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A B S T R A C T

In this paper, a new and powerful algorithm called Flower Pollination Algorithm (FPA) is proposed for
optimal allocations and sizing of capacitors in various distribution systems. First the most candidate buses
for installing capacitors are suggested using Power Loss Index (PLI). Then the proposed FPA is employed
to deduce the size of capacitors and their locations from the elected buses. The objective function is de-
signed to reduce the total cost and consequently to increase the net saving per year. The proposed algorithm
is tested on 15, 69 and 118-bus radial distribution systems. The obtained results via the proposed algo-
rithm are compared with other algorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
Plant Growth Simulation Algorithm (PGSA), Direct Search Algorithm (DSA), Teaching Learning-Based Op-
timization (TLBO), Cuckoo Search Algorithm (CSA), Artificial Bee Colony (ABC) and Harmony Search
Algorithm (HSA) to highlight the benefits of the proposed algorithm. Moreover, the results are intro-
duced to verify the effectiveness of the suggested algorithm to minimize the losses and total cost and to
enhance the voltage profile and net saving for various distribution systems.

Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

At the distribution level, about 13% of the generated power is
lost as ohmic losses [1,2]. These losses can be diminished by in-
stalling shunt capacitors at appropriate positions. Moreover, the
voltage profile, power factor and power system stability are im-
proved. Thus, the optimal sizing and locations of these capacitors
have a vital and irreplaceable role in distribution systems.

During last years, several algorithms and techniques are intro-
duced to find the proper locations and optimal sizes of shunt
capacitors. Nonlinear Programming [2], Simulated Annealing (SA)
[3], Tabu Search (TS) [4], Genetic Algorithm (GA) [5], Particle Swarm

Optimization (PSO) [6,7], Direct Search Algorithm (DSA) [8], Teach-
ing Learning Based Optimization (TLBO) [9], Plant Growth Simulation
Algorithm (PGSA) [1], Heuristic Algorithm [10], Cuckoo Search Al-
gorithm (CSA) [11–13], Artificial Bee Colony(ABC) [14–16], Ant
Colony Search Algorithm (ACO) [17,18], Bacteria Foraging (BF) [19],
Firefly Algorithm (FA) [20], Harmony Search (HS) [21,22]
and big bang-big crunch optimization [23] are developed to deal
with the capacitor placement problem. However, these algo-
rithms may fail to reach the optimal cost. In order to overcome these
drawbacks, the Flower Pollination Algorithm (FPA) is proposed in
this paper to solve the problem of optimal capacitor placement. It
has only one key parameter p (switch probability) which makes the
algorithm easier to implement and faster to reach optimum solution.

FPA is proposed in this paper as a new optimization algorithm
to diminish the total active power losses, the total cost and to re-
inforce the voltage profiles for different distribution systems. The
locations of the shunt capacitors problem are obtained at first by
examining the buses of higher Power Loss Index (PLI). Then FPA is
introduced to decide the optimal locations and sizing of capaci-
tors from specified buses. The effectiveness of the proposed algorithm
in enhancing the voltage profile and reducing ohmic losses is shown
for three distribution systems with different scales and topolo-
gies. The results of the FPA are compared with various algorithms
to confirm its notability.

Abbreviations: FPA, Flower Pollination Algorithm; PLI, Power Loss Index; GA,
Genetic Algorithm; PSO, Particle Swarm Optimization; PGSA, Plant Growth Simu-
lation Algorithm; DSA, Direct Search Algorithm; TLBO, Teaching Learning-Based
Optimization; CSA, Cuckoo Search Algorithm; ABC, Artificial Bee Colony; HSA, Harmony
Search Algorithm; SA, Simulated Annealing; TS, Tabu Search; ACO, Ant Colony Search
Algorithm; BF, Bacteria Foraging; FA, Firefly Algorithm; HS, Harmony Search; DE, Dif-
ferential Evolution.
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2. Overview of flower pollination algorithm

FPA was introduced in 2012 by Yang [24]. It was inspired by the
pollination task of flowering plants. The main objective of a flower
is basically reproduction using pollination. Flower pollination is cor-
relating with the transfer of pollen, which is often associated with
pollinators like birds and insects. Pollination appears in two main
types: abiotic and biotic. Most flowering plants rely on the biotic
pollination task, in which the pollen is transmitted by pollinators.
The rest of pollination follows abiotic form that does not demand
any pollinators like grass [25,26]. Wind and diffusion support in the
pollination task of such flowering plants. On the other hand, pol-
lination can be executed by self-pollination or cross-pollination. Self-
pollination is the pollination of one flower from the pollen of the
same flower or other flowers of the same plant. Cross-pollination
is the pollination from the pollen of a flower of other plants.

The purpose of the FPA is the survival of the fittest and the
optimal reproduction of plants in terms of numbers as well as the
fittest [27]. This can be treated as an optimization task of plant
species. All of these factors and tasks of flower pollination gener-
ated optimal reproduction of the flowering plants. Also, FPA proves
its capability to solve various problems in power system [28–30].
Thus, it has been adopted in this paper to solve the problem of
optimal sizing and locations of capacitors in distribution systems.

2.1. Flower pollination algorithm

For FPA, the following four steps are used:

Step 1: Global pollination represented in biotic and cross-
pollination tasks, as pollen-carrying pollinators fly following Lévy
flight [26].
Step 2: Local pollination appeared in abiotic and self-pollination
as the task does not request any pollinators.
Step 3: Flower constancy which can be introduced by insects,
which is on par with a reproduction probability that is propor-
tional to the similarity of two flowers involved.
Step 4: A switch probability p∈[ ]0 1, is used to control the in-
teraction of local and global pollination.

The above steps have to be converted into proper updating equa-
tions. For example at the global pollination step, the pollinators load
the flower pollen gametes, so the pollen can leave over a long dis-
tance. Therefore, global pollination step and flower constancy step
can be stated by:

x x L g xi
t

i
t

i
t+ = + −1 γ λ( )( * ) (1)

In fact, L λ( ) the Lévy flights based step size that corresponds
to the intensity of the pollination. Since long distances can be
wrapped via many distance steps, a Lévy flight can be employed
to imitate this behavior strongly. That is, L > 0 from a Lévy
distribution.

L
s

s s∼ �
λ λ πλ

π λ

Γ( ) ( ) >( )+

sin 2 1
0

1 0 (2)

Γ λ( ) is the criterion gamma function, and this distribution is
proper for large steps s > 0 .

For the local pollination, both Step 2 and Step 3 can be symbol-
ized as

x x x xi
t

i
t

j
t

k
t+ = + −( )1 ε (3)

where xj
t and xk

t are pollen from several flowers of the same plant
species simulating the flower constancy in a limited neighborhood.

For a local random walk, xj
t and xk

t hail from the same species then
ε is pulled from a uniform distribution as [0, 1].

In principle, flower pollination actions can take place at all levels,
both local and global. In fact neighboring flower positions are pol-
linated by local flower pollen than those far away. In order to imitate
this, one can utilize a switch probability p effectively to convert
between general global pollination to intense local pollination. Ini-
tially, one can employ a value of p = 0.5. The flow chart of FPA is
given in Fig. 1.

3. Problem formulation

3.1. Power loss index

In this paper, PLI is used to appoint the candidate buses for ca-
pacitors. The area of search is greatly reduced and consequently the
time consumed in the optimization process. The disadvantage of
this index is the necessary computations. It is required to perform
load flow and determine the reduction in active power losses by
injection reactive power at each bus except the swing one [13]. The
PLI is calculated by the following expression.

PLI i( ) = ( ) −
−

lr i lr
lr lr

min

max min

(4)

The buses of larger PLI will have the priority to be the candi-
date bus for installing compensator devices.

If rand > p

Input population size, maximum iteration, switch 
probability, ……

Start

Initialize a population of n flower with 
random solutions

Check the condition is 
satisfied?

Global pollination using Levy flight

Find the current best solution 

Stop

Yes

No

Update current global best

Output the best solution
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Evaluate new solutions (outputs of 
optimal locations)

No

Yes

Fig. 1. Flow chart of FPA.
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3.2. Objective function

The proposed objective function of optimal capacitor location
problem is to minimize the total cost which is determined by the
following equation:

Cost K P T D K CB K Q K CBP Loss I C Ci
i

CB

o= ∗ ∗ + ∗ + ∗⎛
⎝⎜

⎞
⎠⎟

+∑ (5)

where the constants are taken as in Reference 16.
The above equation is minimized while satisfying the follow-

ing equality and inequality constraints.

3.2.1. Equality constraint

• Load flow constraint

Traditional methods such as Newton Raphson and Gauss Siedel
cannot be used in the distribution system due to ill condition.
Forward sweep algorithm has been introduced by Das et al. [31] to
solve load flow problem of distribution systems. The equality con-
straint is given by the following equations:

P P i Pd qSwing Lineloss
i

L

q

N
= ( )∑ + ( )∑

= =1 1
(6)
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b

CB
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q

N
+ ( )∑ = ( )∑ + ( )∑

= = =1 1 1
(7)

3.2.2. Inequality constraints

• Voltage Constraint

The magnitude of voltage at each bus must be limited by the fol-
lowing equation:

0 90 1 05. .≤ ≤V (8)

• Compensation Constraint

The injected reactive power at each candidate bus should be less
than its effective reactive power.

• Total Reactive Power Constraint

It is noteworthy that the total injected reactive power is less than
0.7 of the total reactive power demand to sustain working of power
system with lagging power factor and averting the leading one.

Q b Qd qC
b

CB

q

N
( )∑ ≤ ( )∑

=1
0 7. (9)

• Power Factor Constraint

Power Factor PF( ) should exceed the minimum value and less
than the maximum value as shown by the following equation.

PF PF PFmin max≤ ≤ (10)

4. Results and discussion

The superiority of the proposed FPA with PLI is implemented to
various distribution systems. The results of 15, 69 and 118 bus radial
distribution systems are given below in details. The proposed al-
gorithm has been performed via Matlab [32].

4.1. 15 Bus test system

The first tested case is 15 bus system as displayed in Fig. 2. The
system data are given in Reference 33. The total load for this system
is 1752 kVA with PF = 0.7. The losses without compensation are
61.9547 kW. Fig. 3 gives the candidate buses according to their PLI.
The order of these buses are 15, 11, 4, 7, 6, 12, 14, 3, 8, 13, . . . 2. A
comparison between two scenarios is performed and shown in
Table 1. The first one selects the top three buses according to higher
values of PLI to be the optimal locations. In the second scenario, FPA
decides the optimum locations from the initial candidate buses based
on higher PLI to reduce the number of compensated buses and their
injected Vars. It is clear that the second scenario gives the better
response in terms of costs and losses and therefore it is proposed
in this paper for the other systems. The notability of the sug-
gested FPA is demonstrated compared with other algorithms in
References 6,34–37. The value of installed capacity of reactive power
is 1000 kVAr. The minimum voltage is increased from 0.9424 to
0.9676 p.u. The losses with compensation are decreased to
30.7112 kW due to capacitors installation as given in Table 2. The
percentage reduction in losses is increased to be 50.43%. More-
over, the value of total cost due to the proposed objective algorithm
is 23001.78$ which is the smallest one. Also, the net saving with

9   10

~

2  3   4   5

6   8 

7 

14

15 

11 12 13

1

Fig. 2. The schematic diagram of the 15 bus system.

Table 1
Comparison between two Scenarios.

Items First Scenario Second Scenario (Proposed)

Total losses (kW) 34.32 30.7112
Loss reduction (%) 44.6 50.43
Minimum voltage 0.9661 0.9676
Optimal location 4 350 6 350
and size in kVAr 11 300 11 350

15 150 15 300
Total kVAr 800 1000
Annual cost ($/year) 23899 23001.78
Net saving ($/year) 8664.2 9561.62
% saving 26.6 29.36
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the proposed FPA is improved to 29.36% which is the maximum one
compared with other algorithms. Finally, the improvement in system
voltages due to installed capacitors is shown in Fig. 4.

4.2. 69 Bus test system

The second tested case via the suggested algorithm is a 69 bus
system. Fig. 5 gives the system diagram which consists of main feeder
and seven branches. The system data are shown in Reference 38.
The order of candidate buses for this system according to their PLI

values are 61, 64, 59, 65, 21, 12, 11, 62, 18, 17, 16, . . . as deter-
mined in Fig. 6. Two buses are considered for capacitor placements.
The superiority of the proposed technique to solve the problem of
optimal capacitor location is proved compared with those ob-
tained in References 6,39–41. The losses without compensation are
224.8949 kW and are decreased to 145.777 kW due to compensa-
tion devices as shown in Table 3. Moreover, the minimum voltage
has been enhanced from 0.9092 p.u to 0.9323 p.u. The improve-
ment of system voltages is shown in Fig. 7 due to installed capacitors.
The value of installed capacity of reactive power is 1500 kVAr. The

Fig. 3. PLI for the 15 bus system.

Table 2
Results for 15-bus system.

Items Un-compensated Compensated

FGA [34] [35] PSO [6] DE [36] [37] Proposed

Total losses (kW) 61.9547 30.4411 32.6 32.7 32.3 33.2 30.7112
Loss reduction (%) - 50.86 47.38 47.22 47.86 46.41 50.43
Minimum voltage 0.9424 0.9677 - - - - 0.9676
Optimal location

and size in kVAr
- 4 200 3 805 6 871 3 454 3 150 6 350

6 100 6 388 11 321 6 500 4 300 11 350
7 300 11 178 6 300 15 300

11 300 11 150
15 200

Total kVAr - 1100 1193 1192 1132 900 1000
Annual cost($/year) 32563.4 24599.8 24339.6 24387.1 24496.8 24429.9 23001.78
Net saving ($/year) - 7963.6 8223.8 8176.3 8066.4 8133.5 9561.62
% saving - 24.46 25.26 25.11 24.77 24.98 29.36

Table 3
Results for 69-bus system.

Items Un-compensated Compensated

Fuzzy-GA [40] DE [39] PSO [6] Heuristic method [41] FPA

Total losses (kW) 224.8949 156.62 151.3763 152.48 148.48 145.777
Loss reduction (%) - 30.4 32.7 32.2 34 35.2
Minimum voltage 0.9092 0.9369 0.9311 - 0.9305 0.9323
Optimal location and size in kVAr - 59 100 57 150 46 241 8 600 61 1250

61 700 58 50 47 365 58 150 21 250
64 800 61 1000 50 1015 60 1050 - -

- 60 150 - - -
- 59 100 - - -

Total kVAr 1600 1450 1621 1800 1500
Annual cost ($/year) 118,204.8 90119.5 88913.4 88006.5 86441.1 85356.7
Net saving ($/year) - 28085.3 29291.4 30198.3 31763.7 32848.1
% saving - 23.8 24.8 25.6 26.9 27.8
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value of total cost due to the proposed objective function is 85356.7$
which is the smallest one. Also, the percentage of net saving with
the proposed FPA is equal to 27.8 % which is the greatest one com-
pared with other techniques.

4.3. 118 Bus test system

The effectiveness of the proposed algorithm is investigated on
118 node test system which contains 117 branches as a large
scale radial distribution network. The total load demand of this
test system is 22709.72 kW and 17041.07 kVAr respectively. The
system is operated with the nominal bus voltage of 11 kV, 100
MVA base. The nodes of 118 bus test system have been renum-
bered as shown in Fig. 8. The line data and load are given in

References 42–44. Before compensation the active and reactive
losses at nominal load are 1294.35 kW and 974.85 kVAr respec-
tively. The values of PLI are given in Fig. 9. Based on the proposed
algorithm, 9 nodes are identified as the most sensitive nodes for
capacitor placements with net injection of 8300 kVAr. The loca-
tions and amount of injected vars are scheduled in Table 4 compared
with References 13,16,22. The simulation results of optimal capac-
itor sizes and their corresponding locations, total active and reactive
losses, net saving and minimum and maximum voltage excluding
slack bus are summarized in Table 5. It is clear that the minimum
voltage is increased from 0.8688 p.u. to 0.9002 p.u. The active and
reactive power losses are reduced to 844.47 kW and 607.59 kVAr
with percentage reduction of 34.76% and 37.67% respectively. Also,
the overall PF is enhanced from 0.7879 to 0.92946. Moreover,
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Fig. 4. Effect of compensation on system voltages.
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Fig. 5. The schematic diagram of the 69 bus system.
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simulation results reveal the superiority of the proposed FPA to
improve the net saving to 184163$ with percentage of 27.1% and
to reduce the total cost to 496147.4$ compared with other algo-
rithms. Finally, the effect of compensation can be seen on voltage
profiles as indicated in Fig. 10.

5. Conclusions

In this paper, FPA has been successfully implemented to solve
the problems of optimal locations and sizing of capacitors in dis-
tribution systems that have been established as an objective
optimization task, with power losses, cost of installation, opera-
tion and injected vars are taken in consideration. The superiority
of the proposed approach is clarified by using different large test
systems. The contribution of this paper can be defined as

a) Application of FPA to solve capacitor location problem espe-
cially for large scale system.

b) Both locations and sizing of capacitors are optimized using
FPA. The role of PLI is just reducing the research area.

c) Treating the value of capacitor as a discrete value not a con-
tinuous one as most papers. Moreover, the objective function

Fig. 6. The candidate buses ordered according to their PLI values.

Table 4
Optimal location and size in kVAr for 118-bus system.

ABC [16] CSA [13] HSA [22] Proposed

Locations and
injected kVAr

32 850 32 1500 79 714 39 1500
35 1050 39 1500 77 170 43 600
40 1300 40 550 76 192 70 500
50 800 70 950 75 509 74 1050
70 550 74 750 74 272 86 900
73 1300 86 1050 73 432 91 1500
79 1200 108 1500 72 386 107 700

105 700 118 1200 113 974 109 500
106 250 56 375 118 1050
109 800 115 493
110 1200 54 377

53 425
111 641

52 753
112 793

51 349
71 513

110 281
50 165
70 626
49 488

Total kVAr 10,000 9000 9928 8300

Table 5
Results for 118-bus system.

Items Un-compensated Compensated

ABC [16] CSA [13] HSA [22] Proposed

Total losses (kW) 1294.35 854.39 858.89 926.1 844.47
Loss reduction (kW) (%) - 33.99 33.64 28.26 34.76
Total losses (kVAr) 974.85 639.08 644.94 - 607.59
Loss reduction (kVAr) (%) - 34.44 33.84 - 37.67
Minimum voltage 0.8688 0.90886 0.906 - 0.9002
Maximum voltage 0.9321 0.99741 0.997 - 0.9962
Total kVAr and No. of locations - 10,000 9000 9928 8300

11 locations 8 locations 21 locations 9 locations
PFoverall 0.7879 0.9295 0.92 - 0.92946
Annual cost ($/year) 680310.4 505887.4 501392.6 549418.2 496147.4
Net saving ($/year) 174423 178917.8 130892.2 184163
% saving 25.64 26.3 19.24 27.1

ARTICLE IN PRESS

Please cite this article in press as: A.Y. Abdelaziz, E.S. Ali, S.M. Abd Elazim, Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimi-
zation algorithm and power loss index, Engineering Science and Technology, an International Journal (2015), doi: 10.1016/j.jestch.2015.09.002

6 A.Y. Abdelaziz et al./Engineering Science and Technology, an International Journal ■■ (2015) ■■–■■

Downloaded from http://iranpaper.ir



that represents the total cost takes the installation and op-
erating cost in consideration.

d) FPA outlasts other algorithms in solving the optimal loca-
tions and sizing of capacitors in distribution systems.
Moreover, it provides a promising and preferable performance

over other algorithms in terms of voltage profiles, active and
reactive power losses, total cost and net saving.

Applications of the network reconfiguration and distributed gen-
eration with the most recent optimization algorithm to enhance the
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Fig. 7. The effect of compensated devices on voltage of 69 bus system.

53 54 55 56  57 58 59 60 

44 45 46 47 48 49  50 51 52 

61 62

28 29  30  31  32  33 34 35 36 37  38 39 40 41 42 43   

12 13 14 15 16 17

18 19 20 21 22 23  24  25 26 27 

10 11

~

85 86 87 88 

78 79 80  81 82 83 84 

89  90 91 92 93 94 95 96 

63 64 65 66 67 68 69  70 71 72 73 74 75 76 77  

97 98 99 118 

100 101 102 103 104 105  106 107 108  109  110 111 112 

113 114 115 116 117 

2  4   5  6   7  8  9

3  

1

Fig. 8. The schematic diagram of the 118 bus system.
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voltage profiles and to reduce the ohmic losses are the future scopes
of this work.

Nomenclature

lrmax The maximum reduction in active power losses
lrmin The minimum reduction in active power losses
lr i( ) The reduction in active power losses at bus i
xi

t The pollen i
g* The current best solution found at the current generation
γ Scaling factor
Γ λ( ) The criterion gamma function i
p Switch probability

KP The cost per kW-Hours and equals to 0.06$/kW-Hours
PLoss The total power losses after compensation
T The time in Hours and equals to 8760
D The depreciation factor and equals to 0.2
CB The number of compensated buses
KC The cost per kVAr and equals to 25$/ kVAr
KI The cost per installation and equals to 1600$
QCi The value of installed reactive power in kVAr
Ko The operating cost and equals to 300$/year/location
PSwing The active power of swing bus
Q Swing The reactive power of swing bus
L The number of transmission line in a distribution system
Pd q( ) The demand of active power at bus q
Qd q( ) The demand of reactive power at bus q

Fig. 9. PLI for the 118 bus system.
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Fig. 10. Effect of compensation on system voltages.
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N The number of total buses
PSwing The active power of swing bus
PF Power Factor
PFmin The minimum power factor, and it is equal to 0.9 lagging
PFmax The maximum power factor, and it is equal to 1
PFsys The power factor at swing bus
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