwhile, the dynamic range of



Fig. 2. Hazy satellite image and its intensity distribution: (a) shows a hazy satellite image; (b) illustrates the intensity histograms of RGB channels for (a).
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Fig. 3. Dehazing result with simple LIT method: (a) Contrast enhancement via LIT; and (b) color intensity histograms for enhanced image with RGB channel. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article)
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intensities is shortened for all RGB color channels. Fig. 2 shows a
hazy satellite image with histograms of each RGB color channel.
Note that most RGB color intensities are larger than 130. The main
range of color intensities for each channel spans just about 50. This
phenomenon is consistent with Eq. (3), and destroys the
assumptions of DCP-based method.

Rewrite Eq. (3), and let k denote 1=t0 and b denote A 1�t0ð Þ=t0,
then we obtain

J xð Þ ¼ kI xð Þ�b ; kZ1 ; bZ0; ð4Þ
This is a typical expression of LIT for image contrast enhance-

ment. Fig. 3 shows the result of LIT for Fig. 2(a). We can find that
the haze is removed well by LIT alone. It further validates the
rationality of LIT for haze satellite image. However, the processed
image still suffers from low visibility (mainly lower than 115),
especially in those regions with dense haze and low light condi-
tions. Therefore, the image has not been sufficiently enhanced.

According to the analysis presented above, it can be concluded
that the local contrast of hazy satellite image depends on local
haze characteristics instead of local scene depth information. To
obtain better dehazing effects, we should employ localized spatial
properties of haze to adaptively estimate parameters k xð Þ and b xð Þ.
3. Estimate the parameters of linear intensity transformation
via local property analysis

This section focuses on the method how to estimate the para-
meters k xð Þ and b xð Þ defined in Section 2. In the first part, LPA is
proposed to estimate parameter k xð Þ, and then parameter b xð Þ is
estimated accordingly.

3.1. Estimate parameter k xð Þ

As defined above, we have k xð Þ ¼ 1=t xð Þ. Therefore, parameter
k xð Þ can be calculated with parameter t xð Þ. It denotes the mod-
ulation of haze on scene reflectance. Since the haze over a scene
is not thoroughly homogenous, t xð Þ often varies with the loca-
lized properties of haze. This means that dense haze usually
results in a smaller t xð Þ than light haze. Motivated by such phe-
nomena, we use local property analysis, denoted as LPA, to
adaptively estimate t.

For the convenience of calculation, the hazy satellite image is
normalized beforehand

In xð Þ ¼ I xð Þ=255; ð5Þ
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Fig. 4. Flowchart of how the maximum value of κmax is calculated.
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Fig. 5. Change curves of γ xð Þ with different factors: (a) curves of γ xð Þ vs. μ xð Þ with various σ1; (b) curves of γ xð Þ vs ν xð Þ with various σ2; (c) curves of γ xð Þ vs. κ xð Þ with various
σ3; (d) curve of γ xð Þ vs. μ, ν, κ with σ1¼0.30, σ2¼0.25, σ3¼1.50.
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Then the LPA, consisting of luminance, chromatic and texture,
is presented as follows.

) Luminance property: since pixels located in thick hazy regions
tend to have the highest intensities, an effective way is to
evaluate the luminance at each pixel. Based on the RGB color
channel information, this measure can be simply computed
with the local mean of RGB color channels:

μ xð Þ ¼ 1
3

X
cA r;g;bf g

Icn xð Þ; ð6Þ

For hazy satellite image, the luminance-based measure performs
as an identifier of dense and light haze regions. However, it
cannot discriminate medium density haze regions from those
with saturated colors. To overcome this problem, we consider
two additional local properties.
) Chromatic property: hazy satellite images generally present low
saturation [14], and an effective way to measure this property is
to evaluate the loss of colorfulness. Like the luminance-based
measure, chromatic-based measure is also calculated based on
RGB color channel information. It substitutes the local mean of
RGB channels with the local deviation,

υ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

X
cA r;g;bf g

Icn xð Þ�μ xð Þ� �2vuut ; ð7Þ

Considering that μ xð Þ is calculated based on RGB channels, this
measure will yield higher values in regions possessing saturated
color. These regions are usually covered by light haze or even no
haze at all. However, it is possible that this measure will assign
small values not only for haze regions but also for those
deteriorated due to some other reasons (e.g., regions containing
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Fig. 6. Dehazing result of the image shown in Fig. 2 with our method: (a) dehazing result; (b) color intensity histograms for the enhanced image of each RGB channel. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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light shadows, or areas vegetated with bushy trees). As a solution,
we present the third property.

) Texture property: Colorless regions can preserve more details
than those covered by medium dense haze. An effective way is
to characterize textural features. In this study, we extracted the
Sobel-based local edge magnitude from intensity component of
input image in HSI color space,

κ xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
m ¼ 1

I HSIð Þ xð Þ � ws

h i2vuut ; ð8Þ

where, I HSIð Þ is the normalized intensity component of hazy satel-
lite image I in the HSI color space. ws is the Sobel operator con-
sisting of two pixel-wise and 3�3-sized convolution masks
(horizontal and vertical) [26,27]. According to the definition above,
small values are likely to be assigned to regions covered by
medium density haze. While regions with plenty of detail, (e.g.
bushy trees), will get higher values. Thus, this measure ensures that
the possible haze regions can be well described.

By processing a large and diverse set of hazy satellite images,
we can find that these three measures contribute almost the same.
Therefore, we construct a normalized mixed exponential function
(NMEF) γ xð Þ depending on μ xð Þ, υ xð Þ and κ xð Þ to take their influ-
ences into account simultaneously.

γ xð Þ ¼ exp � μ xð Þ�μmax

� �2
2σ2

1

" #
Uexp � υ xð Þ�υminð Þ2

2σ2
2

" #
U

1�exp � κ xð Þ�κmaxð Þ2
2σ2

3

" #( )
; ð9Þ

where μmax, υmin and κmax are the ideal values of μ xð Þ, υ xð Þ and
κ xð Þ. For the normalized hazy image, it is easy to respectively
conclude that μmax ¼ 1 and υmin ¼ 0. While for κmax, Fig. 4 illus-
trates the flowchart by which it is calculated. σ1, σ2 and σ3 are
used to adjust the relative weights of μ xð Þ, υ xð Þ and κ xð Þ.

Fig. 5(a)–(c) show the curves of γ xð Þ vs. μ xð Þ, υ xð Þ and κ xð Þ with
various σ1, σ2 and σ3 respectively, while Fig. 5(d) is the curve of
γ xð Þ vs.μ xð Þ, υ xð Þ and κ xð Þ simultaneously.

As mentioned above, the coefficients σ1, σ2 and σ3 are the
parameters used for adjusting the influence of LPA on the NMEF
respectively. It can be seen that if these parameters are set too
bigger or too smaller than given values (or values in given range),
significant truncated effects will occur for the curves of NMEF,
which actually makes the NMEF curves degenerate to be piece-
wise linear ones. In the Section 2, we have demonstrated that it is
not satisfying to dehaze the hazy satellite image only by simple
linear model. However, the curves of NMEF with σ1, σ2 and σ3

respectively set to 0.30, 0.25 and 1.50 are a good tradeoff. The
actual NMEF possesses nice nonlinearity. It varies smoothly over
the reasonable range of μ xð Þ, υ xð Þ and κ xð Þ when σ1 ¼ 0:30, σ2 ¼
0:25 and σ3 ¼ 1:50. According to Fig. 5(d), γ xð Þ begins to be active
only when the haze density reaches a given value. For regions with
very thin or no haze at all, the value of NMEF always nears zero,
which means that the original RGB values are preserved. While for
the regions with dense haze, a suitable value of NMEF is calculated
based LPA, and then the original RGB values can be well restored.

Based on γ xð Þ, parameter t xð Þ can be estimated as,

t xð Þ ¼ max 1� sin πγ xð Þ=2� �
; th

� �
; ð10Þ

where, th is a constant used to improve the robustness against
noise during contrast enhancement when the haze is too dense.
Then parameter k xð Þ can be calculated as

k xð Þ ¼ 1= max 1� sin πγ xð Þ=2� �
; th

� �
; ð11Þ

3.2. Estimate parameter b xð Þ

Parameter b xð Þ actually depends on t xð Þ and A. Since t xð Þ is
estimated as Eq. (10), the estimation of b xð Þ can be converted to
the estimation of A. Considering that A originates from the effect
of global atmospheric light in hazy satellite image degradation
model, it is reasonable to determine A by the methods how to
estimate atmospheric light.

He et al. [7] proposed a method based on DCP to estimate A.
They first pick up pixels among top 0.1% of brightness in the
darkest channel, and then select the highest one as A. Here, we
adopt a modified version of He’s method, which produces a similar
result but performs more efficiently [9].

A¼ max
i;jð ÞAΩ

minw
i;jð ÞAΩ;cA r;g;bf g

Ic i; jð Þ� �( )
; ð12Þ

where, Ω is the set of locations for all the pixels; minw U½ � is the
minimum filtering operation with a moving window w. This filter
can reduce the risk of choosing the brightest ground target (or
calling it a white ground target). According to Eq. (12), minw U½ � is
conducted on each channel of input image, and the maximum
value of each color channel is then taken as the estimation of A.



Fig. 7. From top to bottom and left to right, the original hazy satellite image and the results obtained by MSR, He et al. [16], Tarel [25], Fattal [14] and our method. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article).
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Then the parameter b xð Þ of LIT can be estimated as:

b xð Þ ¼ max
i;jð ÞAΩ

minw
i;jð ÞAΩ;cA r;g;bf g

Ic i; jð Þ� �( )
U
1� max 1� sin πγ xð Þ=2� �

; th
� �

max 1� sin πγ xð Þ=2� �
; th

� �
ð13Þ

Fig. 6 shows the final enhancement result of image in Fig. 2.
Comparison with that in Fig. 3, the proposed method presents
more brighter enhanced result, and the intensity histograms for
three RGB channels become more uniformly distributed, tending
to cover the entire density range from 0 to 255.
4. Experimental results

To evaluate the effectiveness of our method, in this section, we
present the experiment results with hazy satellite images, which
are collected from Google Earth and NASA Earth Observatory web-
site. These images differ with scene content, spatial resolution and
haze density, and are respectively used for different applications.
We compare the performance of our method both qualitatively
and quantitatively with multiple scale Retinex (noted as MSR), and
several state-of-the-art approaches, including He et al.’s [16],
Tarel’s [25] and Fattal’s [14].

Except special illustration, the local window ws of Sobel edge
operators is sized by 3�3 [28] [29]. The coefficients σ1, σ2 and σ3

are respectively set to 0.30, 0.25 and 1.50. As for the methods to be
compared, we set the key parameters as the corresponding papers.
We implemented our method with Matlab 2013 on a Windows
7 PC with an Intel(R) Core(TM) 2 CPU 6320 @ 1.86 GHz processor.
Fig. 8. Local patches taken for detailed visual comparison. From top to bottom and left t
[16], Tarel [25], Fattal [14] and our method. (For interpretation of the references to colo
4.1. Qualitative evaluation

Fig. 7 presents experimental results for a hazy satellite image of
Xianyang International Airport downloaded from Google Earth. The
image size of 1500�1500, and its spatial resolution is about
0.50 m. In this scene, there are quite a number of different types of
ground targets, e.g. houses, cars, roads, runways and planes. It can
be seen that, our method provides the best dehazing result with
rich details and abundant color information, which are both of
great importance for human visual perception and further image
analysis. In contrast, the results of the other methods are not so
quite satisfying. For example, as a typical method based on mul-
tiplicative imaging model, Retinex darkens the image after
dehazing, and the color of most regions have also been sig-
nificantly disturbed. The existence of large-scale white targets
instead of the shy makes the estimation of airlightAin He et al.’s
method [16] questionable. The image dehazed by this method is
overall darkened even that the haze is removed more or less.
Particularly, the local details in shadow regions are very difficult to
interpret. Tarel's [25] method dehazes this image not so quite
visually compelling with halo appearing in the regions where
sharp change of luminance (e.g. shadows) occurs. Considering that
the gray effect of haze makes the assumption of enough color
information does not hold, Fattal’s method [14] over-brightens the
hazy image and present abnormal colors.

To further illustrate the outstanding performance of our
method over the other four methods, we take some local patches
from the images in Fig. 7, and present them in Fig. 8. Obviously, the
patch dehazed by our method has best contrast and color pre-
servation. For instance, the boundaries of shadow regions are
more vivid than those taken from the images dehazed by the other
four methods.
o right, the original hazy satellite image and the results obtained by MSR, He et al.
r in this figure, the reader is referred to the web version of this article).



Fig. 9. From top to bottom and left to right, the original hazy satellite image and the results obtained by MSR, He et al.’s [16], Tarel’s [25] and Fattal’s [14] and our method.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
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Fig. 10. From top to bottom and left to right, the original hazy satellite image and the results obtained by MSR, He et al.’s [16], Tarel’s [25] and Fattal’s [14] and our method.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
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Fig. 11. From top to bottom and left to right, the original hazy satellite image and the results obtained by MSR, He et al.’s [16], Tarel’s [25] and Fattal’s [14] and our method.
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Fig. 12. From top to bottom and left to right, the original hazy satellite image and the results obtained by MSR, He et al.’s [16], Tarel’s [25] and Fattal’s [14] and our method.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
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Fig. 13. From top to bottom and left to right, the original hazy satellite image and the results obtained by MSR, He et al.’s [16], Tarel’s [25] and Fattal’s [14] and our method.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
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Table 1
Quantitative evaluation results.

Indicator Method e r p %ð Þ τ sð Þ

Fig. 7 Original (a) – – –

MSR (b) 0.3901 1.1878 0 10.2147
He et al.'s (c) 0.4136 1.1895 0.1622 2.41�106

Tarel's (d) 0.2638 1.4413 0.0311 643.2988
Fattal's (e) 0.6432 2.5858 20.3795 1.3605
Ours (f) 0.7936 2.3009 0.0508 6.6648

Fig. 9 Original (a) – – –

MSR (b) 0.3250 1.1500 0 2.5874
He et al.'s (c) 0.6983 1.3493 0.0148 4.73�105

Tarel's (d) 0.2428 1.3301 0.2639 61.3782
Fattal's (e) 0.8048 2.2727 8.9838 0.1956
Ours (f) 0.9080 2.4856 0.1195 1.2539

Fig. 10 Original (a) – – –

MSR (b) 1.1911 1.3091 0 8.5134
He et al.'s (c) 0.6472 0.9489 0 2.29�106

Tarel's (d) 0.9810 2.1423 0 627.1398
Fattal's (e) 0.8944 1.6894 0.1970 1.0937
Ours (f) 2.1489 1.6048 0 6.7841

Fig. 11 Original (a) – – –

MSR (b) 4.5951 1.9671 0 15.1605
He et al.'s (c) 1.5065 1.0347 0.0034 3.85�106

Tarel's (d) 1.0621 1.6668 0.0032 733.4166
Fattal's (e) 3.9640 2.4473 0.1877 1.3270
Ours (f) 8.1846 1.9508 0.0038 6.6238

Fig. 12 Original (a) – – –

MSR (b) 50.1761 3.0402 0 7.6281
He et al.'s (c) 10.6391 1.7343 0 2.66�104

Tarel's (d) 9.2983 2.0994 0 160.9419
Fattal's (e) 13.0522 2.4777 0.0096 0.5498
Ours (f) 70.3180 3.7112 0 2.8078

Fig. 13 Original (a) – – –

MSR (b) 1.4793 2.2529 0 0.8018
He et al.'s (c) 2.0753 1.2511 0 1.59�105

Tarel's (d) 9.9084 2.8993 0 39.5493
Fattal's (e) 5.7267 1.9701 0 0.1032
Ours (f) 4.2289 2.6134 0 0.7901
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In Figs. 9 and 10, we evaluate the performance of our method
and the other four methods with hazy satellite images obtained
over city scenes downloaded from Google Earth. In Fig. 9, the image
size is 600�600, and its spatial resolution is about 0.50 m. This
image contains several tall buildings associated with their sig-
nificant shadows, many vehicles moving on the roads, and dark
green trees. Due to the overall relative dense haze, this image
looks very blurring. In Fig. 10, the image size is 1500�1500, and
its spatial resolution is about 1.00 m. This image contains many
house buildings, a concrete square and large water area of a river.
It can be seen that our method can well avoid the problem of
excessive color saturation and distortion. The details are presented
clearly. Even the local contrast of the region under tall buildings'
shadows has been enhanced. However, the results obtained by the
other four methods still suffer from the problems of luminance
darkened, color disturbed. For example, Fattal's method [14]
resulted in excessively saturated color, especially in Fig. 9(b).

In Figs. 11 and12, we evaluate the performance of our method
and the other four methods with hazy satellite images obtained
over urban regions downloaded from Google Earth. In Fig. 11, the
image size is 1600�1500, and its spatial resolution is about
1.00 m. This image contains farmlands, dispersed houses, and
rivers. In Fig. 12, the image size is 1000�1000, and its spatial
resolution is about 10.00 m. This image mainly contains farmlands
and several hamlets. Compared with the high reflection of airlight
by buildings in city regions, the relative low reflectivity of farm-
lands causes such images looks deep-colored. For such images, our
method can also obtain satisfying result. However, the actual
relative low reflection of airlight destroys the corresponding
assumption of He et al.'s [16], Tarel's [25] and Fattal's [14] meth-
ods. Thus, the results obtained by such three methods look hazy.
While for MSR, it over-dehazed these images with saturated color
in local regions.

In Fig. 13, our method and the other four methods were eval-
uated with a hazy satellite image downloaded from NASA Earth
Observatory website. This image size is 400�400, and its spatial
resolution is about 250 m. It contains the Hongze Lake in Jiangsu
province of China. Due to the dense and dusty haze, the color of
this image is overall dark except the region of Hongze Lake. We
can see that the dehazing result by MSR method suffers sig-
nificantly red-shifted and locally color saturation. Because the
dense and dusty haze also makes the airlight questionable, the
dehazing results obtained by He et al.’s [16], Tarel’s [27] and Fat-
tal’s [14] are all darkened, making some local details hard to
interpret. However, the result by our method looks much
more vivid.

4.2. Quantitative evaluation

Four objective indicators are employed to assess the corre-
sponding results quantitatively, among which three ones, e, r, and
p, are defined as [28], and the forth one, τ ,, is noted as the time
consuming. Indicator e represents the rate of edges newly visible
after enhancement. Indicator r measures how much the contrast
between the background and the target is enhanced. Finally, to
evaluate the level of oversaturation, indicator p is introduced as
the percentage of pixels being completely white or black in the
restored image. A better dehazed image is generally supposed to
have higher values of e andr, and lower values of p andτ . The
results are list in Table 1.

It is observed from these tables that our method performs well
for all these four indicators, especially for e, which means the
dehazed image presents more local details. In addition, for given
hazy satellite image, the time consuming of our method is less
than 10 times than that of Fattal's method [14]. However, the other
three indicators of Fattal's method [14] are not quite promising. As
for He et al.'s method [16], the questionable airlight estimation and
the abundant local details makes the soft-matting based trans-
mission estimation quite time consuming.

Fig. 14 shows result of our method conducted on very dense
hazy satellite image. As we can see, the local details and color
information can also be roughly recovered. In addition, Fig. 15
indicates that our method can obtain comparable performance on
outdoor images. So the LPA may have some potential to describe
image depth that is related with haze variations.

In conclusion, due to the good suitability of LIT model in
describing the degradation of hazy remote sensing, and the
effectiveness and efficiency of LPA based parameter estimation,
our method outperforms than the dehazing methods compared.
5. Conclusion and future work

In this paper, we have proposed a simple but effective method
to remove the haze from single satellite image. This method is
developed based on the LIT and LPA. We demonstrate that it is
reasonable to use LIT to enhance the visibility of hazy satellite
imagery. Then, we propose to adaptively estimate parameters of
LIT by analyzing the local image properties of luminance, chro-
matics and texture. Experimental results on hazy satellite images
indicate that our method outperforms four well-known dehazing
methods, including both classical and state-of-the-arts.

In the future, there are at least two problems worth of further
study, one is how to construct more suitable statistics to dis-
criminate thick haze and large-scale white ground targets more



Fig. 14. Results by our method for satellite image with very dense haze. (a) Original image. (b) Dehazing result. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article).

Fig. 15. From left to right and top to bottom, the input hazy outdoor image and the results obtained by MSR, He et al.’s [16], Tarel’s [25] and Fattal’s [14] and our method. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article).
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efficiently, and the other one is how to find the most optimized
values for the coefficients used in NMEF.
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