
Path-Based Partitioning Methods
for 3D Networks-on-Chip with

Minimal Adaptive Routing
Masoumeh Ebrahimi, Member, IEEE, Masoud Daneshtalab, Member, IEEE,

Pasi Liljeberg, Member, IEEE, Juha Plosila, Member, IEEE,

José Flich, Member, IEEE, and Hannu Tenhunen, Member, IEEE

Abstract—Combining the benefits of 3D ICs and Networks-on-Chip (NoCs) schemes provides a significant performance gain in Chip

Multiprocessors (CMPs) architectures. As multicast communication is commonly used in cache coherence protocols for CMPs and in

various parallel applications, the performance of these systems can be significantly improved if multicast operations are supported at the

hardware level. In this paper, we present several partitioning methods for the path-based multicast approach in 3D mesh-based NoCs,

each with different levels of efficiency. In addition, we develop novel analytical models for unicast and multicast traffic to explore the

efficiency of each approach. In order to distribute the unicast and multicast traffic more efficiently over the network, we propose the

Minimal and Adaptive Routing (MAR) algorithm for the presented partitioning methods. The analytical and experimental results show that

an advantageous method named Recursive Partitioning (RP) outperforms the other approaches. RP recursively partitions the network

until all partitions contain a comparable number of switches and thus the multicast traffic is equally distributed among several subsets

and the network latency is considerably decreased. The simulation results reveal that the RP method can achieve performance

improvement across all workloads while performance can be further improved by utilizing the MAR algorithm. Nineteen percent average

and 42 percent maximum latency reduction are obtained on SPLASH-2 and PARSEC benchmarks running on a 64-core CMP.

Index Terms—3D Networks-on-Chip, unicast and multicast communication, partitioning methods, analytical models, adaptive routing

algorithm

Ç

1 INTRODUCTION

NETWORKS-ON-CHIP (NoCs) have been proposed as a
promising solution for designing the interconnect

fabric of multicore systems [1], [2], [3]. Planar (2D) chip
fabrication technology is facing new challenges in the deep
submicron regime [4], [5]. Wire delay and power consump-
tion increase significantly by the usage of global inter-
connects in 2D designs. To overcome these limitations,
technology is moving rapidly toward the concept of 3D ICs
where multiple active silicon layers are vertically stacked.
The major advantages of 3D NoCs are the considerable
reduction in the average wire length and wire delay,
resulting in lower power consumption and higher perfor-
mance [5], [6], [7], [8], [9].

Unicast and multicast communication can be considered

for a NoC. In the unicast communication case, a message is

sent from a source node to a single destination node, while
in the multicast communication, a message is delivered
from one source node to an arbitrary number of destina-
tions. Multicast can be easily implemented with no
hardware overhead by assuming a multicast message is
replicated and every instance is sent to a particular
destination (this is termed unicast-based multicast). How-
ever, this implementation is inefficient. This inefficiency
arises because sending multiple copies of the same message
into the network not only causes a significant amount of
traffic, but also introduces a large serialization delay at the
injection point. The vast majority of traffic in Multi-
processor Systems-on-Chip (MPSoCs) consists of unicast
traffic and most studies have assumed that the traffic is
only unicast. Thereby, the concept of unicast communica-
tion has been studied extensively in the literature. The
proposed unicast protocols are efficient when all injected
messages are unicast. However, if only a small percentage
of the total traffic is multicast, the efficiency of the overall
system is considerably reduced. Indeed, multicast commu-
nication has a large impact on Chip Multiprocessor (CMP)
systems performance. The multicast communication is
frequently present in many cache coherence protocols
(e.g., directory-based protocols, token-based protocols,
and Intel QPI protocol [10], [11]). For example, around 5
percent of total traffic in a SGI-Origin protocol (which is a
directory-based protocol) consists of multicast messages
[11]. In this protocol, message latency can be reduced by
50 percent, if multicast is supported in hardware, thus

718 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

. M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen are
with the Department of Information Technology, University of Turku,
Joukahaisenkatu 3-5B, 20520 Turku, Finland.
E-mail: {Masoumeh.ebrahimi, masoud.daneshtalab, pasi.liljeberg,
juha.plosila, Hannu.tenhunen}@utu.fi.

. J. Flich is with the Departamento de Informática de Sistemas y
Computadores (DISC), Escuela Técnica Superior de Ingenierı́a Informática,
Universidad Politécnica de Valencia, 2 piso, despacho 2N-4, Apdo 22012,
46071 Valencia, Spain. E-mail: jflich@disca.upv.es.

Manuscript received 31 Oct. 2011; revised 22 Sept. 2012; accepted 5 Oct.
2012; published online 17 Oct. 2012.
Recommended for acceptance by R. Ginosar and K.A. Chatha.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2011-10-0814.
Digital Object Identifier no. 10.1109/TC.2012.255.

2168-7161/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

highlighting the importance of hardware-level multicast
support. In this paper, we performed some analysis to
determine the percentage of multicast messages generated
by coherence protocols. We analyzed synthetic and
application traces (i.e., SPLASH-2 [12], PARSEC [13], [14])
on top of two popular coherence protocols, MESI [15] and
token-based MOESI [16] (the detailed system configuration
parameters and workloads can be found in Table 3). Based
on experimental results, the bulk of the traffic in MESI
protocol is generated by unicast messages while token-
based MOESI protocol is heavily multicast based. On
account of our analysis, on average, around 10 percent of
MESI traffic and more than 80 percent of token-based
MOESI traffic are multicast.

Hardware-based multicast schemes can be broadly
classified into path-based [18], [19], [20] and tree-based
[18], [19] methods. In the tree-based method, a spanning
tree is built at the source and a multicast message is sent
down the tree. The source is considered as the root while
destinations are the leaves of this tree. The message is
replicated along its route at switches and forwarded along
multiple outgoing channels reaching to disjoint subsets of
destinations [3]. In the path-based multicast method, the
switch prepares a message for delivery to a set of
destinations by placing the list of destinations in the header
of the message. The message is routed along the path until it
reaches the first destination. The message is delivered both
to the local core and to the corresponding output channel
for continuing the path toward the next destination in the
list. In this way, the message is eventually delivered to all
specified destinations. A number of studies have shown
that path-based methods exhibit superior performance
characteristics over tree-based counterparts [21], [22]. The
path-based approach does not replicate messages within the
network, thus not increasing message contention. However,
the path visiting all switches can become large. To reduce
the length of the multicast path, destinations can be divided
into several disjoint subsets at the network interface of the
source switch, and then copies of the message are sent
across several separate multicast paths with different
destination sets [3]. Partitioning methods try to reduce
latency and increase the performance via an efficient
partitioning of destinations into disjoint subsets [33].

Additionally, routing algorithms can be classified into
deterministic or adaptive algorithms. A deterministic
routing algorithm uses a fixed path for each pair of
switches resulting in increased network latency especially
in congested networks. In contrast, in adaptive routing, a
message is not restricted to a single path while traveling
from a source switch to its destination(s). A message may
take a different output at a given switch because the other
paths are congested. Therefore, adaptive routing algorithms
can obtain better performance [23], [24], [25].

In this paper, we tackle how to efficiently implement
routing in 3D mesh-based NoCs, addressing both unicast
and multicast traffic. To do this, we present several
partitioning methods, named Two-Block Partitioning
(TBP), Vertical-Block Partitioning (VBP), and Recursive
partitioning method (RP), for the path-based multicast
approach, each with different level of efficiency. In Two-

Block Partitioning method, destinations are divided into
two groups and a multicast message is responsible to
deliver the message to all destinations within each group.
This algorithm performs well when the network size is
small. However, as the network enlarges, a message may
take a long path to deliver the multicast message to all
destinations and thus increasing latency. In Vertical-Block
Partitioning method, destinations are divided into more
number of groups depending on their vertical columns.
This method suggests a better degree of parallelism and
lower latency as a message is dedicated to a smaller set of
destination switches and thus a shorter path is taken by
each message. The main disadvantage of this method is
regarding to the creation of unbalanced partitions as a
group may contain a large set of switches compared with
others. This results in taking long paths by some messages
and short paths by others, keeping the multicast latency still
high. Recursive partitioning method tries to have the
comparable number of switches within each partition while
keeping the number of messages low. This results in lower
average latency compared with TBP and VBP methods. To
explore the efficiency of each approach, in addition to
simulation experiments, we develop novel analytical mod-
els for unicast and multicast traffic. The analytical and
experimental results show that RP outperforms the other
approaches. On top of all partitioning methods, and in
order to efficiently distribute the unicast and multicast
messages, we design a minimal and adaptive routing
algorithm, named MAR, based on the Hamiltonian path
for all partitioning methods. The algorithm is simple and
does not require any virtual channel for neither unicast nor
multicast messages. The main properties of the final
approach which is a combination of the RP and MAR
methods can be summarized as follows: 1) decreasing the
latency of messages by addressing the nonoptimal solutions
of ordinary partitioning methods; 2) alleviating the traffic
congestion by presenting an adaptive routing algorithm for
both unicast and multicast messages; and 3) causing a
relatively small area overhead mainly by not using virtual
channels for deadlock avoidance and providing a simple
implementation of the routing algorithm.

The rest of this paper is organized as follows: Section 2
reviews related work. A brief background on the Hamilto-
nian path strategy along with the proposed partitioning
methods is discussed in Section 3. The minimal adaptive
routing is presented in Section 4. The results are given in
Section 5 while we summarize and conclude in the last
section.

2 RELATED WORK

Due to the fact that the multicast communication is used
commonly in various parallel applications, there have been
several attempts to improve the performance of multicast
communication in 2D NoCs. “Virtual Circuit Tree Multi-
casting” (VCTM) [10], “Recursive Partitioning Multicast”
(RPM) [27], and “Hamiltonian path-based multicast algo-
rithm for NoCs” [19], [20] are three recent works focused on
2D NoCs. VCTM and RPM are tree-based methods and the
proposed algorithms in [19], [20] are path-based methods. In
VCTM method, when the number of destinations is high, a

EBRAHIMI ET AL.: PATH-BASED PARTITIONING METHODS FOR 3D NETWORKS-ON-CHIP WITH MINIMAL ADAPTIVE ROUTING 719

large number of setup messages must be delivered into the

network (before delivering the real multicast message)

which decreases performance significantly. The area over-

head of VCTM is relatively high due to maintaining a table

at each switch to store the information of a virtual circuit

tree. In RPM method, the processing of the header

information is complex and performed several times for

each multicast message. The common disadvantage of

VCTM and RPM method is that a message may hold several

channels for extended periods of time to receive all

requested output channels, thereby increasing network

contention [3]. Finally, both RPM and VCTM methods are

based on deterministic algorithms and cannot provide

adaptiveness to neither unicast nor multicast messages.
A solution to overcome the disadvantages of tree-based

multicast is to utilize path-based multicast routing. The

authors in [19] present a deadlock-free adaptation of the

dual-path multicast algorithm for 2D mesh NoCs and

evaluate the performance impact, demonstrating the effi-

ciency of the proposed multicast algorithm. However, this

method cannot provide any adaptiveness for routing

unicast/multicast messages and has a disadvantage of high

network latency due the creation of long paths in the

network which has been improved in [20]. To the best of our

knowledge, there has not been any prior study on path-

based multicast routing in 3D NoCs. However, some related

studies can be found in the multicomputer domain [28],

[29], [30]. An adaptive multicast communication in 3D mesh

networks is discussed in [28]. The algorithm is based on an

extension of a theory defined in [29] from 2D to 3D mesh

networks. The algorithm utilizes the Hamiltonian path but

provides adaptiveness and prevents deadlocks by using

virtual channels. However, adding virtual channels is costly

in NoCs due to increased arbitration complexity and

buffering requirements [31]. Two additional methods of

unicast/multicast communication in 3D mesh-based net-

works are presented in [29] and [30]. The proposed methods

are guaranteed to be deadlock-free by means of the

Hamiltonian path. However, the presented algorithms are

deterministic and suffer from low performance and their

inability to partition the network efficiently.

3 PARTITIONING METHODS

The performance of a multicast operation can be measured
in terms of its latency in delivering a message to all its
destinations. Multicast latency consists of two components:
the startup latency and the network latency. The startup
latency (startup-latency; SL) is the time required to create
several messages (each with a different set of destinations),
prepare the messages, and start injecting them into the
network. The network latency for multicast messages is
defined as the time elapsed from the first flit injection into the
network to the reception of the last flit in all destinations of
the multicast message. Based on that, we define the mean
network multicast latency (mean-mul-latency; MML) and
the maximum network multicast latency (max-mul-latency;
MxML).

As previously commented, partitioning methods help in
reducing the network latency component [33]. In particular,
these methods divide the network into several logical
partitions and assign destinations to different sets, one set
for each partition and including destinations that belong to
that partition. Smart partitioning methods must balance the
sets and reduce the path length within each partition.
However, breaking the network into logical partitions may
have the following deficiencies: 1) a large number of
network partitions will lead to additional latency as more
startup messages (SM) will need to be prepared at the
source node and this latency is usually high. 2) an
unbalanced configuration of partitions will create long
paths within the network. In both cases, the latency of the
multicast operation will be increased.

3.1 Hamiltonian Path

The Hamiltonian path strategy [18] guarantees that the
network will be free of deadlocks for both unicast and
multicast traffic. As shown in Fig. 1a, for each switch, a label
is assigned from 1 to N where N is the number of switches
in the network. A Hamiltonian path visits all the switches1

and each switch is visited exactly once. Several Hamiltonian
paths can be considered in the mesh topology. In a� b� c
mesh network, each switch is labeled by an integer value
according to its x, y, and z coordinates. The following

720 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 1. (a) A 3� 3� 3 mesh physical network with the label assignment, (b) high channel, (c) low channel subnetworks. The solid lines indicate the

Hamiltonian path and dashed lines indicate the links that could be used to reduce path length in routing.

1. For the sake of understanding, we assume the node X is connected to
switch X and the labels are for switches, not nodes.

equations show one possibility of assigning the labels,
which we utilize in this paper:

Lðx; y; zÞ ¼ fða� b� zÞ þ ða� yÞ þ ðxþ 1Þg
where z : even; y : enen;

Lðx; y; zÞ ¼ fða� b� zÞ þ ða� yÞ þ ða� xÞg
where z : even; y : odd;

Lðx; y; zÞ ¼ fða� b� zÞ þ ða� ðb� y� 1ÞÞ þ ða� xÞg
where z : odd; y : even;

Lðx; y; zÞ ¼ fða� b� zÞ þ ða� ðb� y� 1ÞÞ þ ðxþ 1Þg
where z : odd; y : odd:

As exhibited in Fig. 1, two directed Hamiltonian paths
(or two subnetworks) are constructed by this labeling. The
high channel subnetwork starts at switch 1 (Fig. 1b), and
the low channel subnetwork ends at switch 1 (Fig. 1c). In
case the label of the destination switch is greater than the
label of the source switch, the routing always takes place in
the high channel subnetwork (Fig. 1b); otherwise it takes
place in the low channel subnetwork (Fig. 1c). Notice that
there are shortcut channels (those drawn in dashed lines)
that do not take part in the Hamiltonian path. However,
shortcut channels can be used by messages to improve
performance. In this case, half of those channels are used
for the high channel subnetwork and half for the other
subnetwork. Deadlock is prevented as two separate sets of
resources are used for each direction and messages never
change their directions. Thus, no dependencies between the
two sets are introduced.

3.2 Partitioning Methods Based on the Hamiltonian
Path Strategy

In the partitioning methods, the destinations are grouped in
two sets at each source. One set includes all the destinations
that are reached using the high channel subnetwork, and
the other set includes the remaining destinations reached
using the low channel subnetwork.

In the next section, we explain the TBP method in detail,
and then we introduce two other partitioning methods, VBP
and RP. Notice that the TBP method is a straight forward
extension of the dual-path multicast in 2D NoCs [19] to 3D
NoCs. It can be seen as a naı̈ve method since no effort is
made to balance the two sets. For each partitioning method,
we provide some analysis on the number of startup
messages, latency of multicast operations (MML and
MxML), and the average latency of unicast operations
(AUL). Analytical models are provided for unicast and
multicast messages assuming zero-load latency [9], [32].
Based on the zero-load latency, a message never contends
for network resources with other messages. Under this
assumption, the performance of each approach can be
measured based on the number of hops required for
delivering a message from a source node to its destina-
tion(s). Contention effects will be accounted analytically in
addition to experiments with our simulation platform.

3.2.1 Two-Block Partitioning

The Two-Block Partitioning method is a base scheme in
which all switches are split in two disjoint sets: a high set
and a low set. As shown in Fig. 2, when considering the
label assignment of the Hamiltonian path strategy, all
switches located in the same 2D layer as the source switch

are distributed between the two sets while all the switches
in higher or lower 2D layers are put in the high or low sets,
respectively. In addition, when multicasting, at maximum
one message is created for each set and the destinations
within each set are reached according to the Hamiltonian
label. Therefore, destinations in the high set are visited in
ascending order and destinations in the low set are visited
in descending order.

Fig. 2a shows an example of the TBP partitioning policy
and the portions of each partition that depends on the
source switch position. As illustrated in this figure, if the
source switch is located in a middle layer, two partitions
cover comparable numbers of switches but still with a large
number of switches in both partitions. However in Fig. 2b,
one partition contains considerably more switches than the
other. Now, suppose that the multicast message m ¼
ð7; f2; 3; 20; 26; 45gÞ is generated at switch 7. Destination
IDs are split into two sets and should be visited accordingly
to their labels: GH ¼ f20; 26; 45g and GL ¼ f3; 2g. The
message created for GH uses the Hamiltonian path as
follows: {7,10,11,12,13,20,21,22,23,26,39,42,43,44,45} where
14 hops are needed to reach the last destination. The
message path for the GL is: {7,6,3,2} where three hops
are required for delivering the message to all destinations in
the low channel subnetwork. In the TBP method, the
number of startup messages is low and never gets larger
than two. However, it suffers from high network latency
due to unbalanced partitions and high probability of long
paths within the network.

Avg-Uni-Latency (AUL). Since messages can utilize
shortcut channels without introducing new cycles, the path
taken by unicast messages is reduced to minimal paths
between each pair of source and destinations. Assuming
uniform distribution of destinations and using minimal
paths for unicast messages, the average unicast latency for
a� b� c 3D mesh-based network is [9]:

AUL3D ¼
a2bcþ ab2cþ abc2 � ac� bc� ab

3abc
: ð1Þ

Regardless of the partitioning method used, unicast
messages are routed within the network in the same
manner, so (1) is valid for the VBP and RP methods. This
equation can be easily applied to 1D (when b ¼ 1 and c ¼ 1)
and 2D (when c ¼ 1) mesh networks.

EBRAHIMI ET AL.: PATH-BASED PARTITIONING METHODS FOR 3D NETWORKS-ON-CHIP WITH MINIMAL ADAPTIVE ROUTING 721

Fig. 2. The TBP method (a) balanced, (b) unbalanced partitions.

The startup latency and network latency for multicast
messages. The multicast latency depends on the number
and the location of destinations. This makes computing the
analytical multicast latency complex. In order to simplify the
complexity, we consider that the latency of a multicast
message is set by the final destination so that the multicast
message always takes the longest path within the network
(without using shortcut channels). This is the worst case. For
instance, in the previous example, the two messages have
their final destinations set as 45 and 2, and their distances
from the source switch are 14 and 3 hops, respectively.
However, in MML, we consider the longest path from the
source to destinations 45 and 2 which are 41 and 6 hops,
respectively. In the TBP method, the path between two
destinations to reach in a sequential order is minimal while
the path from the source to each destination is not
necessarily minimal. As an example in Fig. 2, the paths
from switch 7 to 20, 20 to 26, and 26 to 45 are minimal;
however, the paths from switch 7 to 26 and 7 to 45 are
nonminimal. According to this, MML for every switch j in
a� b� c network is (Where n is the total number of switches
in the network.)

MMLj ¼
1

n

Xi¼j�1

i¼1

iþ
Xi¼n

i¼jþ1

ði� jÞ
 !

: ð2Þ

The average multicast latency for the whole network in the
TBP method can be obtained by

MMLTBP ¼
1

n

Xj¼n

j¼1

MMLj

¼ 1

n

Xj¼n

j¼1

1

n

Xi¼j�1

i¼1

iþ
Xi¼n

i¼jþ1

ði� jÞ
 ! !

¼ n2 � 1

3n
:

ð3Þ

This equation is proved by using the following set of
formulas. The sum of partial factorial formula is given by

m!

0!
þ ðmþ 1Þ!

1!
þ ðmþ 2Þ!

2!
þ � � � þ ðmþ n� 1Þ!

ðn� 1Þ!

¼ ðmþ nÞ!
ðmþ 1Þðn� 1Þ! :

ð4Þ

For all positive integers, we get the formula when m ¼ 1 or
m ¼ 2:

1þ 2þ 3þ � � � þ n ¼
Xi¼n

i¼1

i ¼ nðnþ 1Þ
2

ð5Þ

1� 2þ 2� 3þ 3� 4þ � � � þ n� ðnþ 1Þ

¼
Xi¼n

i¼1

iðiþ 1Þ ¼ nðnþ 1Þðnþ 2Þ
3

:
ð6Þ

By using (5) and (6), MMLTBP can be written as follow and
(3) is proved:

MMLTBP ¼
1

2n2

Xj¼n

j¼1

j� 1ð ÞðjÞ þ
Xj¼n

j¼1

ðn� jÞðn� jþ 1Þ
 !

¼ n� 1ð Þðnþ 1Þ
3n

¼ n2 � 1

3n
:

ð7Þ

MxML is the time when a multicast operation is
completed and a message reaches all its destinations. The
MxML for a source switch j and the whole network are
given by

MxMLj ¼
n� j if 0 � j � n

2

j k
j� 1 if

n

2

j k
� j � n;

8<
: ð8Þ

MxMLTBP ¼
2

n

Xj¼n=2

j¼1

ðn� jÞ ¼
3n� 2

4
if n : even

3n2 � 2n� 1
4n if n : odd:

8<
:

ð9Þ

In TBP, destinations are split in two sets. Thus, maximum
startup messages is set to two regardless of the source
switch location. There are two exceptions regarding the first
and last switches which can deliver only one multicast
message to the network.

3.2.2 Vertical Block Partitioning

In this method, similar to the TBP method, the network is
partitioned into high and low channel subnetworks.
Destinations are divided into high and low sets. In an
additional step, each subnetwork is vertically partitioned
such that switches in the same column (with the same a
value in a� b� c network) are included in a new set.

As illustrated in Fig. 3, this scheme does not guarantee
balanced partitions. For the switch located at 26, partitions
are balanced, but they are not balanced when the source is at
switch 7 (i.e., four subnetworks cover more switches than the
others). Moreover, the time required to prepare at most eight
messages is considered as the number of startup messages.
For the multicast message m ¼ ð7; f2; 3; 20; 26; 45gÞ, four sets
are formed: GH2 ¼ f26g, GH4 ¼ f20; 45g, GL2 ¼ f2g, and
GL3 ¼ f3g. One message is generated for each set and
message paths are {7,26},{7,10,11,12,13,20,45},{7,2} and {7,6,3}
where the maximum hop count is six.

This scheme has several advantages over the TBP
method as it achieves a high level of parallelism; avoids
the creation of long paths and reduces the network latency.
The VBP method increases, however, the number of startup
messages as it requires up to 2a messages in a� b� c
network. In addition, this scheme does not guarantee

722 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 3. The VBP method (a) balanced, (b) unbalanced partitions.

balanced partitions as it is balanced only when the source
switch is located in a middle layer while some partitions
may cover considerably more switches than the others
when the source switch is located at the top or bottom layer.

The startup latency and network latency for multicast
messages. Since the network is symmetric and is partitioned
vertically, the MML value can be measured in one vertical
partition and then generalized to other partitions. For this
purpose, we consider that a� b� cmesh network is divided
into a vertical partitions where each partition contains bc
switches. Using (2) and (3), the MML value for a source
switch j inside a vertical partition and for all switches in a
partition can be computed as follows:

MMLj ¼
1

bc

Xi¼j�1

i¼1

iþ
Xi¼bc

i¼jþ1

i� jð Þ
 !

; ð10Þ

MMLbc ¼
1

bc

Xj¼bc

j¼1

1

bc

Xi¼j�1

i¼1

iþ
Xi¼bc

i¼jþ1

i� jð Þ
 !

¼ ðbcÞ2 � 1

3bc
:

ð11Þ

Moreover, messages are required to travel in the x
dimension to reach their relative vertical partitions. For
example, if a ¼ 4 in a� b� c network and the source switch
is located at the first vertical partition, it takes 1, 2, and 3
hops to reach the second, third, and fourth vertical
partitions, respectively. This value should be considered
when measuring the MML value:

MMLa ¼
1

a

Xj¼a

j¼1

1

a

Xi¼j�1

i¼1

iþ
Xi¼a

i¼jþ1

i� jð Þ
 !

¼ a2 � 1

3a
: ð12Þ

Finally, the MML value for the whole network is given by

MMLVBP ¼ MMLa þMMLbc ¼
a2 � 1

3a
þ ðbcÞ2 � 1

3bc

¼ a2bcþ ab2c2 � bc� a

3abc
:

ð13Þ

From another point of view, the network can be viewed as a
2D network (a� b0) where b0 ¼ b� c. The dimension-order
routing can be utilized for messages, and thus, by using (1)
in a 2D network (when c ¼ 1) the average multicast latency
can be measured by

MMLVBP ¼
a2b0 þ ab0

2

� a� b0

3ab0
¼ a2bcþ ab2c2 � bc� a

3abc
:

In the VBP method, the network is divided into several
vertical partitions according to the value a in a� b� c
network. Thereby, the following formula is used for
computing the MxML value in the network:

MxMLVBP ¼
2

n

Xi¼n=2

i¼1

n� j

a

� �
þ a2 � 1

3a

� �
: ð14Þ

The number of partitions in the VBP method depends on
the location of switches that results in different startup
messages. The switches in the first row of the first layer and
the last row of the last layer divide the network into 4, 5, 6,

and 7 partitions, while the other switches divide the
network into eight partitions. As a result, the average
number of startup messages for the VBP method in a� b� c
network is

SMVBP ¼
ð3a2 � aÞ þ ððabc� 2aÞð2aÞÞ

abc
¼ 2a2bc� a2 � a

abc
:

ð15Þ

3.2.3 Recursive Partitioning

The objective of the recursive partitioning method is to
optimize the number of switches that can be included in a
partition and achieve parallelism. In this method, the
network is recursively partitioned until each partition
contains k switches. In the worst case, the network is
partitioned into 2a vertical partitions like in the VBP
method. We have considered the value k as a reference
value indicating the number of switches in each partition of
the VBP method, i.e., ðk ¼ bcÞ in a� b� c network. An
example of the RP method is illustrated in Fig. 4a where a
multicast message is generated at the source switch 26. The
required steps of the RP method can be expressed as follows.

Step1: The value k is set to 12 switches in a 4� 4� 3
network.

Step2: The network is divided into two partitions using
the TBP method. Fig. 2a shows two formed partitions when
the source switch is located at switch 26.

Step3: If the number of switches in a partition exceeds
the reference value k, the partition is divided into two new
partitions. This step is repeated until all partitions in the
network cover at most k switches. Following the example of
Fig. 2a, 22 switches are covered by the high channel
subnetwork which is greater than k ¼ 12. The high channel
subnetwork needs to be further divided into two new
partitions (GH1 and GH2 as shown in Fig. 4a). The GH1 and
GH2 partitions contain 10 and 12 switches, respectively.
Since both numbers are less than or equal to k ¼ 12, no
further partitioning is needed for the high channel subnet-
work. The same partitioning technique is applied to the low
channel subnetwork.

Fig. 4b shows another example of the RP method where
the multicast message is m ¼ ð7; f2; 3; 20; 26; 45gÞ. In this

EBRAHIMI ET AL.: PATH-BASED PARTITIONING METHODS FOR 3D NETWORKS-ON-CHIP WITH MINIMAL ADAPTIVE ROUTING 723

Fig. 4. RP when the source switch is at (a) switch 26, (b) switch 7.

example three messages are formed and their paths are

{7,10,11,12,13,20,45},{7,26}, and {7,6,3,2} as the maximum

latency is six hops.
In brief, this scheme has a similar performance in avoiding

long paths since the VBP method while it provides better

parallelism as the number of switches is comparable among

partitions. By considering the RP method, the creation of

balanced partitions is less dependent of the source switch

position, and thus it avoids long paths in the network and

increases parallelism while keeping the number of startup

messages relatively low.
The startup latency and network latency for multicast

messages. In the RP method, each subnetwork is recur-
sively partitioned until all partitions cover around k
switches, where k ¼ bc. The next set of formulas is
concerned only the high channel subnetwork while the
low channel subnetwork has similar formulas. According to
this assumption, if the high channel subnetwork covers x
switches where x > k, it is divided into two new partitions.
Each of the formed partitions might still cover more than k
switches (x > k). Thereby, the partition is further divided
into two new partitions. In other words, the MML formula
is recursively called until all partitions cover at most k
switches. Finally, the average multicast latency is computed
when the number of switches x in a partition become less
than or equal to the value of k:

MMLx ¼

MMLx
2
þMMLx

2

2
where x > k

1

x

Xi¼x

i¼1

i ¼ xþ 1

2
where 0 < x � k

0 where x ¼ 0:

8>>>><
>>>>:

ð16Þ

Similar to (12), in order to deliver messages from the source

switch to different partitions, average multicast latency in

the x dimension should be taken into account. Finally, the

MML for the RP method is given by

MMLRP ¼
1

2n

Xj¼n

j¼1

�
MMLlow

ðj�1Þ þMMLhigh
n� jþ1ð Þð Þ

�
þMMLa

¼ 1

n

Xi¼n

i¼1

MMLði�1Þ þMMLa:

ð17Þ

For measuring MxML, the number of switches in the

biggest partition should be identified. To do this, we first

find the MxML value for the high and low channel

subnetworks and then determine the number of switches

in the biggest partition of the network as

MxML ¼ MaxðMxMLHigh;MxMLLowÞ where

MxMLhigh
x or MxMLLow

x

Max
�
MxML x

2d e;MxML x
2b c
�

where x > k

1

x

Xi¼x

i¼1

i ¼ xþ 1

2

where 0 < x � k
0 where x ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

ð18Þ

To compute the MxML value, the following formula is

utilized:

MxMLRP ¼
2

n

Xi¼n=2

i¼1

ðMxMLþMMLAÞ: ð19Þ

In the case that x � k, the number of startup messages is

equal to 1. However, when x > k, the partition needs to be

divided into two new partitions and the SM equation is

called for every newly formed partition

SMx ¼
SMdx2e þ SMbx2c when x > k
1 when x � k:

�
ð20Þ

3.3 Hardware Implementation

The microarchitectures of the TBP, VBP, and RP methods
are illustrated in Figs. 5a, 5b, and 5c, respectively. In all three
methods, the source label is compared (using a comparator)
with the destinations labels, so that destinations are divided
into high and low channel subnetworks (Fig. 5a). In the VBP
method, by decoding the value x of the destination address,
each destination is placed in one partition as shown in
Fig. 5b. In the RP method, however, the number of switches
in the high (or low) channel subnetwork is compared with
the reference value k. The result of this comparison
determines the required number of partitions such that
each can cover about k switches. In the next step,
destinations are divided into different partitions (Fig. 5c).
All procedures are performed in the packetizer unit of the
network interface and repeated for every destination in the
destination set [34]. Finally, each nonempty register is used
in the header of a message. Notice that for encoding the
addresses in the message header, we have utilized the bit
string scheme [3], where each bit corresponds to a switch in
a network. For a set of destinations, the corresponding bits
in the bit-string become one.

724 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 5. The microarchitecture of (a) TBP, (b) VBP, and (c) RP methods.

4 MINIMAL ADAPTIVE ROUTING (MAR)

In the previous section, we provided different partitioning
methods. All of them require a routing algorithm capable of
forwarding all the messages to their sets of destinations. In

this section, we present a minimal and adaptive routing
algorithm based on the Hamiltonian path. Using MAR,
unicast and multicast messages can be adaptively routed

inside the network. The MAR algorithm is implemented at
switches and can be described in three steps as follows:

Step1: it determines the neighbors of current switch u

that can be used to move a message closer to its destination

d. The pseudocode for Step1 is shown in Fig. 6.
Step2: due to the fact that in the Hamiltonian path all

switches are visited in ascending order (in the high channel
subnetwork) or descending order (in the low channel
subnetwork), all of the selected neighbors in Step1 do not

necessarily satisfy the ordering constraint. Therefore, if the
labels of the selected neighbors (in Step1) are between the
label of switch u and destination d, it/they can be selected as

the next hop. The pseudocode for Step2 is shown in Fig. 6.
Step3: since the MAR algorithm provides several choices

at each switch, the goal of Step3 is to route a message

through the less congested neighboring switch. In the case
where the message can be forwarded through multiple
neighboring switches, the stress values of the input buffers
in the selected neighbors are checked and then the message
is sent to the neighbor with the smallest stress value. An
example of the MAR algorithm is illustrated in Fig. 7a.
According to the algorithm, in the first step the neighbors
are chosen in a manner that gets the message closer to its
destination, i.e., p ¼ f7; 11; 27g. At the second step, the
selected neighbors (in Step1) are checked to determine
whether they are in the Hamiltonian path or not. Since
the labels of the three selected neighbors are between the
labels of the current switch ðu ¼ 6Þ and destination switch
ðd ¼ 48Þ, the message can be routed via all of them. Suppose
that the neighbor p ¼ 11 has a lower stress value than the
other neighbors, so the algorithm chooses this neighbor to
forward the message. If we continue with the switch u ¼ 11,
this switch has three neighbors belonging to the minimal
paths, i.e., p ¼ f10; 14; 22g. However, only two of them ðp ¼
f14; 22gÞ have the labels greater than the label of the current
switch ðu ¼ 11Þ and lower than the label of the destination
switch ðd ¼ 48Þ. Finally, according to the stress values of the
input buffers in the corresponding direction, one of them is

EBRAHIMI ET AL.: PATH-BASED PARTITIONING METHODS FOR 3D NETWORKS-ON-CHIP WITH MINIMAL ADAPTIVE ROUTING 725

Fig. 6. The pseudocode of the MAR algorithm.

Fig. 7. Example of the MAR algorithm for unicast and multicast

messages.

selected as the next hop. The algorithm is repeated for the
rest of the switches until the message reaches the final
destination. Fig. 7b shows all possible shortest paths from
the source switch ðu ¼ 6Þ to the destination switch ðd ¼ 48Þ.
It is worth noting that the stress value is updated whenever
a new flit enters or leaves the buffer (flit events: flit_tx or
flit_rx). That is, in each flit event, if the number of occupied
cells of the input buffer is larger (smaller) than a threshold
value, the threshold signal is assigned to one (zero).

The MAR algorithm can be adapted for multicast
messages such that alternative paths are used to route a
message between the source switch and the first destination
and also between successive destinations. An example is
shown in Fig. 7c where the source (u ¼ 6) forwards a
multicast message toward its destinations (D ¼ f15; 32; 46g).
The MAR algorithm provides a set of alternative paths to
send a message from the source switch to the first
destination (d1 ¼ 15). Similarly, the message can be adap-
tively routed between each two destinations. For example,
at switch 15, the message can make progress toward
destination 32 either by selecting switch 18 in the next
layer or switch 16 in the current layer. The MAR
algorithm is compatible with all methods supporting the
Hamiltonian path in 2D or 3D NoCs. Therefore, all the
TBP, VBP, and RP methods can utilize the MAR algorithm
for both unicast and multicast messages. Fig. 7d shows all
possible shortest paths from the source switch ðu ¼ 6Þ to the
destinations 15, 32, and 46.

To show that the proposed algorithm is deadlock free,
we need to prove that the channel dependency graph
(CDG) is acyclic [33]. To close a cycle in the high channel
subnetwork, a message may require requesting a channel
that forwards the message to a lower labeled switch, which
is not allowed by the MAR algorithm. The same applies for
the low channel subnetwork. Since both in unicast and
multicast traffic, messages are routed only in ascending and
descending order, the MAR algorithm is deadlock free.
However, in multicast traffic there is a possibility of
deadlock in the consumption channels [33]. This happens
when a message should be delivered both to the local node
and the output channel (to move toward the next destina-
tion). This may cause deadlock if two multicast messages
reach the switch and request both channels, but each gets
access to only one channel. There is a branch dependency

that creates a deadlock situation. This can be solved
basically using extra resources between the local core and
the corresponding switch to avoid such conflict. In our case,
we implement at each switch two ejection channels.

5 RESULTS AND DISCUSSION

5.1 Analytical Results

We analyzed and compared the unicast latency, the startup
latency, and the network latency of the TBP, VBP, and RP
partitioning methods using analytical models. For this
purpose, the previously presented factors (SM, MML, and
MxML) are utilized. For each method, we explore the values
for two different network sizes along with two different
numbers of destinations, injection rates, and message
lengths. Finally, the total latency is estimated under
different configurations and methods.

5.1.1 Startup Latency

We developed formulas to extract the number of startup
messages of the TBP, VBP, and RP methods. However, the
startup latency not only depends on the SM value but also it
is affected by the message length, injection rate, and the
number of destinations per multicast message.

The impact of the number of destinations on the startup
latency. We computed the upper bound value of SM for the
TBP, VBP, and RP methods by assuming that there is one
message per partition. The third column of Table 1 shows
the maximum number of startup messages in the TBP, VBP,
and RP methods. However, in reality, the number of
messages may be smaller than the number of partitions
(e.g., when the number of destinations is lower than the sets
or destinations are not evenly distributed among sets). We
have assumed uniform distribution and used conditional
probabilities to find out the probability that a partition has
received a message when there are 8 or 16 destinations per
message. Based on this evaluation, the fourth and seventh
columns in Table 1 are filled. For example, when there are
eight partitions and eight destinations per message, on
average, five partitions include at least a destination and
three partitions are empty, thus the average startup
messages is five. As the number of destinations per message
increases (e.g., from 8 to 16 destinations), with a high
probability there is at least one destination per partition. In

726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

TABLE 1
Unicast Latency, Startup Messages for Different Number of Destinations, Message Lengths, and Injection Rates

UL: Unicast Latency; SM: Startup Messages; SL: Startup Latency; D/M: Destination per Message; F/M: Flit per Message; R: Rate.

this case, the startup messages almost reach the upper
bound values. According to the values in Table 1, the RP
method offers a lower startup messages than the VBP
method since partitions are merged together.

The average unicast latency for different network sizes is
listed in the second column. As already mentioned, the
unicast latencies of different methods are similar. This is
because of the fact that unicast messages are routed
similarly in the network using the TBP, VBP, and RP
methods. Obviously, the unicast latency is increased as the
network scales up.

The impact of message length on the startup latency. To
show the impact of the message length on the startup
latency, let us assume that a multicast message carries all
destinations’ addresses, and thus only one message is sent
to the network. In the TBP method and when there is no
contention in the network, the first flit of the message 1
(mul-msg1) enters the network at cycle 0 while the message
2 (mul-msg2) can start sending its first flit at cycle N, where
N is the number of flits per message (Fig. 8a). By
partitioning the network in the VBP and TP methods, the
destinations are distributed among several sets. In this case,
multiple copies of the message 1 (with different sets of
destinations) are injected into the network at cycles
0; N; 2N , etc. (Fig. 8b). The message 2 can deliver its first
flit as soon as all copies of the message 1 are delivered into
the network. We compute the startup latency by consider-
ing the average message length as follows:

SLA ¼ startup messages� 1ð Þ�ðflits per messageÞ:

In Table 1, the fourth and fifth columns indicate the
differences between the startup latencies when the
message size increases from one to five flits. Similarly,
the seventh and eighth columns show the startup latencies
by changing the message size from one to ten flits. The
values show an increased in the startup latencies when the
message size increases. In all configurations, the TBP
method has the lowest startup latency, and then the RP
and VBP methods, respectively.

The impact of the injection rate on the startup latency.
In a low injection rate, the message 2 is probably generated
by the core when all messages of the message 1 have
already sent to the network. However, in a case of high
injection rate, the message 2 is ready to be sent to the
network while the messages of message 1 are still in the
queue and have not completely delivered to the network.
Therefore, if the number of cycles required for delivering all
the messages of a multicast message is larger than

(100� rate%), the following formula is obtained: (Latency
is cumulative, with each additional generated message)

SLB ¼ SLA þ total number of generated messages� 1ð Þ
� SLA � 100� rate%ð Þð Þ:

Table 1 also includes the results when the injection rate
takes into consideration. The values are obtained based on
two injection rates, 1 and 10 percent. As can be seen in the
fifth and sixth columns (or eighth and ninth columns), in
most cases, the startup latencies do not change as the message
1 has delivered all its messages before the message 2 is
generated. However, in a high injection rate (i.e., 10 percent),
the time required to send startup messages may exceed 100�
10 ¼ 90 cycles. As shown in the ninth column, in one case, it
takes more than 90 cycles to deliver startup messages
completely to the network. Indeed, the newly generated
messages experience considerably larger delays to send their
first flit into the network. The values in the sixth and ninth
columns are computed for the 100th message, while in fifth
and eighth columns are measured for the first message.

5.1.2 Network Latency

Using analytical formulas, we have estimated the MxML
and MML values for TBP, VBP, and RP methods in 4� 4�
4 and 8� 8� 8 networks. Since MxML and MML reveal the
number of hops, to estimate the network latency, the switch
delay should be taken into consideration. By assuming 3-
stage pipeline architecture, the network latency is com-
puted by multiplying the number of hops and a factor of
three. On the other hand, as the injection rate and
contention increases, per-hop delay is increased. We
assume that in a 10 percent injection rate, on average, the
latency is six cycles per hop. According to this assumption,
we estimate the total latency using the following formula:

Total Latency ¼ MML � 3þ SM with 1% injection rate
MML � 6þ SM with 10% injection rate:

�

The values in second and third column of Table 2
indicate that MxML and MML of the TBP method are
considerably larger than those of values in the VBP and RP
methods. The VBP method can reduce the MML value
significantly at a cost of more startup messages. Fourth,
fifth, sixth, and seventh columns show the total latency
values when the startup latency takes into consideration.
Since, the high number of startup messages in the VBP
method may result in a time overlapping of different

EBRAHIMI ET AL.: PATH-BASED PARTITIONING METHODS FOR 3D NETWORKS-ON-CHIP WITH MINIMAL ADAPTIVE ROUTING 727

Fig. 8. The impact of message length on the startup latency.

messages, as can be seen in the last column, in some cases
the VBP method even behave worse than the TBP method.

5.2 Simulation Results

To assess the efficiency of the proposed partitioning
methods in experiment, we have developed a cycle-accurate
NoC simulator based on wormhole switching in 3D mesh
configuration. The simulator inputs include the array size,
the routing algorithm, the link width, the buffer size, and
the traffic type. The on-chip network, considered for
experiment is formed by a typical wormhole-switching
structure including input buffers, a routing unit, a switch
allocator, and a crossbar. Each switch has seven input/
output ports, a natural extension from a 5-port 2D switch by
adding two ports to make connections to the upper and
lower layers [28], [36]. There are some other types of 3D
switches such as the hybrid switch [5], [36], [37] and MIRA
[38], however, since switch efficiency is out of the goals of
this paper, we have chosen a simple 7-port switch in our
simulation. The arbitration scheme of the switch allocator in
the typical switch structure is round robin. The data width
and the frequency were set to 64 bits and 1 GHz,
respectively, and each input channel has a buffer size of
five flits with the congestion threshold at 80 percent of the
total buffer capacity. This congestion threshold is utilized
by the presented MAR algorithm to choose the less
congested path if there would be any alternative path(s).
The experiments were performed on a 48-switch (4� 4� 3)
3D stacked architecture with a constant message size of five
flits. For the performance metric, we used the multicast
latency defined as the number of cycles between the
initiation of a multicast message operation, including

preparation and startup latency, and the time when the tail
of the multicast message reaches all the destinations. For
each load value, the result of message latency is averaged
over 80,000 messages after a warm-up session of 20,000
arrived messages.

5.2.1 Performance Evaluation

Multicast traffic profile. The first set of simulations was
performed for a random traffic profile. A uniform distribu-
tion is used to construct the destination set of each
multicast message [18]. The number of destinations has
been set to 8 or 16. The average communication delay as a
function of the average message injection rate has been
shown in Fig. 9. As observed from the results, the RP
method meets lower delay than the TBP and VBP methods.
The foremost reason for this performance gain is due to the
efficiency of the RP method which not only reduces the
number of hops for multicast messages but also the number
of startup messages. In fact, TBP suffers from long paths
while the performance of VBP degrades due to a large
number of startup messages. Adaptive routing algorithms
obtain better performance in congested networks due to
using alternative routing paths [23]. In Fig. 10, ARP
(Adaptive RP, utilizing MAR in RP), and AVBP (Adaptive
VBP, utilizing MAR in VBP) are the adaptive models of the
RP and VBP methods, respectively. As illustrated in this
figure, adaptive routings become more advantageous when
the injection rate increases.

Unicast and multicast (mixed) traffic profile. In this set of
simulations, we used a mixture of unicast and multicast
traffic, where 70 percent of injected messages are unicast
messages and the remaining 30 percent are multicast

728 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

TABLE 2
MML, MXML, and Total Latency in TBP, VBP, and RP Methods

Fig. 9. Performance under different loads in 4� 4� 3 3D mesh using deterministic routing with (a) eight destinations, (b) 16 destinations.

messages. Hotspot and transpose traffic model profiles [39]
have been taken into account for unicast traffic generation.
Under the hotspot traffic pattern, one or more switches are
chosen as hotspots receiving an extra portion of the traffic in
addition to the regular uniform traffic. In the hotspot traffic
model, given a hotspot percentage of h, a newly generated
message is directed to each hotspot switch with an additional
h percent probability. We simulate hotspot traffic with a
single hotspot switch. The hotspot switch is chosen to be
the switch (2,2,2) in the 4� 4� 3 mesh network. Fig. 11
shows the performance with h ¼ 10%.

Under the transpose traffic pattern, the source switch
positioned at (x, y, z) sends messages to the destination
switch (a� 1� x, b� 1� y, c� 1� z) for all x�f0; :::; a� 1g,
y�f0; :::; b� 1g, z�f0; :::; c� 1g, in a� b� c mesh network. As
illustrated in Figs. 11 and 13, the RP method outperforms
the two other partitioning methods under both traffic
profiles when using a deterministic routing algorithm. This
improvement is achieved through using optimized parti-
tions formed by the RP method. Moreover, Figs. 12 and 14
show the average latency when utilizing the MAR routing

algorithm. Based on the presented partitioning methods,
the adaptive routing reduces the average latency in
comparison with the deterministic routing.

Application traffic profile. The GEMS full system
simulator [17] is used as our simulation platform coupled
with a cycle-accurate 3D NoC model. In order to know the
real impact of the presented methods, we used traces from
some application benchmark suites selected from SPLASH-
2 [12], and PARSEC [13], [14]. Simulations are run on the
Solaris 9 operating system based on SPARC instruction
architecture. The adopted mapping strategy used in Solaris
9 is arbitrary mapping. Table 3 summarizes our full system
configuration where the cache coherence protocol is token-
based MOESI and access latency to the L2 cache is derived
from the CACTI [40]. We form a 64-node on-chip network
(4� 4� 4) that four layers are stacked on top of each other,
i.e., out of the 64 nodes, 16 nodes are processors and other
48 nodes are L2 caches. L2 caches are distributed in the
bottom three layers, while all the processors are placed in
the top layer close to a heat sink so that the best heat
dissipation capability is achieved [38], [41]. For the

EBRAHIMI ET AL.: PATH-BASED PARTITIONING METHODS FOR 3D NETWORKS-ON-CHIP WITH MINIMAL ADAPTIVE ROUTING 729

Fig. 10. Performance under different loads in 4� 4� 3 3D mesh using adaptive routing with (a) eight destinations, (b) 16 destinations.

Fig. 11. Performance under different loads in 4� 4� 3 3D mesh using deterministic routing with (a) eight destinations, (b) 16 destinations under

mixed traffic (30 percent multicast and 70 percent unicast); unicast traffic is based on the hotspot traffic model with a single hotspot switch (2,2,2),

and h ¼ 10%.

Fig. 12. Performance under different loads in 4� 4� 3 3D mesh using adaptive routing with (a) eight destinations, (b) 16 destinations under mixed

traffic (30 percent multicast and 70 percent unicast); unicast traffic is based on the hotspot traffic model with a single hotspot switch (2,2,2), and

h ¼ 10%.

processors, we assume a core similar to Sun Niagara and

use SPARC ISA [42]. The memory hierarchy implemented is

governed by a two-level directory cache coherence protocol.

Each processor has a private write-back L1 cache (split L1 I

and D cache, 64 KB, 2-way, 3-cycle access). The L2 cache is

shared among all processors and split into banks (48 banks,

1 MB each for a total of 48 MB, 6-cycle bank access),

connected via on-chip switches. The L1=L2 block size is

730 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Fig. 13. Performance under different loads in 4� 4� 3 3D mesh using deterministic routing with (a) eight destinations, (b) 16 destinations under

mixed traffic (30 percent multicast and 70 percent unicast); unicast traffic is based on the transpose traffic model.

Fig. 14. Performance under different loads in 4� 4� 3 3D mesh using adaptive routing with (a) eight destinations, (b) 16 destinations under mixed

traffic (30 percent multicast and 70 percent unicast); unicast traffic is based on the transpose traffic model.

TABLE 3
System Configuration Parameters

Fig. 15. Performance under different application benchmarks normalized to TBP.

64 B. The simulated memory hierarchy mimics SNUCA [43]
while the off-chip memory is a 4 GB DRAM with a 260-cycle
access time. The simulator produces, as output, the
communication latency for cache access. Fig. 15 shows the
average network latency of the real workload traces
collected from the aforementioned system configurations,
normalized to TBP. However, using the adaptive routing
scheme, MAR, diminishes the average delay of each
partitioning method significantly under all benchmarks.
That is, adaptive routing has an opportunity to improve
performance. For instance, under the fft application, the
performance gain of using MAR in TBP, RP, and VBP is
about (ATBP/TBP) 7 percent, (AVBP/VBP) 11.5 percent,
and (ARP/RP) 6 percent. We can see that ARP consistently
reduces the average network latency across all tested
benchmarks. Table 4 lists the performance gains of ARP
over TBP, ATBP, RP, VBP, and AVBP where the overall
performance gain is about 19 percent.

5.2.2 Hardware Overhead

The presented partitioning methods have been implemen-
ted in network interfaces, thereby, to estimate the hardware
cost of the proposed methods, the network area of each
partitioning scheme, including switches and network
interfaces, with the aforementioned configuration were
synthesized by Synopsys D.C. using the UMC 90 nm
technology with an operating point of 1 GHz and supply
voltage of 1 V. We performed place-and-route, using
Cadence Encounter, to have precise power and area
estimations. Depending on the technology and manufactur-
ing process, the pitches of TSVs can range from 1 to 10 �m
square [44]. In this work, the pad size for TSVs is assumed
to be 5 �m2 with pitch of around 8 �m2. The area of two-
unidirectional vertical channels, 2D switch, and 3D switch
are 0.01, 0.18, and 0:23 mm2, respectively, by considering
the link width of 64 bits. Therefore, the overhead of adding
TSVs in a 3D switch is less than 4 percent. Different
numbers of registers were employed for TBP (the base
method), VBP, and RP methods to implement their
partitioning mechanisms in network interfaces, leading to
different values of area overhead. Comparing the area cost
of the TBP with VBP and RP schemes indicates 5 and 6
percent additional overhead, respectively. All partitioning
methods use the same routing unit, and thus the differences
in area overhead values are related to the implementation of
different methods in the network interfaces. It is worth
mentioning that the area overhead of the network interface
unit alone in the TBP method is about 0:0419 mm2. The

proposed adaptive routing unit (MAR) imposes less than
0.5 percent overhead on a switch in each method and it is
independent of the network size.

5.2.3 Power Consumption

The power consumption of the TBP, VBP, and RP methods
were calculated and compared under the multicast traffic
model with 16 destinations using the simulator based on the
Orion [35] and the equation in [9]. The power values of the
network interfaces, computed after the place-and-route in
the previous subsection, have been also integrated in the
Orion functions. The typical clock of 1 GHz is applied in the
aforementioned network (4� 4� 3 3D mesh network). The
results for the average power under multicast traffic are
shown in Fig. 16.

The average power values are computed near the
saturation point, 0.16 (messages/cycle), under multicast
traffic. As the results show, the average power consumption
of the RP scheme is 16 and 8 percent less than that of the
TBP and VBP schemes, respectively, when using determi-
nistic routing. In fact, this is achieved by smoothly
balancing the traffic over the network using efficient
balancing scheme which reduces the number of the hot-
spots and, hence, lowering the average power.

6 SUMMARY AND CONCLUSION

In this paper, we first presented a set of partitioning
methods for 3D mesh-based NoCs along with their
analytical models. Among them, the recursive partitioning
method achieves higher performance. This method parti-
tions the network recursively until all partitions contain
comparable numbers of switches. Experimental results
show that the recursive partitioning method reduces the
transmission delay and provides a high degree of paralle-
lism compared with the two other methods, TBP and VBP.
The paper continued by presenting an adaptive routing
algorithm for both unicast and multicast traffic in 3D mesh-
based NoCs. The presented algorithm can add adaptivity to
the network by taking advantage of the Hamiltonian path
strategy without using virtual channels. Using SPLASH-2
and PARSEC benchmarks, the performance gain of the RP
method is about 17 and 27 percent, compared with the TBP
and VBP methods, respectively, while reducing the power
consumption, 12 percent on average.

ACKNOWLEDGMENTS

Parts of this paper appeared in the Proceedings of the ACM/
IEEE International Symposium on Networks-on-Chip (NOCS),
May 2011 [26].

EBRAHIMI ET AL.: PATH-BASED PARTITIONING METHODS FOR 3D NETWORKS-ON-CHIP WITH MINIMAL ADAPTIVE ROUTING 731

TABLE 4
Performance Gain of ARP over Other Presented Schemes

Fig. 16. Average power dissipation results in 4� 4� 3 3D mesh under

multicast traffic profile.

REFERENCES

[1] W.J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks,” Proc. 38th Design Automation Conf.,
pp. 684-689, 2001.

[2] A. Jantsch and H. Tenhunen, Networks on Chip. Kluwer, 2003.
[3] J. Duato, S. Yalamanchili, and L.M. Ni, Interconnection Networks:

An Engineering Approach. Morgan Kaufmann Publishers, 2003.
[4] K. Banerjee, S.J. Souri, P. Kapur, and K.C. Saraswat, “3D ICs: A

Novel Chip Design for Improving Deep-Submicrometer Inter-
connect Performance and Systems-on-Chip Integration,” Proc.
IEEE, vol. 89, no. 5, pp. 602-633, May 2001.

[5] B.S. Feero and P.P. Pande, “Networks-on-Chip in a Three-
Dimensional Environment: A Performance Evaluation,” IEEE
Trans. Computers, vol. 58, no. 1, pp. 32-45, Jan. 2009.

[6] M. Daneshtalab, M. Ebrahimi, and J. Plosila, “HIBS-Novel Inter-
layer Bus Structure for Stacked Architectures,” Proc. IEEE Int’l 3D
Systems Integration Conf. (3DIC), pp. 1-7, Jan. 2012.

[7] H. Matsutani and M. Koibuchi, “Tightly-Coupled Multi-Layer
Topologies for 3-D NoCs,” Proc. Int’l Conf. Parallel Processing
(ICCP), p. 75, 2007.

[8] C. Seiculescu, S. Murali, L. Benini, and G. De Micheli, “SunFloor
3D: A Tool for Networks on Chip Topology Synthesis for 3D
Systems on Chips,” Proc. Design, Automation and Test in Europe
Conf. and Exhibition (DATE), pp. 9-14, 2009.

[9] V.F. Pavlidis and E.G. Friedman, “3-D Topologies for Networks-
on-Chip,” IEEE Trans. Very Large Scale Integration Systems, vol. 15,
no. 10, pp. 1081-1090, Sept. 2007.

[10] N.E. Jerger, L.S. Peh, and M. Lipasti, “Virtual Circuit Tree
Multicasting: A Case for On-Chip Hardware Multicast Support,”
Proc. 35th Int’l Symp. Computer Architecture (ISCA), pp. 229-240,
2008.

[11] P. Abad, V. Puente, and J.A. Gregorio, “MRR: Enabling Fully
Adaptive Multicast Routing for CMP Interconnection Networks,”
Proc. IEEE 15th Int’l Symp. High Performance Computer Architecture
(HPCA), pp. 355-366, 2009.

[12] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
Splash-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Int’l Symp. Computer Architecture, pp. 24-
36, 1995.

[13] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The Parsec Benchmark
Suite: Characterization and Architectural Implications,” Proc. 17th
Int’l Conf. Parallel Architectures and Compilation Techniques, pp. 72-
81, 2008.

[14] C. Bienia, S. Kumar, and K. Li, “Parsec vs. Splash-2: A
Quantitative Comparison of Two Multithreaded Benchmark
Suites on Chip Multiprocessors,” Proc. IEEE Int’l Symp. Workload
Characterization, pp. 47-56, 2008.

[15] A. Patel and K. Ghose, “Energy-Efficient Mesi Cache Coherence
with Pro-Active Snoop Filtering for Multicore Microprocessors”
Proc. 13th Int’l Symp. Low Power Electronics and Design, pp. 247-252,
2008.

[16] M. Martin, M. Hill, and D. Wood, “Token Coherence: Decoupling
Performance and Correctness,” Proc. 30th Ann. Int’l Symp.
Computer Architecture, pp. 182-193, 2003.

[17] M.K. Martin et al., “Multifacet’s General Execution Driven
Multiprocessor Simulator (GEMS) Toolset,” SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 92-99, Nov. 2005.

[18] X. Lin and L.M. Ni, “Multicast Communication in Multicomputer
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 4,
no. 10, pp. 1105-1117, Oct. 1993.

[19] E. Carara and F.G. Moraes, “Deadlock-Free Multicast Routing
Algorithm for Wormhole-Switched Mesh Networks-on-Chip,”
Proc. IEEE CS Ann. Symp.VLSI (ISVLSI), pp. 341-346, 2008.

[20] M. Daneshtalab et al., “A Generic Adaptive Path-Based Routing
Method for MPSoCs,” Elsevier J. Systems Architecture, vol. 57, no. 1,
pp. 109-120, 2011.

[21] R.V. Boppana, S. Chalasani, and C.S. Raghavendra, “Resource
Deadlock and Performance of Wormhole Multicast Routing
Algorithms,” IEEE Trans. Parallel and Distributed Systems, vol. 9,
no. 6, pp. 535-549, June 1998.

[22] D. Panda, S. Singal, and R. Kesavan, “Multi Destination Message
Passing in Wormhole K-Ary N-Cube Networks with Base Routing
Conformed Paths,” IEEE Trans. Parallel and Distributed Systems,
vol. 10, no. 1, pp. 76-96, Jan. 1999.

[23] J. Duato, “On the Design of Deadlock-Free Adaptive Routing
Algorithms for Multicomputers: Theoretical Aspects,” Proc. Second
Europe Distributed Memory Computing Conf., Apr. 1991.

[24] M. Ebrahimi et al., “HARAQ: Congestion-Aware Learning Model
for Highly Adaptive Routing Algorithm in On-Chip Networks,”
Proc. ACM/IEEE Sixth Int’l Symp. Networks-on-Chip (NOCS), pp. 19-
26, May 2012.

[25] M. Dehyadegari et al., “An Adaptive Fuzzy Logic-Based Routing
Algorithm for Networks-on-Chip,” Proc. IEEE/NASA-ESA 13th
Int’l Conf. Adaptive Hardware and Systems (AHS), pp. 208-214, June
2011.

[26] M. Ebrahimi et al., “Exploring Partitioning Methods for 3D
Networks-on-Chip Utilizing Adaptive Routing Model,” Proc.
ACM/IEEE Fifth Int’l Symp. Networks-on-Chip (NOCS), pp. 73-80,
May 2011.

[27] L. Wang, H. Kim, and E.J. Kim, “Recursive Partitioning Multicast:
A Bandwidth-Efficient routing for Networks-on-Chip,” Proc. Int’l
Symp. Networks-on-Chip (NOCS), CA, pp. 64-73, 2009.

[28] Z. Liu and J. Duato, “Adaptive Unicast and Multicast in 3D Mesh
Networks,” Proc. 27th Hawaii Int’l Conf., vol. 1, pp. 173-182, 1994.

[29] J. Duato, “A New Theory of Deadlock-Free Adaptive Multicast
Routing in Wormhole Networks,” IEEE Trans. Parallel and
Distributed Systems, vol. 4, no. 12, pp. 1320-1331, Dec. 1993.

[30] E.O. Amnah and W.L. Zuo, “Hamiltonian Paths for Designing
Deadlock-Free Multicasting Wormhole-Routing Algorithms in 3-
D Meshes,” J. Applied Sciences, vol. 7, pp. 3410-3419, 2007.

[31] L.M. Ni and P.K. McKinley, “A Survey of Wormhole Routing
Techniques in Direct Networks,” Computer, vol. 26, no. 2, pp. 62-
76, Feb. 1993.

[32] R.S. Ramanujam and B. Lin, “Randomized Partially-Minimal
Routing on Three-Dimensional Mesh Networks,” IEEE Computer
Architecture Letters, vol. 7, no. 2, pp. 37-40, July-Dec. 2008.

[33] X. Li, P.K. Mckinley, and L.M. Ni, “Deadlock-Free Multicast
Wormhole Routing in 2-D Mesh Multicomputers,” IEEE Trans.
Parallel and Distributed Systems, vol. 5, no. 8, pp. 793-804, Aug.
1994.

[34] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, P. Plosila, and H.
Tenhunen, “A High-Performance Network Interface Architecture
for NoCs Using Reorder Buffer Sharing,” Proc. 18th Euromicro
Conf. Parallel, Distributed and Network-Based Processing (PDP),
pp. 547-550, 2010.

[35] H. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A Power-
Performance Simulator for Interconnection Networks,” Proc.
ACM/IEEE 35th Ann. Int’l Symp. Microarchitecture (MICRO 35),
pp. 294-305, 2002.

[36] F. Li et al., “Design and Management of 3D Chip Multiprocessors
Using Network-in-Memory,” Proc. 33rd Ann. Int’l Symp. Computer
Architecture (ISCA-33), pp. 130-141, 2006.

[37] A.Y. Weldezion, M. Grange, D. Pamunuwa, Z. Lu, A. Jantsch, R.
Weerasekera, and H. Tenhunen, “Scalability of Network-on-Chip
Communication Architecture for 3D Meshes,” Proc. ACM/IEEE
Third Int’l Symp. Networks-on-Chip, pp. 114-123, 2009.

[38] D. Park et al., “MIRA: A Multi-Layered On-Chip Interconnect
Router Architecture,” Proc. 35th Int’l Symp. Computer Architecture
(ISCA), pp. 251-261, 2008.

[39] G. Chiu, “The Odd-Even Turn Model for Adaptive Routing,” IEEE
Trans. Parallel and Distributed Systems, vol. 11, no. 7, pp. 729-738,
July 2000.

[40] N. Muralimanohar et al., “Optimizing Nuca Organizations and
Wiring Alternatives for Large Caches with Cacti 6.0,” Proc. IEEE/
ACM 40th Int’l Symp. Microarchitecture (MICRO), pp. 3-14, Dec.
2007.

[41] I. Loi and L. Benini, “An Efficient Distributed Memory Interface
for Many-Core Platform with 3D Stacked DRAM,” Proc. Design,
Automation and Test in Europe Conf. and Exhibition (DATE), pp. 99-
104, 2010.

[42] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way
Multithreaded Sparc Processor,” IEEE Micro, vol. 25, no. 2, pp. 21-
29, Mar./Apr. 2005.

[43] B.M. Beckmann and D.A. Wood, “Managing Wire Delay in Large
Chip-Multiprocessor Caches,” Proc. IEEE/ACM 37th Ann. Int’l
Symp. Microarchitecture (MICRO), pp. 319-330, 2004.

[44] I. Savidis et al., “Electrical Modeling and Characterization of
Through-Silicon Vias (TSVs) for 3D Integrated Circuits,” Micro-
electronics J., vol. 41, no. 1, pp. 9-16, 2010.

732 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 3, MARCH 2014

Masoumeh Ebrahimi received the PhD degree
with honors from the University of Turku, Finland,
with over 60 high-level journal and conference
paper publications, including three book chap-
ters. Her areas of expertise include interconnec-
tion networks, networks-on-chip, 3D integrated
systems, and systems-on-chip. During her doc-
toral studies, she received a 4-year scholarship
from the Graduate School in Electronics, Tele-
communications and Automation (GETA). In

addition, she has received grant awards from the Elisa foundation
(2011), Kaute foundation (2013), University of Turku foundation (twice—
2011 and 2013), and Nokia foundation (twice—2012 and 2013). She also
received a 1-year grant for doing postdoctoral research abroad from the
TES foundation. Currently, she holds a VINNOVA Marie-Curie fellowship,
conducting her research at KTH University, Sweden, and the University
of Turku, Finland, as a senior researcher. She is a member of the IEEE.

Masoud Daneshtalab is an assistant professor
in the Department of Information Technology at
the University of Turku, Finland. He is an
associate editor of the World Research Journal
of Computer Architecture (JCA) and on the
editorial boards of The Scientific World Journal,
IJDST, IJARAS, IJERTCS, and IJDATICS. He
has served as a guest editor for Springer
Computing journal, IET Computers & Digital
Techniques, ACM Transactions on Embedded

Computing Systems (ACM TECS), and ACM Journal on Emerging
Technologies in Computing Systems (JETC), along with Elsevier
Journals of Systems Architecture (JSA), Microprocessors and Micro-
systems (MICPRO), Integration, and Computers & Electrical Engineer-
ing. He also coorganizes several special session and workshops,
including a regular special session on On-Chip Parallel and Network-
Based Systems (OCPNBS) in the Euromicro PDP conference, IEEE
International Workshop on High-Performance Interconnection Networks
(HPIN) in conjunction with HPCS, and ACM International Workshop on
Many-Core Embedded Systems (MES) in conjunction with ISCA, and
ACM/IEEE International Workshop Network-on-Chip Architectures
(NoCArc) in conjunction with MICRO. He is currently co-supervising
three PhD students and his research interests include on/off-chip
interconnection networks, many-core embedded systems, embedded
operating systems, FPGA and reconfigurable architectures, 3D stacked
architectures, machine learning, and cloud data centers. He is a
member of the IEEE and has published 1 book, 5 book chapters, and
over 100 refereed international journals and conference papers. He is
currently a technical program committee member for different IEEE and
ACM conferences, including NOCS, DATE, ASPDAC, ESTIMedia, VLSI
Design, SOCC, DSD, PDP, EmbeddedCom, ICESS, EUC, NESEA,
CASEMANS, NoCArc, MES, HPIN, and JEC-ECC.

Pasi Liljeberg received the MSc and PhD
degrees in electronics and information technol-
ogy from the University of Turku, Turku, Finland,
in 1999 and 2005, respectively. He is an
associate professor in the Embedded Electro-
nics laboratory and an adjunct professor in
embedded computing architectures at the Uni-
versity of Turku, Embedded Computer Systems
laboratory. During the period 2007-2009 he held
an Academy of Finland researcher position. He

is the author of over 150 peer-reviewed publications and has supervised
9 PhD theses. His current research interests include parallel and
distributed systems, Internet-of-Things, embedded computing architec-
ture, fault-tolerant and energy-aware system design, 3D multiprocessor
system architectures, dynamic power management, cyber physical
systems, intelligent network-on-chip communication architectures, and
reconfigurable system design. He has established a research group
focusing on reliable and fault-tolerant self-timed communication plat-
forms for multiprocessor systems, FastCop project, 2008-2011, Acad-
emy of Finland. He is a member of the IEEE.

Juha Plosila is an associate professor in
embedded computing and an adjunct professor
in digital systems design at the University of
Turku (UTU), Department of Information Tech-
nology, Finland. He received the PhD degree in
electronics and communication technology from
UTU in 1999. He is the leader of the Embedded
Computer and Electronic Systems (ECES) re-
search unit and a co-leader of the Resilient IT
Infrastructures (RITES) research program at the

Turku Centre for Computer Science (TUCS). He leads the Embedded
Systems master’s program at the EIT ICT Labs Master School and is a
management committee member of the EU COST Actions IC1103
(MEDIAN: Manufacturable and Dependable Multicore Architectures at
Nanoscale) and IC1202 (TACLe: Timing Analysis on Code Level). He is
an associate editor of the International Journal of Embedded and Real-
Time Communication Systems (IGI Global). His current research deals
with adaptive multiprocessor systems at different abstraction levels. This
includes, e.g., specification, development, and verification of self-aware,
multi-agent monitoring and control architectures for massively parallel
systems, as well as applications of autonomous energy-efficient
architectures to new computational challenges in the cyber-physical
systems domain. He is a member of the IEEE.

José Flich received the PhD degree in 2001 in
computer engineering. He is an associate
professor at the Universidad Politécnica de
Valencia (UPV), where he leads the research
activities related to NoCs. He published more
than 100 conference and journal papers, and
has served on different conference program
committees (ISCA, NOCS, ICPP, IPDPS, HiPC,
CAC, CASS, ICPADS, ISCC), as program chair
(INA-OCMC, CAC), and as track co-chair

(EUROPAR). He has collaborated with different Institutions (Ferrara,
Catania, Jonkoping, USC) and companies (AMD, Intel, Sun). Current
research activities focus on routing, coherency protocols, and conges-
tion management within NoCs. He has co-invented different routing
strategies, reconfiguration, and congestion control mechanisms, some
of them with high recognition (RECN and LBDR for on-chip networks).
He is a member of the Hipeac-2 NoE. He is coeditor of the book
Designing Network-on-Chip Architectures in the Nanoscale Era, and is
the coordinator of the P7 NaNoC project. He is a member of the IEEE.

Hannu Tenhunen received the PhD degree
from Cornell University, Ithaca, New York, in
1985 and since than he has held professor,
invited professor, or honorary professor posi-
tions in Tampere, Stockholm, Ithaca, Grenoble,
Shanghai, Beijing, and Hong Kong. During
recent years he has been the director of the
Turku Centre of Computer Science and an
invited professor at the University of Turku,
Finland, where he has established the Computer

Systems Laboratory, the leading computer architecture and systems
research centre in Finland. His research interests include new
computational architectures, dependability issues, on-chip and off-chip
communication, and mixed signal and interference issues in complex
electronic systems, including 3D integration. He has done more than
600 publications or invited key note talks internationally. He is a member
of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

EBRAHIMI ET AL.: PATH-BASED PARTITIONING METHODS FOR 3D NETWORKS-ON-CHIP WITH MINIMAL ADAPTIVE ROUTING 733

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

